1
|
Bernardes JS, Eberle RJ, Vieira FRJ, Coronado MA. A comparative pan-genomic analysis of 53 C. pseudotuberculosis strains based on functional domains. J Biomol Struct Dyn 2020; 39:6974-6986. [PMID: 32779519 DOI: 10.1080/07391102.2020.1805017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Corynebacterium pseudotuberculosis is a pathogenic bacterium with great veterinary and economic importance. It is classified into two biovars: ovis, nitrate-negative, that causes lymphadenitis in small ruminants and equi, nitrate-positive, causing ulcerative lymphangitis in equines. With the explosive growth of available genomes of several strains, pan-genome analysis has opened new opportunities for understanding the dynamics and evolution of C. pseudotuberculosis. However, few pan-genomic studies have compared biovars equi and ovis. Such studies have considered a reduced number of strains and compared entire genomes. Here we conducted an original pan-genome analysis based on protein sequences and their functional domains. We considered 53 C. pseudotuberculosis strains from both biovars isolated from different hosts and countries. We have analysed conserved domains, common domains more frequently found in each biovar and biovar-specific (unique) domains. Our results demonstrated that biovar equi is more variable; there is a significant difference in the number of proteins per strains, probably indicating the occurrence of more gene loss/gain events. Moreover, strains of biovar equi presented a higher number of biovar-specific domains, 77 against only eight in biovar ovis, most of them are associated with virulence mechanisms. With this domain analysis, we have identified functional differences among strains of biovars ovis and equi that could be related to niche-adaptation and probably help to better understanding mechanisms of virulence and pathogenesis. The distribution patterns of functional domains identified in this work might have impacts on bacterial physiology and lifestyle, encouraging the development of new diagnoses, vaccines, and treatments for C. pseudotuberculosis diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juliana S Bernardes
- Laboratoire de Biologie Computationelle et Quantitative, UMR 7238, CNRS, Sorbonne Université, Paris, France
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil
| | - Fabio R J Vieira
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris, France
| | - Mônika A Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil.,Institute of Biological Information Processing (IBI-7: Strucutral Biochemistry), Forschungszentrum Juelich, Juelich, Germany
| |
Collapse
|
2
|
Tang T, Chen G, Guo A, Xu Y, Zhao L, Wang M, Lu C, Jiang Y, Zhang C. Comparative proteomic and genomic analyses of Brucella abortus biofilm and planktonic cells. Mol Med Rep 2019; 21:731-743. [PMID: 31974592 PMCID: PMC6947884 DOI: 10.3892/mmr.2019.10888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to explore the differences in protein and gene expression of Brucella abortus cultured under biofilm and planktonic conditions. The proteins unique to biofilms and planktonic B. abortus were separated by two-dimensional (2-D) electrophoresis and then identified by matrix-assisted laser desorption/ionization-tandem time of flight-mass spectrometry (MALDI-TOF/TOF-MS). High-throughput sequencing and bioinformatic analyses were performed to identify differentially expressed genes between B. abortus cultured under biofilm and planktonic conditions. The proteins and genes identified by proteomic and genomic analyses were further evaluated via western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses. 2-D electrophoresis identified 20 differentially expressed protein spots between biofilms and planktonic cells, which corresponded to 18 individual proteins (12 downregulated and 6 upregulated) after MALDI-TOF/TOF-MS analysis, including elongation factor Tu and enolase. RT-qPCR analysis revealed that all of the 18 genes were downregulated in biofilms compared with planktonic cells. Western blot analysis identified 9 downregulated and 3 upregulated proteins. High-throughput sequencing and bioinformatic analyses identified 14 function and pathway-associated genes (e.g., BAbS19_I14970). RT-qPCR analysis of the 14 genes showed that they were upregulated in biofilm compared with in planktonic state. In conclusion, these differentially expressed genes may play important roles in bacterial defense, colonization, invasion, and virulence.
Collapse
Affiliation(s)
- Taishan Tang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Guoqiang Chen
- Division of Animal and Plant Quarantine Supervision, Suzhou Entry Exit Inspection and Quarantine Bureau, Suzhou, Jiangsu 215021, P.R. China
| | - Aizhen Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ye Xu
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| | - Linli Zhao
- The Inspection and Quarantine Technology Center, Inner Mongolia Entry Exit Inspection and Quarantine Bureau, Hohhot, Inner Mongolia 010020, P.R. China
| | - Mengrui Wang
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| | - Chengping Lu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yuan Jiang
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| | - Changyin Zhang
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
3
|
Paquola ACM, Asif H, Pereira CADB, Feltes BC, Bonatto D, Lima WC, Menck CFM. Horizontal Gene Transfer Building Prokaryote Genomes: Genes Related to Exchange Between Cell and Environment are Frequently Transferred. J Mol Evol 2018; 86:190-203. [DOI: 10.1007/s00239-018-9836-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
4
|
Nadimpalli M, Lee SW, Devlin JM, Gilkerson JR, Hartley CA. Impairment of infectious laryngotracheitis virus replication by deletion of the UL[-1] gene. Arch Virol 2017; 162:1541-1548. [PMID: 28194527 DOI: 10.1007/s00705-017-3266-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) encodes several unique genes, including a pair of unique nuclear proteins UL0 and UL[-1] that are expressed during replication in cell culture. Although the UL0 gene has been shown to be dispensable for replication, the role of UL[-1] has not been elucidated. In this study a deletion mutant of ILTV lacking the UL[-1] gene was constructed using homologous recombination. The coding sequences of the gene were replaced with the gene for enhanced green fluorescent protein and the cytomegalovirus major immediate early promoter element. The progeny virus carrying the reporter gene was readily identified using fluorescent microscopy, but was unable to propagate in the permissive cells in the absence of wild type ILTV. Even after plaque purification and fluorescent associated cell sorting the recombinant virus deficient in UL[-1] gene could not be successfully isolated. Our findings suggest that the UL[-1] gene has an important role in ILTV replication.
Collapse
Affiliation(s)
- M Nadimpalli
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - S W Lee
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - J M Devlin
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J R Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - C A Hartley
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
The role of water molecules in stereoselectivity of glucose/galactose-binding protein. Sci Rep 2016; 6:36807. [PMID: 27827455 PMCID: PMC5101532 DOI: 10.1038/srep36807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022] Open
Abstract
Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose–GGBP and β-D-galactose–GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.
Collapse
|
6
|
Collier NC, Adams SP, Weingarten H, Schlesinger MJ. Inhibition of Enveloped RNA Virus Formation by Peptides Corresponding to Glycoprotein Sequences. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029200300105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptides, corresponding to amino acid sequences in the cytoplasmic domains of the transmembranal glycoproteins encoded by Sindbis and vesicular stomatitis viruses, inhibited release of virus particles and infectious virus when added to infected cells for a 2h period during a one-cycle growth curve. Each inhibitory peptide was specific for its intended virus. The shortest peptide with antiviral activity for Sindbis virus contained six amino acids, and a related peptide that was acylated at the amino terminus with octanoic acid was ten-fold more potent as an inhibitor. Neither of these peptides affected the synthesis of viral structural proteins, but a third peptide inhibited proteolytic processing of the Sindbis virus E2 glycoprotein. Inhibition of vesicular stomatitis virus particle release was dose-dependent in the range of 50–400 μg ml−1 for a peptide corresponding to the G glycoprotein cytoplasmic domain. We postulate that these peptides competitively inhibit attachment of the glycoprotein to intracellular virus structures during assembly of the virion. Thus, drugs, based on peptides that mimic the protein-protein interactions required for virus assembly, may have therapeutic potential.
Collapse
Affiliation(s)
- N. C. Collier
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - H. Weingarten
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - M. J. Schlesinger
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
7
|
Crepps SC, Fields EE, Galan D, Corbett JP, Von Hasseln ER, Spatafora GA. The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response. Mol Oral Microbiol 2016; 31:526-539. [PMID: 26577188 DOI: 10.1111/omi.12147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
Abstract
SloR, a 25-kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC- and SloR-deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild-type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC- and SloR-proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT-PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress.
Collapse
Affiliation(s)
- S C Crepps
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - E E Fields
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - D Galan
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - J P Corbett
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - E R Von Hasseln
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - G A Spatafora
- Department of Biology, Middlebury College, Middlebury, VT, USA.
| |
Collapse
|
8
|
Bosdriesz E, Magnúsdóttir S, Bruggeman FJ, Teusink B, Molenaar D. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate. FEBS J 2015; 282:2394-407. [PMID: 25846030 DOI: 10.1111/febs.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them.
Collapse
Affiliation(s)
- Evert Bosdriesz
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | | | | | - Bas Teusink
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wareth G, Melzer F, Weise C, Neubauer H, Roesler U, Murugaiyan J. Proteomics-based identification of immunodominant proteins of Brucellae using sera from infected hosts points towards enhanced pathogen survival during the infection. Biochem Biophys Res Commun 2014; 456:202-6. [PMID: 25446124 DOI: 10.1016/j.bbrc.2014.11.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/15/2014] [Indexed: 01/07/2023]
Abstract
Brucella (B.) species lack classical virulence factors, but escape effectively the immune response of the host. The species Brucella abortus and Brucella melitensis infect predominantly cattle and small ruminants such as sheep or goats, respectively, but account also for most human cases. These two species share remarkably similar genomes but different proteomes have been demonstrated. This might be one of the reasons for their host specificity. A comprehensive identification of immunodominant proteins of these two species using antibodies present in the serum of naturally infected ruminants might provide insight on the mechanism of their infection in different hosts. In the present study, whole-cell protein extracts of B. abortus and B. melitensis were separated using SDS-PAGE and western blotting was performed using field sera from cows, buffaloes, sheep and goats. Protein bands that matched with western blot signals were excised, digested with trypsin and subjected to protein identification using MALDI-TOF MS. Identified proteins included heat shock proteins, enzymes, binding proteins and hypothetical proteins. Antibodies against the same set of antigen were found for all species investigated, except for superoxide dismutase of B. melitensis for which antibodies were demonstrated only in sheep serum. Brucellae appear to express these proteins mainly for their survival in the host system during infection.
Collapse
Affiliation(s)
- Gamal Wareth
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Germany; Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Falk Melzer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Christoph Weise
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Germany.
| |
Collapse
|
10
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Brooks AN, Reiss DJ, Allard A, Wu WJ, Salvanha DM, Plaisier CL, Chandrasekaran S, Pan M, Kaur A, Baliga NS. A system-level model for the microbial regulatory genome. Mol Syst Biol 2014; 10:740. [PMID: 25028489 PMCID: PMC4299497 DOI: 10.15252/msb.20145160] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes.
Collapse
Affiliation(s)
- Aaron N Brooks
- Institute for Systems Biology, Seattle, WA, USA Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | | - Antoine Allard
- Département de Physique, de Génie Physique et d'Optique, Université Laval, Québec, QC, Canada
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Diego M Salvanha
- Institute for Systems Biology, Seattle, WA, USA LabPIB, Department of Computing and Mathematics FFCLRP-USP, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
12
|
|
13
|
Tabachnikov O, Shoham Y. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J 2013; 280:950-64. [PMID: 23216604 DOI: 10.1111/febs.12089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/22/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED Type I galactan is a pectic polysaccharide composed of β-1,4 linked units of d-galactose and is part of the main plant cell wall polysaccharides, which are the most abundant sources of renewable carbon in the biosphere. The thermophilic bacterium Geobacillus stearothermophilus T-6 possesses an extensive system for the utilization of plant cell wall polysaccharides, including a 9.4-kb gene cluster, ganREFGBA, which encodes galactan-utilization elements. Based on enzyme activity assays, the ganEFGBA genes, which probably constitute an operon, are induced by short galactosaccharides but not by galactose. GanA is a glycoside hydrolase family 53 β-1,4-galactanase, active on high molecular weight galactan, producing galactotetraose as the main product. Homology modelling of the active site residues suggests that the enzyme can accommodate at least eight galactose molecules (at subsites -4 to +4) in the active site. GanB is a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4 galactosaccharides into galactose. Applying both GanA and GanB on galactan resulted in the full degradation of the polymer into galactose. The ganEFG genes encode an ATP-binding cassette sugar transport system whose sugar-binding lipoprotein, GanE, was shown to bind galacto-oligosaccharides. The utilization of galactan by G. stearothermophilus involves the extracellular galactanase GanA cleaving galactan into galacto-oligosaccharides that enter the cell via a specific transport system GanEFG. The galacto-oligosaccharides are further degraded by the intracellular β-galactosidase GanB into galactose, which is then metabolized into UDP-glucose via the Leloir pathway by the galKET gene products. DATABASE Nucleotide sequence data have been deposited in the GenBank database under the accession number JF327803.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
14
|
Abstract
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require approximately 12 alpha-helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein.
Collapse
Affiliation(s)
- I Bosch
- Harvard Medical School, The Dana-Faber Cancer Institute, Boston, MA, U.S.A
| | | |
Collapse
|
15
|
Ahmed MF, Kantharajah AS, Holford P. Genetic Transformation Studies on Avocado Cultivar “Hass” (Persea americana). ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.39148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.
Collapse
|
17
|
Nucleotide sequence analysis of small cryptic plasmid pGP2 from Acetobacter estunensis. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0017-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Shrivastava R, Basu B, Godbole A, Mathew MK, Apte SK, Phale PS. Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86. MICROBIOLOGY-SGM 2011; 157:1531-1540. [PMID: 21330430 DOI: 10.1099/mic.0.047191-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida CSV86 shows preferential utilization of aromatic compounds over glucose. Protein analysis and [¹⁴C]glucose-binding studies of the outer membrane fraction of cells grown on different carbon sources revealed a 40 kDa protein that was transcriptionally induced by glucose and repressed by aromatics and succinate. Based on 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis, the 40 kDa protein closely resembled the porin B of P. putida KT2440 and carbohydrate-selective porin OprB of various Pseudomonas strains. The purified native protein (i) was estimated to be a homotrimer of 125 kDa with a subunit molecular mass of 40 kDa, (ii) displayed heat modifiability of electrophoretic mobility, (iii) showed channel conductance of 166 pS in 1 M KCl, (iv) permeated various sugars (mono-, di- and tri-saccharides), organic acids, amino acids and aromatic compounds, and (v) harboured a glucose-specific and saturable binding site with a dissociation constant of 1.3 µM. These results identify the glucose-inducible outer-membrane protein of P. putida CSV86 as a carbohydrate-selective protein OprB. Besides modulation of intracellular glucose-metabolizing enzymes and specific glucose-binding periplasmic space protein, the repression of OprB by aromatics and organic acids, even in the presence of glucose, also contributes significantly to the strain's ability to utilize aromatics and organic acids over glucose.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India
| | - Ashwini Godbole
- National Center for Biological Sciences, Bangalore 560 065, India
| | - M K Mathew
- National Center for Biological Sciences, Bangalore 560 065, India
| | - Shree K Apte
- Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
19
|
Tremaroli V, Fedi S, Tamburini S, Viti C, Tatti E, Ceri H, Turner RJ, Zannoni D. A histidine-kinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism. BIOFOULING 2011; 27:33-46. [PMID: 21108067 DOI: 10.1080/08927014.2010.537099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A histidine-kinase cheA gene in Pseudomonas pseudoalcaligenes KF707 plays a central role in the regulation of metabolic responses as well as in chemotaxis. Non-chemotactic mutants harboring insertions into the cheA gene were screened for their ability to form biofilms in the Calgary biofilm device. Notably, ≥95% decrease in the number of cells attached to the polystyrene surface was observed in cheA mutants compared to the KF707 wild-type biofilm phenotype. The ability to form mature biofilms was restored to wild-type levels, providing functional copies of the KF707 cheA gene to the mutants. In addition, phenotype micro-arrays and proteomic analyses revealed that several basic metabolic activities and a few periplasmic binding proteins of cheA mutant cells differed compared to those of wild-type cells. These results are interpreted as evidence of a strong integration between chemotactic and metabolic pathways in the process of biofilm development by P. pseudoalcaligenes KF707.
Collapse
Affiliation(s)
- V Tremaroli
- Department of Biological Sciences & Biofilm Research Group, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Carle P, Saillard C, Carrère N, Carrère S, Duret S, Eveillard S, Gaurivaud P, Gourgues G, Gouzy J, Salar P, Verdin E, Breton M, Blanchard A, Laigret F, Bové JM, Renaudin J, Foissac X. Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 2010; 76:3420-6. [PMID: 20363791 PMCID: PMC2876439 DOI: 10.1128/aem.02954-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/25/2010] [Indexed: 11/20/2022] Open
Abstract
The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.
Collapse
Affiliation(s)
- Patricia Carle
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Colette Saillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Nathalie Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sébastien Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sandrine Eveillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Patrice Gaurivaud
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Géraldine Gourgues
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Jérome Gouzy
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Pascal Salar
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Eric Verdin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Marc Breton
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Alain Blanchard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Frédéric Laigret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joseph-Marie Bové
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joel Renaudin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Xavier Foissac
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
21
|
A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 2008; 190:2331-9. [PMID: 18245293 DOI: 10.1128/jb.01726-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 channels glucose to the central Entner-Doudoroff intermediate 6-phosphogluconate through three convergent pathways. The genes for these convergent pathways are clustered in three independent regions on the host chromosome. A number of monocistronic units and operons coexist within each of these clusters, favoring coexpression of catabolic enzymes and transport systems. Expression of the three pathways is mediated by three transcriptional repressors, HexR, GnuR, and PtxS, and by a positive transcriptional regulator, GltR-2. In this study, we generated mutants in each of the regulators and carried out transcriptional assays using microarrays and transcriptional fusions. These studies revealed that HexR controls the genes that encode glucokinase/glucose 6-phosphate dehydrogenase that yield 6-phosphogluconate; the genes for the Entner-Doudoroff enzymes that yield glyceraldehyde-3-phosphate and pyruvate; and gap-1, which encodes glyceraldehyde-3-phosphate dehydrogenase. GltR-2 is the transcriptional regulator that controls specific porins for the entry of glucose into the periplasmic space, as well as the gtsABCD operon for glucose transport through the inner membrane. GnuR is the repressor of gluconate transport and gluconokinase responsible for the conversion of gluconate into 6-phosphogluconate. PtxS, however, controls the enzymes for oxidation of gluconate to 2-ketogluconate, its transport and metabolism, and a set of genes unrelated to glucose metabolism.
Collapse
|
22
|
Davidson AL, Maloney PC. ABC transporters: how small machines do a big job. Trends Microbiol 2007; 15:448-55. [PMID: 17920277 DOI: 10.1016/j.tim.2007.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/31/2007] [Accepted: 09/24/2007] [Indexed: 02/08/2023]
Abstract
Transporters from the ATP-binding cassette (ABC) superfamily operate in all organisms, from bacteria to humans, to pump substances across biological membranes. Recent high-resolution views of ABC transporters in different conformational states provide clues as to how ATP might be used to drive the structural reorganizations that accompany membrane transport. Importantly, it now appears that a putative translocation pathway running through the center of the transporter might be gated alternately, either at the inside or the outside of the cytoplasmic membrane, coupling substrate translocation to a cycle of ATP-dependent conformational changes. ATP binding and ATP hydrolysis have distinct roles in this cycle: binding favors the outward-facing orientation, whereas hydrolysis returns the transporter to an inward-facing conformation.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
23
|
Shulami S, Zaide G, Zolotnitsky G, Langut Y, Feld G, Sonenshein AL, Shoham Y. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl Environ Microbiol 2006; 73:874-84. [PMID: 17142383 PMCID: PMC1800775 DOI: 10.1128/aem.02367-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the -53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 microM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (DeltaCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system.
Collapse
Affiliation(s)
- Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Kawashima M, Tamiya G, Oka A, Hohjoh H, Juji T, Ebisawa T, Honda Y, Inoko H, Tokunaga K. Genomewide association analysis of human narcolepsy and a new resistance gene. Am J Hum Genet 2006; 79:252-63. [PMID: 16826516 PMCID: PMC1559501 DOI: 10.1086/505539] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 04/27/2006] [Indexed: 11/03/2022] Open
Abstract
Human narcolepsy is a hypersomnia that is affected by multiple genetic and environmental factors. One genetic factor strongly associated with narcolepsy is the HLA-DRB1*1501-DQB1*0602 haplotype in the human leukocyte antigen region on chromosome 6, whereas the other genetic factors are not clear. To discover additional candidate regions for susceptibility or resistance to human narcolepsy, we performed a genomewide association study, using 23,244 microsatellite markers. Two rounds of screening with the use of pooled DNAs yielded 96 microsatellite markers (including 16 markers on chromosome 6) with significantly different estimated frequencies in case and control pools. Markers not located on chromosome 6 were evaluated by the individual typing of 95 cases and 95 controls; 30 markers still showed significant associations. A strong association was displayed by a marker on chromosome 21 (21q22.3). The surrounding region was subjected to high-density association mapping with 14 additional microsatellite markers and 74 SNPs. One microsatellite marker (D21S0012m) and two SNPs (rs13048981 and rs13046884) showed strong associations (P < .0005; odds ratios 0.19-0.33). These polymorphisms were in a strong linkage disequilibrium, and no other polymorphism in the region showed a stronger association with narcolepsy. The region contains three predicted genes--NLC1-A, NLC1-B, and NLC1-C--tentatively named "narcolepsy candidate-region 1 genes," and NLC1-A and NLC1-C were expressed in human hypothalamus. Reporter-gene assays showed that the marker D21S0012m in the promoter region and the SNP rs13046884 in the intron of NLC1-A significantly affected expression levels. Therefore, NLC1-A is considered to be a new resistance gene for human narcolepsy.
Collapse
Affiliation(s)
- Minae Kawashima
- Department of Sleep Disorder Research (Alfresa), Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bi W, Saifi GM, Shaw CJ, Walz K, Fonseca P, Wilson M, Potocki L, Lupski JR. Mutations of RAI1, a PHD-containing protein, in nondeletion patients with Smith-Magenis syndrome. Hum Genet 2004; 115:515-24. [PMID: 15565467 DOI: 10.1007/s00439-004-1187-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/16/2004] [Indexed: 10/26/2022]
Abstract
Smith-Magenis syndrome (SMS) is a mental retardation/multiple congenital anomalies disorder associated with a heterozygous approximately 4-Mb deletion in 17p11.2. Patients with SMS show variability in clinical phenotype despite a common deletion found in >75-80% of patients. Recently, point mutations in the retinoic acid induced 1 (RAI1) gene, which lies within the SMS critical interval, were identified in three patients with many SMS features in whom no deletion was detected. It is not clear if the entire SMS phenotype can be accounted for by RAI1 haploinsufficiency, nor has the precise function of RAI1 been delineated. We report two novel RAI1 mutations, one frameshift and one nonsense allele, in nondeletion SMS patients. Comparisons of the clinical features in these two patients, three of the previously reported RAI1 point mutation cases, and the patients with a common deletion suggest that the majority of the clinical features in SMS result from RAI1 mutation, although phenotypic variability exists even among the individuals with RAI1 point mutations. Bioinformatics analyses of RAI1 and comparative genomics between human and mouse orthologues revealed a zinc finger-like plant homeo domain (PHD) at the carboxyl terminus that is conserved in the trithorax group of chromatin-based transcription regulators. These findings suggest RAI1 is involved in transcriptional control through a multi-protein complex whose function may be altered in individuals with SMS.
Collapse
Affiliation(s)
- Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Room 604B, One Baylor Plaza, Houston, TX 77030-3498, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Harrison PM, Kunin V, Gerstein M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 2004; 5:R64. [PMID: 15345048 PMCID: PMC522871 DOI: 10.1186/gb-2004-5-9-r64] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/04/2004] [Accepted: 08/02/2004] [Indexed: 12/04/2022] Open
Abstract
A comprehensive analysis of the occurrence of pseudogenes in a diverse selection of 64 prokaryote genomes identified around 7,000 candidate pseudogenes. A large fraction of prokaryote pseudogenes seems to have arisen from failed horizontal-transfer events. Background Pseudogenes often manifest themselves as disabled copies of known genes. In prokaryotes, it was generally believed (with a few well-known exceptions) that they were rare. Results We have carried out a comprehensive analysis of the occurrence of pseudogenes in a diverse selection of 64 prokaryote genomes. Overall, we find a total of around 7,000 candidate pseudogenes. Moreover, in all the genomes surveyed, pseudogenes occur in at least 1 to 5% of all gene-like sequences, with some genomes having considerably higher occurrence. Although many large populations of pseudogenes arise from large, diverse protein families (for example, the ABC transporters), notable numbers of pseudogenes are associated with specific families that do not occur that widely. These include the cytochrome P450 and PPE families (PF00067 and PF00823) and others that have a direct role in DNA transposition. Conclusions We find suggestive evidence that a large fraction of prokaryote pseudogenes arose from failed horizontal transfer events. In particular, we find that pseudogenes are more than twice as likely as genes to have anomalous codon usage associated with horizontal transfer. Moreover, we found a significant difference in the number of horizontally transferred pseudogenes in pathogenic and non-pathogenic strains of Escherichia coli.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520-8114, USA
- Current address: Department of Biomedical Informatics, Columbia University, 622 W 168th street, New York, NY 10032, USA
| | - Paul M Harrison
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520-8114, USA
| | - Victor Kunin
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520-8114, USA
| |
Collapse
|
27
|
He X, Turner C, Chen GQ, Lin JT, McKeon TA. Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 2004; 39:311-8. [PMID: 15357018 DOI: 10.1007/s11745-004-1234-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The oil from castor seed (Ricinus communis) contains 90% ricinoleate, a hydroxy FA that is used in producing numerous industrial products. Castor diacylglycerol acyltransferase (RcDGAT) is a critical enzyme, as it catalyzes the terminal step in castor oil biosynthesis in which the products contain two or three ricinoleoyl moieties. We have isolated a cDNA encoding RcDGAT from developing castor seeds. Analysis of the sequence reveals that this cDNA encodes a protein of 521 amino acids with a molecular mass of 59.9 kDa. Although there are regions of high similarity to other plant DGAT coding sequences, there are sequences that distinguish it as well. Southern blot analysis suggests that the castor genome contains a single copy of RcDGAT. Analysis by reverse transcription-PCR reveals that the accumulation of the mRNA reaches its highest level at 19 d after pollination and declines thereafter. Expression of the full-length cDNA for RcDGAT in the yeast Saccharomyces cerevisiae, strain INVSc1 results in sevenfold higher DGAT activity compared with controls. When different molecular species of DAG were provided as substrates to the microsomal mixture, the RcDGAT showed a greater preference to catalyze the transfer of oleate from [14C]oleoyl-CoA to diricinolein than to diolein and dipalmitolein. With the addition of 0.25 mM substrates, diricinolein gave 318 pmol/mg/min diricinoleoyloleoylglycerol (RRO), while diolein and dipalmitolein gave only about 195 pmol/mg/min of triolein (OOO) and 120 pmol/mg/min dipalmitoyleoylglycerol (PoPoO), respectively. This work will facilitate investigation of the role of RcDGAT in castor oil biosynthesis.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, USDA, Albany, California 94710, USA
| | | | | | | | | |
Collapse
|
28
|
Ramos AJ, Lazarowski A, Villar MJ, Brusco A. Transient expression of MDR-1/P-glycoprotein in a model of partial cortical devascularization. Cell Mol Neurobiol 2004; 24:101-7. [PMID: 15049514 DOI: 10.1023/b:cemn.0000012728.19117.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. MDR-1 gene product confer to expressing cells the multidrug resistance phenotype to a broad range of drugs and xenobiotics. 2. It is known that different stress signals are able to induce MDR-1 expression through different promoters. 3. In a rat model of ischemia by partial cortical devascularization we studied the expression profile and the cellular localization of MDR-1 after 1, 3, 7, 14 and 28 days post lesion (DPL). 4. Using two different antibody clones we found that MDR-1 is expressed in cortical and striatal neurons ipsilateral to the devascularizing lesion, starting at 1DPL, showing a maximum at 7DPL to be thereafter reduced until undetectable levels by 28DPL. 5. MDR-1 expression may be defining a neuronal subset with a particular pharmacological profile.
Collapse
Affiliation(s)
- Alberto Javier Ramos
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
29
|
Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 2003; 185:5967-75. [PMID: 14526007 PMCID: PMC225050 DOI: 10.1128/jb.185.20.5967-5975.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/29/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.
Collapse
Affiliation(s)
- Sehmi Paik
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
30
|
Kolehmainen J, Black GCM, Saarinen A, Chandler K, Clayton-Smith J, Träskelin AL, Perveen R, Kivitie-Kallio S, Norio R, Warburg M, Fryns JP, Chapelle ADL, Lehesjoki AE. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 2003; 72:1359-69. [PMID: 12730828 PMCID: PMC1180298 DOI: 10.1086/375454] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 03/07/2003] [Indexed: 12/15/2022] Open
Abstract
Cohen syndrome is an uncommon autosomal recessive disorder whose diagnosis is based on the clinical picture of nonprogressive psychomotor retardation and microcephaly, characteristic facial features, retinal dystrophy, and intermittent neutropenia. We have refined the critical region on chromosome 8q22 by haplotype analysis, and we report the characterization of a novel gene, COH1, that is mutated in patients with Cohen syndrome. The longest transcript (14,093 bp) is widely expressed and is transcribed from 62 exons that span a genomic region of approximately 864 kb. COH1 encodes a putative transmembrane protein of 4,022 amino acids, with a complex domain structure. Homology to the Saccharomyces cerevisiae VPS13 protein suggests a role for COH1 in vesicle-mediated sorting and transport of proteins within the cell.
Collapse
Affiliation(s)
- Juha Kolehmainen
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Graeme C. M. Black
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Anne Saarinen
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kate Chandler
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jill Clayton-Smith
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ann-Liz Träskelin
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Rahat Perveen
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Satu Kivitie-Kallio
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Reijo Norio
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Mette Warburg
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jean-Pierre Fryns
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Albert de la Chapelle
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, and The Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, and Department of Medical Genetics, The Family Federation of Finland, Helsinki; Academic Unit of Ophthalmology, University of Manchester, Manchester Royal Eye Hospital, and University Department of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; Centre for Disabled Persons, Glostrup Hospital, Glostrup, Denmark; Center for Human Genetics, University of Leuven, Leuven, Belgium; and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Labialle S, Gayet L, Marthinet E, Rigal D, Baggetto LG. Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem Pharmacol 2002; 64:943-8. [PMID: 12213590 DOI: 10.1016/s0006-2952(02)01156-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The multidrug resistance (MDR) phenotype is the major cause of failure of cancer chemotherapy. This phenotype is mainly due to the overexpression of the human MDR1 (hMDR1) gene. Several studies have shown that transcriptional regulation of this gene is unexpectedly complex and is far from being completely understood. Current work is aimed mainly at defining unclear and new control regions in the hMDR1 gene promoter as well as clarifying corresponding signaling pathways. Such studies provide new insights into the mechanisms by which xenobiotic molecules might modify the physiological hMDR1 expression as well as the possible role of oncogenes in the pathological dysregulation of the gene. Here we report recent findings on the regulation of hMDR1 which may help define specific targets aimed at modulating its transcription.
Collapse
Affiliation(s)
- Stéphane Labialle
- IBCP UMR 5086 CNRS UCBL, 7 passage du Vercors, F-69367 Cedex 07, Lyon, France
| | | | | | | | | |
Collapse
|
32
|
Quentin Y, Chabalier J, Fichant G. Strategies for the identification, the assembly and the classification of integrated biological systems in completely sequenced genomes. COMPUTERS & CHEMISTRY 2002; 26:447-57. [PMID: 12144175 DOI: 10.1016/s0097-8485(02)00007-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The proteins involved in a single biological process may form a stable supra-molecular assembly or be transiently in interaction. Although, the first annotation steps of a complete genome may allow the identification of the different partners, their assembly in a functional system, referred to as an integrated system, is a domain where methodological effort has to be done. Indeed, the knowledge required to assemble partners of such systems should be explicitly included in annotation software. The availability of a complete genome, and therefore of all the proteins encoded by that genome, motivated the development of automated approaches through the coordinated combination of different bio-informatic methods allowing the identification of the different partners, their assembly and the classification of the reconstructed systems in functional categories. In this data flux, the identification of the sequence partners represents the principal bottleneck. Here, we describe and compare the results obtained with different classes of methods (BLASTP2, PSI-BLAST, MAST and META-MEME) applied to the identification in complete genomes of a given family of integrated systems: the ABC transporters. PSI-BLAST appears to significantly outperform motif-based methods, and the results are discussed according to the nature of the proteins and the structure of the sub-families.
Collapse
Affiliation(s)
- Yves Quentin
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, CNRS 31, Marseille, France
| | | | | |
Collapse
|
33
|
Sasabe M, Toyoda K, Shiraishi T, Inagaki Y, Ichinose Y. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett 2002; 518:164-8. [PMID: 11997039 DOI: 10.1016/s0014-5793(02)02697-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We isolated an INF1 elicitin-inducible cDNA encoding a pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter homolog (NtPDR1) in suspension-cultured tobacco Bright Yellow-2 (BY-2) cells by application of differential display PCR. The NtPDR1 (Nicotiana tabacum PDR protein 1) gene also encodes a 162 kDa protein that includes two putative hydrophilic domains containing the ABC signature motif and two putative hydrophobic domains. Expression of the NtPDR1 gene was rapidly and strongly activated by treatment of BY-2 cells with INF1 elicitin. Further, treatment of BY-2 cells with flagellin, a bacterial proteinaceous hypersensitive reaction elicitor, or yeast extract, a general elicitor, also induced NtPDR1 gene expression. These results indicate that NtPDR1 may be involved in the general defense response in tobacco. This is the first report that microbial elicitors induce the expression of a plant ABC transporter gene.
Collapse
Affiliation(s)
- Michiko Sasabe
- Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, 700-8530, Okayama, Japan
| | | | | | | | | |
Collapse
|
34
|
Neumann S, Topper A, Mandel H, Shapira I, Golan O, Gazit E, Loewenthal R. Identification of new mutations in Israeli patients with X-linked adrenoleukodystrophy. GENETIC TESTING 2001; 5:65-8. [PMID: 11336405 DOI: 10.1089/109065701750168806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by impaired peroxisomal betaoxidation of very-long-chain fatty acids (VLCFAs). This is probably due to reduced activation of the VLCFAs and results in demyelination of the nervous system and adrenocortical insufficiency. The ALD gene is localized on Xq28, has 10 exons and encodes a protein of 745 amino acids with significant homology to the membrane peroxisomal protein PMP70. Characterizing the disease causing mutations is of importance in prenatal diagnosis because 12-20% of women who are obligatory carriers show false-negative results when tested for VLCFA in plasma. We have analyzed DNA from blood samples of 7 Jewish (5 Sephardi and 2 Ashkenazi) and 3 Arab Israeli families suffering from ALD. Five missense-type mutations were identified: R104H, Y174C, L229P, R401Q, and G512C. A single mutation, R464X, was nonsense, and two, Y171 frameshift and E471 frameshift, were frameshift. Interestingly, a single mutation was identified in three families of Moroccan Jewish descent, probably due to a founder effect.
Collapse
Affiliation(s)
- S Neumann
- Tissue Typing Laboratory, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Katoh H, Hagino N, Ogawa T. Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. Strain PCC 6803. PLANT & CELL PHYSIOLOGY 2001; 42:823-827. [PMID: 11522907 DOI: 10.1093/pcp/pce106] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The futA1 (slr1295) and futA2 (slr0513) genes encode periplasmic binding proteins of an ATP-binding cassette (ABC)-type iron transporter in Synechocystis sp. PCC 6803. FutA1 was expressed in Escherichia coli as a GST-tagged recombinant protein (rFutA1). Solution containing purified rFutA1 and ferric chloride showed an absorption spectrum with a peak at 453 nm. The absorbance at this wavelength rose linearly as the amount of iron bound to rFutA1 increased to reach a plateau when the molar ratio of iron to rFutA1 became unity. The association constant of rFutA1 for iron in vitro was about 1 x 10(19). These results demonstrate that the FutA1 binds the ferric ion with high affinity. The activity of iron uptake in the Delta futA1 and Delta futA2 mutants was 37 and 84%, respectively, of that in the wild-type and the activity was less than 5% in the Delta futA1/Delta futA2 double mutant, suggesting their redundant role for binding iron. High concentrations of citrate inhibited ferric iron uptake. These results suggest that the natural iron source transported by the Fut system is not ferric citrate.
Collapse
Affiliation(s)
- H Katoh
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601 Japan.
| | | | | |
Collapse
|
36
|
Boucher I, Emond E, Parrot M, Moineau S. DNA sequence analysis of three Lactococcus lactis plasmids encoding phage resistance mechanisms. J Dairy Sci 2001; 84:1610-20. [PMID: 11467810 DOI: 10.3168/jds.s0022-0302(01)74595-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The three Lactococcus lactis plasmids pSRQ700, pSRQ800, and pSRQ900 encode the previously described anti-phage resistance mechanisms LlaDCHI, AbiK, and AbiQ, respectively. Since these plasmids are likely to be introduced into industrial Lactococcus lactis strains used to manufacture commercial fermented dairy products, their complete DNA sequences were determined and analyzed. The plasmids pSRQ700 (7784 bp), pSRQ800 (7858 bp), and pSRQ900 (10,836 bp) showed a similar genetic organization including a common lactococcal theta-type replicon. A second replication module showing features of the pMV158 family of rolling circle replicons was also found on pSRQ700. The theta replication regions of the three plasmids were associated with two additional coding regions, one of which encodes for HsdS, the specificity subunit of the type I restriction/modification system. When introduced into L. lactis IL1403, the HsdS of pSRQ800 and pSRQ900 conferred a weak resistance against phage P008 (936 species). These results indicated that both HsdS subunits can complement the chromosomally encoded type I restriction/modification system in IL1403. The genes involved in the phage resistance systems LlaDCHI, AbiK, and AbiQ were found in close proximity to and downstream of the replication modules. In pSRQ800 and pSRQ900, transfer origins and putative tyrosine recombinases were found upstream of the theta replicons. Genes encoding recombination proteins were also found on pSRQ700. Finally, open reading frames associated with bacteriocin production were found on pSRQ900, but no anti-lactococcal activity was detected. Based on our current knowledge, these three plasmids are safe and suitable for food-grade applications.
Collapse
Affiliation(s)
- I Boucher
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Faculté de Médecine Dentaire, Université Laval, Quebec, Canada
| | | | | | | |
Collapse
|
37
|
Eide DJ. Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol 2001; 43:1-38. [PMID: 10907553 DOI: 10.1016/s0065-2911(00)43001-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Metal ions such as iron, copper, manganese, and zinc are essential nutrients for all eukaryotic microorganisms. Therefore, these organisms possess efficient uptake mechanisms to obtain these nutrients from their extracellular environment. Metal ions must also be transported into intracellular organelles where they function as catalytic and structural cofactors for compartmentalized enzymes. Thus, intracellular transport mechanisms are also present. When present in high levels, metal ions can also be toxic, so their uptake and intracellular transport is tightly regulated at both transcriptional and post-transcriptional levels to limit metal ion overaccumulation and facilitate storage and sequestration. Remarkable molecular insight into these processes has come from recent studies of the yeast Saccharomyces cerevisiae. This organism, which is the primary subject of this chapter, serves as a useful paradigm to understand metal ion metabolism in other eukaryotic microbes.
Collapse
Affiliation(s)
- D J Eide
- Department of Nutritional Sciences, University of Missouri-Columbia 65203, USA
| |
Collapse
|
38
|
Organisation and Variable Incidence of Genes Concerned with the Utilization of Xylans in the Rumen Cellulolytic Bacterium Ruminococcus flavefaciens. Anaerobe 2000. [DOI: 10.1006/anae.2000.0358] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Maeda S, Price GD, Badger MR, Enomoto C, Omata T. Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem 2000; 275:20551-5. [PMID: 10779519 DOI: 10.1074/jbc.m003034200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cmpABCD operon of the cyanobacterium Synechococcus sp. strain PCC 7942 encodes an ATP-binding cassette transporter involved in HCO(3)(-) uptake. The three genes, cmpBCD, encode membrane components of an ATP-binding cassette transporter, whereas cmpA encodes a 42-kDa cytoplasmic membrane protein, which is 46.5% identical to the membrane-anchored substrate-binding protein of the nitrate/nitrite transporter. Equilibrium dialysis analysis using H(14)CO(3)(-) showed that a truncated CmpA protein lacking the N-terminal 31 amino acids, expressed in Escherichia coli cells as a histidine-tagged soluble protein, specifically binds inorganic carbon (CO(2) or HCO(3)(-)). The addition of the recombinant CmpA protein to a buffer caused a decrease in the concentration of dissolved CO(2) because of the binding of inorganic carbon to the protein. The decrease in CO(2) concentration was accelerated by the addition of carbonic anhydrase, indicating that HCO(3)(-), but not CO(2), binds to the protein. Mass spectrometric measurements of the amounts of unbound and bound HCO(3)(-) in CmpA solutions containing low concentrations of inorganic carbon revealed that CmpA binds HCO(3)(-) with high affinity (K(d) = 5 microm). A similar dissociation constant was obtained by analysis of the competitive inhibition of the CmpA protein on the carboxylation of phosphoenolpyruvate by phosphoenolpyruvate carboxylase at limiting concentrations of HCO(3)(-). These findings showed that the cmpA gene encodes the substrate-binding protein of the HCO(3)(-) transporter.
Collapse
Affiliation(s)
- S Maeda
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|
40
|
Marthinet E, Divita G, Bernaud J, Rigal D, Baggetto LG. Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter. Gene Ther 2000; 7:1224-33. [PMID: 10918491 DOI: 10.1038/sj.gt.3301231] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multidrug resistance of cancer (MDR) is the major cause of failure of chemotherapy. The typical MDR phenotype is due to the overexpression of membrane proteins among which the main representative is P-glycoprotein (Pgp) encoded by the MDR1 gene. Many attempts to modulate MDR by chemosensitizers have been unsuccessful in human therapy due to their intrinsic toxic effects. In an effort to modulate the MDR phenotype efficiently we designed an antisense and a transcriptional decoy strategy targeting the TATA-less human MDR1 gene promoter. The choice of the start point of transcription in a multiple start site window is related to an upstream MED-1 cis-element, the sequence and configuration of which are specific to human MDR1 gene expressed in Pgp-overproducing cancer cells. A 12mer antisense oligodeoxynucleotide (ODN) and a 12mer double-stranded ODN, both containing the MED-1 sequence, were designed and efficiently vectorized into the nucleus with the chimerical MPG peptide. A synthetic cellular model (NIH-EGFP) and highly resistant human CEM/VLB0.45 leukemia cells, significantly responded to transfection with the ODN/MPG complex. The level of EGFP fluorescence in NIH-EGFP cells decreased, and thus its production, and viability of CEM/VLB0.45 cells decreased by 63% in the presence of vinblastine, revealing that their resistance to the anticancer drug was reversed. These results open new insights into transcriptional decoy and anti-gene therapies of MDR cancers that overproduce Pgp. Gene Therapy (2000) 7, 1224-1233.
Collapse
|
41
|
Fenno JC, Tamura M, Hannam PM, Wong GW, Chan RA, McBride BC. Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect Immun 2000; 68:1884-92. [PMID: 10722578 PMCID: PMC97362 DOI: 10.1128/iai.68.4.1884-1892.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins secreted or exported by Treponema denticola have been implicated as mediators of specific interactions between the spirochete and subgingival tissues in periodontal diseases. However, limited information is available on the ability of this peptidolytic organism to bind or transport soluble peptides present in the subgingival environment. A prominent 70-kDa protein was isolated from surface extracts of T. denticola ATCC 35405. A clone expressing a portion of the protein was identified in an Escherichia coli expression library of T. denticola DNA. DNA sequence analysis showed that the cloned gene encoded a peptide homologous to OppA, the solute binding protein of an ATP-binding cassette-type peptide transporter involved in peptide uptake and environmental signaling in a wide range of bacteria. Genes encoding OppB, -C, -D, and -F were identified directly downstream of oppA in T. denticola. OppA was present in representative strains of T. denticola and in Treponema vincentii but was not detected in Treponema pectinovorum or Treponema socranskii. Immunogold electron microscopy suggested that OppA was accessible to proteins at the surface of the spirochete. Native OppA bound soluble plasminogen and fibronectin but did not bind to immobilized substrates or epithelial cells. A T. denticola oppA mutant bound reduced amounts of soluble plasminogen, and plasminogen binding to the parent strain was inhibited by the lysine analog epsilon-aminocaproic acid. Binding of soluble host proteins by OppA may be important both for spirochete-host interactions in the subgingival environment and for uptake of peptide nutrients.
Collapse
Affiliation(s)
- J C Fenno
- Department of Microbiology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Lee CG, Ramachandra M, Jeang KT, Martin MA, Pastan I, Gottesman MM. Effect of ABC transporters on HIV-1 infection: inhibition of virus production by the MDR1 transporter. FASEB J 2000; 14:516-22. [PMID: 10698967 DOI: 10.1096/fasebj.14.3.516] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The MDR1 multidrug transporter P-gp (P-glycoprotein) is an efflux pump that extrudes diverse hydrophobic drugs and peptides from cells. Since the entry of HIV-1 into cells involves an initial interaction of the viral gp41 hydrophobic peptide with the plasma membrane, a potential effect of P-gp on HIV-1 infectivity was explored. Virus production was greatly decreased when P-gp was overexpressed at the surface of a continuous CD4(+) human T-leukemic cell line (12D7) infected with HIV-1(NL4-3), a T-tropic molecular clone of HIV-1. P-gp overexpression did not significantly alter the surface expression or distribution of either the HIV-1 receptor CD4 or the coreceptor CXCR4. Reduction of HIV-1 infectivity in P-gp-expressing cells occurred both during the fusion of viral and plasma membranes and at subsequent step(s) in the HIV-1 life cycle.
Collapse
Affiliation(s)
- C G Lee
- Laboratory of Cell Biology, Laboratory of Molecular Biology, National Cancer Institute, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
43
|
Green RM, Seth A, Connell ND. A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione. Infect Immun 2000; 68:429-36. [PMID: 10639400 PMCID: PMC97159 DOI: 10.1128/iai.68.2.429-436.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligopeptides play important roles in bacterial nutrition and signaling. Using sequences from the available genome database for Mycobacterium tuberculosis H37Rv, the oligopeptide permease operon (oppBCDA) of Mycobacterium bovis BCG was cloned from a cosmid library. An opp mutant strain was constructed by homologous recombination with an allele of oppD interrupted by kanamycin and streptomycin resistance markers. The deletion was complemented with a wild-type copy of the opp operon. Two approaches were taken to characterize the peptide transporter defect in this mutant strain. First, growth of wild-type and mutant strains was monitored in media containing a wide variety of peptides as sole source of carbon and/or nitrogen. Among 25 peptides ranging from two to six amino acids in length, none was capable of supporting measurable growth as the sole carbon source in either wild-type or mutant strains. The second approach exploited the resistance of permease mutants to toxic substrates. The tripeptide glutathione (gamma-glutamyl-L-cyteinylglycine [GSH]) is toxic to wild-type BCG and was used successfully to characterize peptide uptake in the opp mutant. In 2 mM GSH, growth of the wild-type strain is inhibited, whereas the opp mutant is resistant to concentrations as high as 10 mM. Similar results were found with the tripeptide S-nitrosoglutathione (GSNO), thought to be a donor of NO in mammalian cells. Using incorporation of [(3)H]uracil to monitor the effects of GSH and GSNO on macromolecular synthesis in growing cells, it was demonstrated that the opp mutant is resistant, whereas the wild type and the mutant complemented with a wild-type copy of the operon are sensitive to both tripeptides. In uptake measurements, incorporation of [(3)H]GSH is reduced in the mutant compared with wild type and the complemented mutant. Finally, growth of the three strains in the tripeptides suggests that GSH is bacteriostatic, whereas GSNO is bacteriocidal.
Collapse
Affiliation(s)
- R M Green
- Department of Microbiology and Molecular Genetics and the National Tuberculosis Center, Department of Medicine, UMDNJ/New Jersey Medical School, Newark, New Jersey 17103, USA
| | | | | |
Collapse
|
44
|
Rabus R, Jack DL, Kelly DJ, Saier MH. TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3431-3445. [PMID: 10627041 DOI: 10.1099/00221287-145-12-3431] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tripartite ATP-independent periplasmic transporters (TRAP-T) represent a novel type of secondary active transporter that functions in conjunction with an extracytoplasmic solute-binding receptor. The best characterized TRAP-T family member is from Rhodobacter capsulatus and is specific for C4-dicarboxylates [Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. (1997). J Bacteriol 179, 5482-5493]. It consists of three essential proteins, DctP, a periplasmic C4-dicarboxylate-binding receptor, and two integral membrane proteins, DctM and DctQ, which probably span the membrane 12 and 4 times, respectively. Homologues of DctM, DctP and DctQ were identified in all major bacterial subdivisions as well as in archaea. An orphan DctP homologue in the Gram-positive bacterium Bacillus subtilis may serve as a receptor for a two-component transcriptional regulatory system rather than as a constituent of a TRAP-T system. Phylogenetic data suggest that all present day TRAP-T systems probably evolved from a single ancestral transporter with minimal shuffling of constituents between systems. Homologous TRAP-T constituents exhibit decreasing degrees of sequence identity in the order DctM > DctP > DctQ. DctM appears to belong to a large superfamily of transporters, the ion transporter (IT) superfamily, one member of which can function by either protonmotive force- or ATP-dependent energization. It is proposed that IT superfamily members exhibit the unusual capacity to function in conjunction with auxiliary proteins that modify the transport process by providing (i) high-affinity solute reception, (ii) altered energy coupling and (iii) additional yet to be defined functions.
Collapse
Affiliation(s)
- Ralf Rabus
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA1
| | - Donald L Jack
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA1
| | - David J Kelly
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2UH, UK 2
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA1
| |
Collapse
|
45
|
Rosenow C, Maniar M, Trias J. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system. Genome Res 1999; 9:1189-97. [PMID: 10613841 PMCID: PMC311000 DOI: 10.1101/gr.9.12.1189] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A 10.2-kb gene region was identified in the Streptococcus pneumoniae genome sequence that contains eight genes involved in regulation and metabolism of raffinose. The genes rafR and rafS are transcribed as one operon, and their gene products regulate the raffinose-dependent stimulation of a divergently transcribed second promoter (P(A)) directing the expression of aga, the structural gene for alpha-galactosidase. Raffinose-mediated transcription from P(A) results in a 500-fold increase in alpha-galactosidase activity in the cell. A third promoter within the cluster is responsible for the transcription of the remaining five genes (rafE, rafF, rafG, gtfA, and rafX), whose gene products might be involved in transport and metabolism of raffinose. The presence of additional internal promoters cannot be excluded. The aga promoter P(A) is negatively regulated by the presence of sucrose in the growth medium. Consistent with catabolite repression (CR), a DNA sequence with high homology to the CRE (cis-active element) was identified upstream of the aga promoter. Sucrose-mediated CR depends on the phosphoenolpyruvate: sucrose phosphotransferase system (PTS) but is unaffected by a mutation in a gene encoding a homolog of the CRE regulatory protein CcpA.
Collapse
Affiliation(s)
- C Rosenow
- Versicor, Inc., Fremont, California 94555, USA.
| | | | | |
Collapse
|
46
|
Abstract
Polymerase chain reaction amplification of cDNA from rat intestine revealed the expression of a novel ABC transporter, TAPL (TAP-like). Subsequently, the protein sequence was deduced from the nucleotide sequence of cDNA carrying the entire coding region. TAPL is transcribed ubiquitously in various rat tissues. The protein, with 762 amino acid residues, has potential transmembrane domains, and an ATP-binding domain in its amino and carboxyl terminal regions, respectively, and is highly homologous to TAP1 and TAP2 (transporters associated with antigen presentation/processing): pairwise comparisons with TAPL demonstrated 39 and 41% of the residues are identical, respectively. These numerical values are essentially the same as that for TAP1 and TAP2 (39%), and the hydropathy profiles of TAPL, TAP1 and TAP2 are quite similar. The similarity among these three proteins suggests that they could be derived from a common ancestral gene. Furthermore, we found that there is a potential splicing isoform, sharing the amino terminal 720 amino acid residues of TAPL.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Transport
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/analysis
- Endoplasmic Reticulum/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Intestinal Mucosa/metabolism
- Molecular Sequence Data
- Peptides/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Y Yamaguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
47
|
Henrich B, Hopfe M, Kitzerow A, Hadding U. The adherence-associated lipoprotein P100, encoded by an opp operon structure, functions as the oligopeptide-binding domain OppA of a putative oligopeptide transport system in Mycoplasma hominis. J Bacteriol 1999; 181:4873-8. [PMID: 10438757 PMCID: PMC93974 DOI: 10.1128/jb.181.16.4873-4878.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hominis, a cell-wall-less prokaryote, was shown to be cytoadherent by the participation of a 100-kDa membrane protein (P100). To identify the gene encoding P100, peptides of P100 were partially sequenced to enable the synthesis of P100-specific oligonucleotides suitable as probes for the detection of the P100 gene. With this strategy, we identified a genomic region of about 10. 4 kb in M. hominis FBG carrying the P100 gene. Analysis of the complete deduced protein sequence suggests that P100 is expressed as a pre-lipoprotein with a structure in the N-terminal region common to peptide-binding proteins and an ATP- or GTP-binding P-loop structure in the C-terminal region. Downstream of the P100 gene, an additional four open reading frames putatively encoding the four core domains of an active transport system, OppBCDF, were localized. The organization of the P100 gene and oppBCDF in a transcriptionally active operon structure was demonstrated in Northern blot and reverse transcription-PCR analyses, as all gene-specific probes detected a common RNA of 9.5 kb. Primer extension analysis revealed that the transcriptional initiation site was localized 323 nucleotides upstream of the methionine-encoding ATG of the P100 gene. The peptide-binding character of the P100 protein was confirmed by fluorescence spectroscopy and strongly suggests that the cytoadherence-mediating lipoprotein P100 represents OppA, the substrate-binding domain of a peptide transport system in M. hominis.
Collapse
Affiliation(s)
- B Henrich
- Institute of Medical Microbiology and Virology and Center for Biological and Medical Research, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | |
Collapse
|
48
|
Shulami S, Gat O, Sonenshein AL, Shoham Y. The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 1999; 181:3695-704. [PMID: 10368143 PMCID: PMC93846 DOI: 10.1128/jb.181.12.3695-3704.1999] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lambda-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting beta-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a beta-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of alpha-D-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-alpha-(4-O-methyl-alpha-D-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular alpha-glucuronidase (aguA) and a beta-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer.
Collapse
Affiliation(s)
- S Shulami
- Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
49
|
Quentin Y, Fichant G, Denizot F. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J Mol Biol 1999; 287:467-84. [PMID: 10092453 DOI: 10.1006/jmbi.1999.2624] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems.
Collapse
Affiliation(s)
- Y Quentin
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie CNRS, 31, Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| | | | | |
Collapse
|
50
|
Bearden SW, Perry RD. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 1999; 32:403-14. [PMID: 10231495 DOI: 10.1046/j.1365-2958.1999.01360.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron acquisition in Yersinia pestis is fundamental to the success of plague pathogenesis. We have previously identified an approximately 5.6 kb region (yfe) of Y. pestis genomic DNA, capable of restoring iron-deficient growth but not siderophore production to an Escherichia coli mutant (SAB11) incapable of synthesizing the siderophore, enterobactin. The yfe locus of Y. pestis, found in both pigmented (Pgm+) and nonpigmented (Pgm-) strains, comprises five genes arranged in two distinct operons (yfeA-D and yfeE ). The larger of these, yfeABCD, encodes an ABC transport system, whose expression is iron and Fur regulated and is repressed in cells grown in the presence of manganese. Cells from a Pgm-, Yfe- (DeltayfeAB ) mutant strain of Y. pestis exhibited reduced transport of both 55Fe and 54Mn. Furthermore, cells containing an intact yfe locus showed reduced 55Fe uptake when competing amounts of MnCl2 or ZnCl2 were present, whereas 54Mn uptake was inhibited by FeCl3 but not by ZnCl2. Similarly, yfe mutants of Y. pestis exhibited growth defects on media supplemented with the iron chelators 2,2'-dipyridyl or conalbumin. These growth defects were not relieved by supplementation with MnCl2. A ybt-, DeltayfeAB mutant of Y. pestis was completely avirulent in mice infected intravenously (LD50 > 1.7 x 107 cfu) compared with its parental ybt-, yfe+ strain, which had an LD50 of < 12. In addition, compared with its ybt+, yfe+ parent, a ybt+, DeltayfeAB mutant of Y. pestis had an approximately 100-fold increase in the LD50 from a subcutaneous route of infection. These data suggest that the Yfe and Ybt systems may function effectively to accumulate iron during different stages of the infectious process of bubonic plague.
Collapse
Affiliation(s)
- S W Bearden
- Department of Microbiology and Immunology, MS415 Chandler Medical Center, University of Kentucky, Lexington, KY 40536-0084, USA
| | | |
Collapse
|