1
|
Wang C, Du J, Du S, Liu Y, Li D, Zhu X, Ni X. Endogenous H 2S resists mitochondria-mediated apoptosis in the adrenal glands via ATP5A1 S-sulfhydration in male mice. Mol Cell Endocrinol 2018; 474:65-73. [PMID: 29486221 DOI: 10.1016/j.mce.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Abstract
In a previous study, we showed that endogenous hydrogen sulfide (H2S) plays a key role in the maintenance of intact adrenal cortex function via the protection of mitochondrial function during endoxemia. We further investigated whether mitochondria-mediated apoptosis is involved in H2S protection of adrenal function. LPS treatment resulted in mitochondria-mediated apoptosis in the adrenal glands of male mice, and these effects were prevented by the H2S donor GYY4137. In the model of Y1 cells, the LPS-induced mitochondria-mediated apoptosis and blunt response to ACTH were rescued by GYY4137. The H2S-generating enzyme cystathionine-β-synthase (CBS) knockout heterozygous (CBS+/-) mice showed mitochondria-mediated apoptosis in the adrenal gland and adrenal insufficiency. GYY4137 treatment restored adrenal function and eliminated mitochondria-mediated apoptosis. Maleimide assay combined with mass spectrometry analysis showed that a number of proteins in mitochondria were S-sulfhydrated in the adrenal gland. ATP5A1 was further confirmed as S-sulfhydrated using a modified biotin switch assay. The level of S-sulfhydrated ATP5A1 was decreased in the adrenal gland of endotoxemic and CBS+/- mice, which was restored by GYY4137. ATP5A1 was identified as sulfhydrated at cysteine 244 by H2S. Overexpression of the cysteine 244 mutant ATP5A1 in Y1 cells resulted in a loss of LPS-induced mitochondria-mediated apoptosis and GYY4137 restoration of LPS-induced hyporesponsiveness to ACTH. Collectively, the present study revealed that decreased H2S generation leads to mitochondrial-mediated apoptosis in the adrenal cortex and a blunt response to ACTH. S-sulfhydration of ATP5A1 at cysteine 244 is an important molecular mechanism by which H2S maintains mitochondrial function and steroidogenesis in the adrenal glands.
Collapse
Affiliation(s)
- Changnan Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Jiankui Du
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Shufang Du
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Dongxia Li
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
2
|
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. The F 1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J 2017; 285:614-628. [PMID: 29247468 DOI: 10.1111/febs.14364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Gulde PE, Christen L, Brown SV, Williams N. Three distinct isoforms of ATP synthase subunit c are expressed in T. brucei and assembled into the mitochondrial ATP synthase complex. PLoS One 2013; 8:e54039. [PMID: 23326569 PMCID: PMC3542316 DOI: 10.1371/journal.pone.0054039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
One striking feature of the biology of trypanosomes is the changes in mitochondrial structure and function that occur as these parasites transition from one life cycle stage to another. Our laboratory has been interested in the role the mitochondrial ATP synthase plays in mitochondrial changes through the life cycle. Analysis of the recently completed T. brucei genome suggested that there may be multiple putative genes encoding ATP synthase subunit c. While homologous in their 3' ends, these genes differ in their 5' ends and, if expressed, would result in three distinct proteins. Our analysis showed that all three of the possible transcripts were detected in both procyclic and bloodstream stages, although the c-3 transcript was less abundant than that for c-1 or c-2. The three isoforms of subunit c are produced in both the bloodstream and procyclic stages and their mature protein products possess distinct N-terminal regions of the protein as found within mitochondria. All three isoforms are also incorporated into the assembled ATP synthase complex from procyclic cells. Although multiple subunit c genes have been found in other organisms, they produce identical polypeptides and the finding of significant differences in the mature proteins is unique to T. brucei.
Collapse
Affiliation(s)
- Paul E. Gulde
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Linda Christen
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Silvia V. Brown
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 2009; 5:e1000436. [PMID: 19436713 PMCID: PMC2674945 DOI: 10.1371/journal.ppat.1000436] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought. African trypanosomes (Trypanosoma brucei and related subspecies) are unicellular parasites that cause the devastating disease of African sleeping sickness in man and nagana in livestock. Both of these diseases are lethal, killing thousands of people each year and causing major economical complications in the developing world, thus affecting the lives of millions. Furthermore, available drugs are obsolete, difficult to administer and have many undesirable side-effects. Therefore, there is a reinvigorated effort to design new drugs against these parasites. From the pharmacological perspective, unique metabolic processes and protein complexes with singular structure, composition and essential function are of particular interest. One such remarkable protein complex is the mitochondrial F0F1-ATP synthase/ATPase. Here we show that F0F1-ATP synthase complex is essential for viability of procyclic T. brucei cells and it possesses unique and novel subunits. The three F0F1-ATP synthase subunits that were tested were shown to be crucial for the structural integrity of the F0F1-ATP synthase complex and its activities. The compositional and functional characterization of the F0F1-ATP synthase in T. brucei represents a major step towards deciphering the unique and essential properties of the respiratory chain of both an early diverged eukaryote and a lethal human parasite.
Collapse
Affiliation(s)
- Alena Zíková
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Aswini K. Panigrahi
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Williams S, Saha L, Singha UK, Chaudhuri M. Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp Parasitol 2007; 118:420-33. [PMID: 18021773 DOI: 10.1016/j.exppara.2007.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/12/2007] [Accepted: 10/02/2007] [Indexed: 11/19/2022]
Abstract
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.
Collapse
Affiliation(s)
- Shuntae Williams
- Department of Microbial Pathogenesis and Immune Response, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
6
|
Brown SV, Hosking P, Li J, Williams N. ATP synthase is responsible for maintaining mitochondrial membrane potential in bloodstream form Trypanosoma brucei. EUKARYOTIC CELL 2006; 5:45-53. [PMID: 16400167 PMCID: PMC1360250 DOI: 10.1128/ec.5.1.45-53.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitochondrion of Trypanosoma brucei bloodstream form maintains a membrane potential, although it lacks cytochromes and several Krebs cycle enzymes. At this stage, the ATP synthase is present at reduced, although significant, levels. To test whether the ATP synthase at this stage is important for maintaining the mitochondrial membrane potential, we used RNA interference (RNAi) to knock down the levels of the ATP synthase by targeting the F1-ATPase alpha and beta subunits. RNAi-induced cells grew significantly slower than uninduced cells but were not morphologically altered. RNAi of the beta subunit decreased the mRNA and protein levels for the beta subunit, as well as the mRNA and protein levels of the alpha subunit. Similarly, RNAi of alpha subunit decreased the alpha subunit transcript and protein levels, as well as the beta-subunit transcript and protein levels. In contrast, alpha and beta RNAi knockdown resulted in a 60% increase in the F0 complex subunit 9 protein levels without a significant change in the steady-state transcript levels of this subunit. The F0-32-kDa subunit protein expression, however, remained stable throughout induction of RNAi for alpha or beta subunits. Oligomycin-sensitive ATP hydrolytic and synthetic activities were decreased by 43 and 44%, respectively. Significantly, the mitochondrial membrane potential of alpha and beta RNAi cells was decreased compared to wild-type cells, as detected by MitoTracker Red CMXRos fluorescence microscopy and flow cytometry. These results support the role of the ATP synthase in the maintenance of the mitochondrial membrane potential in bloodstream form T. brucei.
Collapse
Affiliation(s)
- Silvia V Brown
- Department of Microbiology and Immunology, 253 Biomedical Research Building, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
7
|
Hellemond JJV, Bakker BM, Tielens AGM. Energy metabolism and its compartmentation in Trypanosoma brucei. Adv Microb Physiol 2006; 50:199-226. [PMID: 16221581 DOI: 10.1016/s0065-2911(05)50005-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
African trypanosomes are parasitic protozoa of the order of Kinetoplastida, which cause sleeping sickness and nagana. Trypanosomes are not only of scientific interest because of their clinical importance, but also because these protozoa contain several very unusual biological features, such as their special energy metabolism. The energy metabolism of Trypanosoma brucei differs significantly from that of its host, not only because it comprises distinct enzymes and metabolic pathways, but also because some of the glycolytic enzymes are localized in organelles called glycosomes. Furthermore, the energy metabolism changes drastically during the complex life cycle of this parasite. This review will focus on the recent advances made in understanding the process of ATP production in T. brucei during its life cycle and the consequences of the special subcellular compartmentation.
Collapse
Affiliation(s)
- Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.176, 3508 TD Utrecht, The Netherlands
| | | | | |
Collapse
|
8
|
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 2005; 24:4029-40. [PMID: 16270030 PMCID: PMC1356303 DOI: 10.1038/sj.emboj.7600862] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 10/10/2005] [Indexed: 11/09/2022] Open
Abstract
Survival of bloodstream form Trypanosoma brucei, the agent of African sleeping sickness, normally requires mitochondrial gene expression, despite the absence of oxidative phosphorylation in this stage of the parasite's life cycle. Here we report that silencing expression of the alpha subunit of the mitochondrial F(1)-ATP synthase complex is lethal for bloodstream stage T. brucei as well as for T. evansi, a closely related species that lacks mitochondrial protein coding genes (i.e. is dyskinetoplastic). Our results suggest that the lethal effect is due to collapse of the mitochondrial membrane potential, which is required for mitochondrial function and biogenesis. We also identified a mutation in the gamma subunit of F(1) that is likely to be involved in circumventing the requirement for mitochondrial gene expression in another dyskinetoplastic form. Our data reveal that the mitochondrial ATP synthase complex functions in the bloodstream stage opposite to that in the insect stage and in most other eukaryotes, namely using ATP hydrolysis to generate the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109-5219, USA. Tel.: +1 206 256 7488; Fax: +1 206 256 7229; E-mail:
| | - G Desmond Clark-Walker
- Molecular Genetics and Evolution, Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia
| | | | - Ken Stuart
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Department of Pathobiology, University of Washington, Seattle, WA, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109-5219, USA. Tel.: +1 206 256 7316; Fax: +1 206 256 7229; E-mail:
| |
Collapse
|
9
|
Besteiro S, Barrett MP, Rivière L, Bringaud F. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol 2005; 21:185-91. [PMID: 15780841 DOI: 10.1016/j.pt.2005.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The generation of energy in African trypanosomes is a subject of undoubted importance. In bloodstream-form organisms, substrate-level phosphorylation of glucose is sufficient to provide the energy needs of the parasite. The situation in procyclic-form trypanosomes is more complex. For many years, it was accepted that glucose metabolism followed a conventional scheme involving glycolysis, the tricarboxylic acid cycle and ATP-producing oxidative phosphorylation linked to the electron-transport chain. However, progress in sequencing the Trypanosoma brucei genome and the development of gene-knockout and RNA interference technology has provided novel insight. Coupling these new technologies with classical approaches, including NMR and mass spectrometry to analyse glycolytic intermediates and end products, has yielded several surprises. In this article, we summarize how these recent data have helped to change the view of metabolism in procyclic-form T. brucei.
Collapse
Affiliation(s)
- Sébastien Besteiro
- Wellcome Centre for Molecular Parasitology, The Anderson College, University of Glasgow, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
10
|
Lamour N, Rivière L, Coustou V, Coombs GH, Barrett MP, Bringaud F. Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. J Biol Chem 2005; 280:11902-10. [PMID: 15665328 DOI: 10.1074/jbc.m414274200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline metabolism has been studied in procyclic form Trypanosoma brucei. These parasites consume six times more proline from the medium when glucose is in limiting supply than when this carbohydrate is present as an abundant energy source. The sensitivity of procyclic T. brucei to oligomycin increases by three orders of magnitude when the parasites are obliged to catabolize proline in medium depleted in glucose. This indicates that oxidative phosphorylation is far more important to energy metabolism in this latter case than when glucose is available and the energy needs of the parasite can be fulfilled by substrate level phosphorylation alone. A gene encoding proline dehydrogenase, the first enzyme of the proline catabolic pathway, was cloned. RNA interference studies revealed the loss of this activity to be conditionally lethal. Proline dehydrogenase defective parasites grew as wild-type when glucose was available, but, unlike wild-type cells, they failed to proliferate using proline. In parasites grown in the presence of glucose, proline dehydrogenase activity was markedly lower than when glucose was absent from the medium. Proline uptake too was shown to be diminished when glucose was abundant in the growth medium. Wild-type cells were sensitive to 2-deoxy-D-glucose if grown using proline as the principal carbon source, but not in glucose-rich medium, indicating that this non-catabolizable glucose analogue might also stimulate repression of proline utilization. These results indicate that the ability of trypanosomes to use proline as an energy source can be regulated depending upon the availability of glucose.
Collapse
Affiliation(s)
- Nadia Lamour
- Institute of Biomedical and Life Sciences, Division of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Coustou V, Besteiro S, Biran M, Diolez P, Bouchaud V, Voisin P, Michels PAM, Canioni P, Baltz T, Bringaud F. ATP generation in the Trypanosoma brucei procyclic form: cytosolic substrate level is essential, but not oxidative phosphorylation. J Biol Chem 2003; 278:49625-35. [PMID: 14506274 DOI: 10.1074/jbc.m307872200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic form of this parasite, transmitted by tsetse flies, is considered to be dependent on oxidative phosphorylation for ATP production. Indeed, its respiration was 55% inhibited by oligomycin, which is the most specific inhibitor of the mitochondrial F0/F1-ATP synthase. However, a 10-fold excess of this compound did not significantly affect the intracellular ATP concentration and the doubling time of the parasite was only 1.5-fold increased, suggesting that oxidative phosphorylation is not essential for procyclic trypanosomes. To further investigate the sites of ATP production, we studied the role of two ATP producing enzymes, which are involved in the synthesis of pyruvate from phosphoenolpyruvate: the glycosomal pyruvate phosphate dikinase (PPDK) and the cytosolic pyruvate kinase (PYK). The parasite was not affected by PPDK gene knockout. In contrast, inhibition of PYK expression by RNA interference was lethal for these cells. In the absence of PYK activity, the intracellular ATP concentration was reduced by up to 2.3-fold, whereas the intracellular pyruvate concentration was not reduced. Furthermore, we show that this mutant cell line still excreted acetate from d-glucose metabolism, and both the wild type and mutant cell lines consumed pyruvate present in the growth medium with similar high rates, indicating that in the absence of PYK activity pyruvate is still present in the trypanosomes. We conclude that PYK is essential because of its ATP production, which implies that the cytosolic substrate level phosphorylation is essential for the growth of procyclic trypanosomes.
Collapse
Affiliation(s)
- Virginie Coustou
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, UMR-5162 CNRS, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int J Parasitol 2002; 32:1071-84. [PMID: 12117490 DOI: 10.1016/s0020-7519(02)00020-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salivarian trypanosomes are the causative agents of several diseases of major social and economic impact. The most infamous parasites of this group are the African subspecies of the Trypanosoma brucei group, which cause sleeping sickness in humans and nagana in cattle. In terms of geographical distribution, however, Trypanosoma equiperdum and Trypanosoma evansi have been far more successful, causing disease in livestock in Africa, Asia, and South America. In these latter forms the mitochondrial DNA network, the kinetoplast, is altered or even completely lost. These natural dyskinetoplastic forms can be mimicked in bloodstream form T. brucei by inducing the loss of kinetoplast DNA (kDNA) with intercalating dyes. Dyskinetoplastic T. brucei are incapable of completing their usual developmental cycle in the insect vector, due to their inability to perform oxidative phosphorylation. Nevertheless, they are usually as virulent for their mammalian hosts as parasites with intact kDNA, thus questioning the therapeutic value of attempts to target mitochondrial gene expression with specific drugs. Recent experiments, however, have challenged this view. This review summarises the data available on dyskinetoplasty in trypanosomes and revisits the roles the mitochondrion and its genome play during the life cycle of T. brucei.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
13
|
Allemann N, Schneider A. ATP production in isolated mitochondria of procyclic Trypanosoma brucei. Mol Biochem Parasitol 2000; 111:87-94. [PMID: 11087919 DOI: 10.1016/s0166-6851(00)00303-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane potential-dependent ATP production was measured in mitochondrial fractions of procyclic Trypanosoma brucei using a luciferase based assay. Mitochondria isolated under hypotonic conditions were able to produce ATP using succinate as substrate. The same was observed with mitochondria isolated under isotonic conditions, however, in this case a 6-7-fold higher amount of ATP was produced with glycerol-3-phosphate as substrate. Disruption of the outer membrane of isotonically prepared mitochondria lead to a selective loss of the glycerol-3 phosphate induced ATP production, indicating that glycerol-3-phosphate dehydrogenase is a soluble enzyme of the intermembrane space. Isolation of mitochondria under hypotonic conditions, therefore, results in disruption of the outer membrane, whereas in the organelles isolated under isotonic conditions both the membranes remain intact.
Collapse
Affiliation(s)
- N Allemann
- Department of Biology, Institute of Zoology, University of Fribourg, Pérolles, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
14
|
Speijer D, Breek CK, Muijsers AO, Hartog AF, Berden JA, Albracht SP, Samyn B, Van Beeumen J, Benne R. Characterization of the respiratory chain from cultured Crithidia fasciculata. Mol Biochem Parasitol 1997; 85:171-86. [PMID: 9106191 DOI: 10.1016/s0166-6851(96)02823-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial mRNAs encoding subunits of respiratory-chain complexes in kinetoplastids are post-transcriptionally edited by uridine insertion and deletion. In order to identify the proteins encoded by these mRNAs, we have analyzed respiratory-chain complexes from cultured cells of Crithidia fasciculata with the aid of 2D polyacrylamide gel electrophoresis (PAGE). The subunit composition of F0F1-ATPase (complex V), identified on the basis of its activity as an oligomycin-sensitive ATPase, is similar to that of bovine mitochondrial F0F1-ATPase. Amino acid sequence analysis, combined with binding studies using dicyclohexyldiimide and azido ATP allowed the identification of two F0 subunits (b and c) and all of the F1 subunits. The F0 b subunit has a low degree of similarity to subunit b from other organisms. The F1 alpha subunit is extremely small making the beta subunit the largest F1 subunit. Other respiratory-chain complexes were also analyzed. Interestingly, an NADH: ubiquinone oxidoreductase (complex I) appeared to be absent, as judged by electron paramagnetic resonance (EPR), enzyme activity and 2D PAGE analysis. Cytochrome c oxidase (complex IV) displayed a subunit pattern identical to that reported for the purified enzyme, whereas cytochrome c reductase (complex III) appeared to contain two extra subunits. A putative complex II was also identified. The amino acid sequences of the subunits of these complexes also show a very low degree of similarity (if any) to the corresponding sequences in other organisms. Remarkably, peptide sequences derived from mitochondrially encoded subunits were not found in spite of the fact that sequences were obtained of virtually all subunits of complex III, IV and V.
Collapse
Affiliation(s)
- D Speijer
- Department of Biochemistry, University of Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Differences between host and parasite energy metabolism are eagerly sought after as potential targets for antiparasite chemotherapy. In Kinetoplastia, the first seven steps of glycolysis are compartmented inside glycosomes, organelles that are related to the peroxisomes of higher eukaryotes. This arrangement is unique in the living world. In this review, Christine Clayton and Paul Michels discuss the implications of this unusual metabolic compartmentation for the regulation of trypanosome energy metabolism, and describe how an adequate supply of energy is maintained in different species and life cycle stages.
Collapse
Affiliation(s)
- C E Clayton
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|
16
|
Abstract
The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected.
Collapse
Affiliation(s)
- C Clayton
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | |
Collapse
|