1
|
Zhou H, Wang S, Xie HF, Liu G, Shamala LF, Pang J, Zhang Z, Ling TJ, Wei S. Cytosolic Nudix Hydrolase 1 Is Involved in Geranyl β-Primeveroside Production in Tea. FRONTIERS IN PLANT SCIENCE 2022; 13:833682. [PMID: 35646040 PMCID: PMC9131077 DOI: 10.3389/fpls.2022.833682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Geraniol is a potent tea odorant and exists mainly as geranyl glycoside in Camellia sinensis. Understanding the mechanisms of geraniol biosynthesis at molecular levels in tea plants is of great importance for practical improvement of tea aroma. In this study, geraniol and its glycosides from tea plants were examined using liquid chromatography coupled with mass spectrometry. Two candidate geraniol synthase (GES) genes (CsTPS) and two Nudix hydrolase genes (CsNUDX1-cyto and CsNUDX1-chlo) from the tea genome were functionally investigated through gene transcription manipulation and gene chemical product analyses. Our data showed that in tea leaves, levels of geranyl β-primeveroside were dramatically higher than those of geranyl β-glucoside, while free geraniol was undetectable in this study. A tempo-spatial variation of geranyl β-primeveroside abundance in tea plants existed, with high levels in young and green tissues and low levels in mature or non-green tissues. Cytosolic CsNUDX1-cyto showed higher hydrolysis activity of geranyl-pyrophosphate to geranyl-monophosphate (GP) in vitro than did chloroplastidial CsNUDX1-chlo. A transgenic study revealed that expression of CsNUDX1-cyto resulted in significantly more geranyl β-primeveroside in transgenic Nicotiana benthamiana compared with non-transgenic wild-type, whereas expression of CsNUDX1-chlo had no effect. An antisense oligo-deoxynucleotide study confirmed that suppression of CsNUDX1-cyto transcription in tea shoots led to a significant decrease in geranyl β-primeveroside abundance. Additionally, CsNUDX1-cyto transcript levels and geranyl β-primeveroside abundances shared the same tempo-spatial patterns in different organs in the tea cultivar "Shucha Zao," indicating that CsNUDX1-cyto is important for geranyl β-primeveroside formation in tea plants. Results also suggested that neither of the two candidate GES genes in tea plants did not function as GES in transgenic N. benthamiana. All our data indicated that CsNUDX1-cyto is involved in geranyl β-primeveroside production in tea plants. Our speculation about possible conversion from the chemical product of CsNUDX1-cyto to geranyl β-primeveroside in plants was also discussed.
Collapse
Affiliation(s)
- Hanchen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Shijie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hao-Fen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Guofeng Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
| | - Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jingyi Pang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Sanchez-Puerta MV, Delwiche CF. A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES(1). JOURNAL OF PHYCOLOGY 2008; 44:1097-1107. [PMID: 27041706 DOI: 10.1111/j.1529-8817.2008.00559.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four eukaryotic lineages, namely, haptophytes, alveolates, cryptophytes, and heterokonts, contain in most cases photosynthetic and nonphotosynthetic members-the photosynthetic ones with secondary plastids with chl c as the main photosynthetic pigment. These four photosynthetic lineages were grouped together on the basis of their pigmentation and called chromalveolates, which is usually understood to imply loss of plastids in the nonphotosynthetic members. Despite the ecological and economic importance of this group of organisms, the phylogenetic relationships among these algae are only partially understood, and the so-called chromalveolate hypothesis is very controversial. This review evaluates the evidence for and against this grouping and summarizes the present understanding of chromalveolate evolution. We also describe a testable hypothesis that is intended to accommodate current knowledge based on plastid and nuclear genomic data, discuss the implications of this model, and comment on areas that require further examination.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, Indiana 47405, USADepartment of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742-5815, USA
| | - Charles F Delwiche
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, Indiana 47405, USADepartment of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742-5815, USA
| |
Collapse
|
3
|
Block MA, Douce R, Joyard J, Rolland N. Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. PHOTOSYNTHESIS RESEARCH 2007; 92:225-44. [PMID: 17558548 PMCID: PMC2394710 DOI: 10.1007/s11120-007-9195-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/03/2007] [Indexed: 05/15/2023]
Abstract
Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells.
Collapse
|
4
|
Hirooka K, Bamba T, Fukusaki EI, Kobayashi A. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem J 2003; 370:679-86. [PMID: 12437513 PMCID: PMC1223189 DOI: 10.1042/bj20021311] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 11/12/2002] [Accepted: 11/19/2002] [Indexed: 11/17/2022]
Abstract
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.
Collapse
Affiliation(s)
- Kazutake Hirooka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita Yamadaoka 2-1, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
5
|
Orea A, Pajuelo P, Pajuelo E, Márquez AJ, Romero JM. Characterisation and expression studies of a root cDNA encoding for ferredoxin-nitrite reductase from Lotus japonicus. PHYSIOLOGIA PLANTARUM 2001; 113:193-202. [PMID: 12060296 DOI: 10.1034/j.1399-3054.2001.1130206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A full-length cDNA encoding for ferredoxin-nitrite reductase (NiR, EC 1.7.7.1), has been isolated from a root cDNA library from the legume Lotus japonicus and characterised. The NiR gene (Nii) is present as a single copy in this plant, and encodes a protein of 582 amino acids. The Lotus NiR protein is synthesised as a precursor with an amino-terminal transit peptide consisting of 25 amino acid residues. Sequence comparisons with leaf NiRs from different plant species and with other related redox proteins identified in the root NiR the same highly conserved residues involved in the cofactor binding than previously reported for leaves. Besides, a putative binding site for ferredoxin was also found in the N-terminal region of the protein. The NiR gene is expressed in roots and leaves, although the level of expression is much higher in roots, in accordance with the fact that L. japonicus assimilates nitrate mainly in roots. NiR mRNA, protein and activity are induced by nitrate in roots and leaves, while ammonium-grown plants only showed basal levels. No oscillations of NiR mRNA, protein and activity were observed during the day/night cycle, neither in roots nor leaves, making an interesting difference with rhythms observed in other plant species.
Collapse
Affiliation(s)
- Alicia Orea
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química. Universidad de Sevilla, Apdo. 553, E-41080-Sevilla, Spain Instituto de Bioquímica Vegetal y Fotosíntesis. Centro de Investigaciones Científicas Isla de la Cartuja, c/ Americo Vespucio s/n, E-41092-Sevilla, Spain
| | | | | | | | | |
Collapse
|
6
|
Tan BC, Schwartz SH, Zeevaart JA, McCarty DR. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci U S A 1997; 94:12235-40. [PMID: 9342392 PMCID: PMC23760 DOI: 10.1073/pnas.94.22.12235] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants.
Collapse
Affiliation(s)
- B C Tan
- Plant Molecular and Cellular Biology Graduate Program, Horticultural Sciences Department, 2237 Fifield Hall, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
7
|
Reinbothe C, Lebedev N, Apel K, Reinbothe S. Regulation of chloroplast protein import through a protochlorophyllide-responsive transit peptide. Proc Natl Acad Sci U S A 1997; 94:8890-4. [PMID: 11038562 PMCID: PMC23185 DOI: 10.1073/pnas.94.16.8890] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme of chlorophyll biosynthesis in angiosperms. In barley, two POR enzymes, termed PORA and PORB, exist. Both are nucleus-encoded plastid proteins that must be imported posttranslationally from the cytosol. Whereas the import of the precursor of PORA, pPORA, previously has been shown to depend on Pchlide, the import of pPORB occurred constitutively. To study this striking difference, chimeric precursor proteins were constructed in which the transit sequences of the pPORA and pPORB were exchanged and fused to either their cognate polypeptides or to a cytosolic dihydrofolate reductase (DHFR) reporter protein of mouse. As shown here, the transit peptide of the pPORA (transA) conferred the Pchlide requirement of import onto both the mature PORB and the DHFR. By contrast, the transit peptide of the pPORB directed the reporter protein into both chloroplasts that contained or lacked translocation-active Pchlide. In vitro binding studies further demonstrated that the transit peptide of the pPORA, but not of the pPORB, is able to bind Pchlide. We conclude that the import of the authentic pPORA and that of the transA-PORB and transA-DHFR fusion proteins is regulated by a direct transit peptide-Pchlide interaction, which is likely to occur in the plastid envelope, a major site of porphyrin biosynthesis.
Collapse
Affiliation(s)
- C Reinbothe
- Institute for Plant Sciences, Department of Plant Genetics, Swiss Federal Institute of Technology Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Nielsen E, Akita M, Davila-Aponte J, Keegstra K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J 1997; 16:935-46. [PMID: 9118955 PMCID: PMC1169694 DOI: 10.1093/emboj/16.5.935] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytoplasmically synthesized precursors interact with translocation components in both the outer and inner envelope membranes during transport into chloroplasts. Using co-immunoprecipitation techniques, with antibodies specific to known translocation components, we identified stable interactions between precursor proteins and their associated membrane translocation components in detergent-solubilized chloroplastic membrane fractions. Antibodies specific to the outer envelope translocation components OEP75 and OEP34, the inner envelope translocation component IEP110 and the stromal Hsp100, ClpC, specifically co-immunoprecipitated precursor proteins under limiting ATP conditions, a stage we have called docking. A portion of these same translocation components was co-immunoprecipitated as a complex, and could also be detected by co-sedimentation through a sucrose density gradient. ClpC was observed only in complexes with those precursors utilizing the general import apparatus, and its interaction with precursor-containing translocation complexes was destabilized by ATP. Finally, ClpC was co-immunoprecipitated with a portion of the translocation components of both outer and inner envelope membranes, even in the absence of added precursors. We discuss possible roles for stromal Hsp100 in protein import and mechanisms of precursor binding in chloroplasts.
Collapse
Affiliation(s)
- E Nielsen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
9
|
Reinbothe S, Reinbothe C, Neumann D, Apel K. A plastid enzyme arrested in the step of precursor translocation in vivo. Proc Natl Acad Sci U S A 1996; 93:12026-30. [PMID: 11607713 PMCID: PMC38177 DOI: 10.1073/pnas.93.21.12026] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The key enzyme of chlorophyll biosynthesis in higher plants, NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR, EC 1.3.1.33), accumulates in its precursor form (pPORA) in barley. pPORA is bound to the chloroplasts and is able to interact with the enzyme's substrate, Pchlide, at both the cytosolic as well as the stromal side of the plastid envelope. The interaction with intraplastidic Pchlide, formed in ATP-containing chloroplasts upon feeding with -aminolevulinic acid, drives vectorial translocation of pPORA across the plastid envelope membranes. In contrast, exogenously applied Pchlide causes the release of the envelope-bound precursor protein to the cytosol. Both processes compete with each other if intra- and extraplastidic Pchlide are applied simultaneously. A cytosolic heat shock cognate protein of Mr 70,000 present in wheat germ and barley leaf protein extracts appears to prevent the release of the pPORA to the cytosol in vivo, however.
Collapse
Affiliation(s)
- S Reinbothe
- Institute for Plant Sciences, Department of Plant Genetics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
10
|
Nechushtai R, Cohen Y, Chitnis PR. Assembly of the chlorophyll-protein complexes. PHOTOSYNTHESIS RESEARCH 1995; 44:165-181. [PMID: 24307036 DOI: 10.1007/bf00018307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/1994] [Accepted: 03/10/1995] [Indexed: 06/02/2023]
Abstract
The biogenesis of photosynthetic complexes in plants and algae is a multi-step process that involves intricate coordination of steps in two intracellular compartments, the chloroplast and the cytoplasm. The process initiates with the transcription and translation of the various polypeptide subunits. The nuclear-encoded Chl-binding proteins are translated on cytoplasmic ribosomes as precursors that have a transit (leader) sequence at their amino-terminus. The precursors are post-translationally imported into the chloroplasts, proteolytically processed into their mature forms, inserted into the thylationally imported into the chloroplasts, proteolytically processed into their mature forms, inserted into the thylakoid membrane, and bound to their co-factors (and pigments) and with other subunits to form an active complex. The order and mechanisms by which these events occur, are currently being discovered. Electrostatic interactions, the 'positive inside rule', interhelix interactions, interactions with lipids and chaperone proteins affect the insertion and stabilization of the Chl-proteins in the thylakoids. This review describes the events occurring during the integration and organization of the Chl-proteins.
Collapse
Affiliation(s)
- R Nechushtai
- Department of Botany, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | |
Collapse
|
11
|
Reinbothe S, Reinbothe C, Runge S, Apel K. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol 1995; 129:299-308. [PMID: 7721935 PMCID: PMC2199915 DOI: 10.1083/jcb.129.2.299] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The key enzyme of chlorophyll biosynthesis in higher plants, the light-dependent NADPH:protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), is a nuclear-encoded plastid protein. Its posttranslational transport into plastids of barley depends on the intraplastidic availability of one of its substrates, protochlorophyllide (PChlide). The precursor of POR (pPOR), synthesized from a corresponding full-length barley cDNA clone by coupling in vitro transcription and translation, is enzymatically active and converts PChlide to chlorophyllide (Chlide) in a light- and NADPH-dependent manner. Chlorophyllide formed catalytically remains tightly but noncovalently bound to the precursor protein and stabilizes a transport-incompetent conformation of pPOR. As shown by in vitro processing experiments, the chloroplast transit peptide in the Chlide-pPOR complex appears to be masked and thus is unable to physically interact with the outer plastid envelope membrane. In contrast, the chloroplast transit peptide in the naked pPOR (without its substrates and its product attached to it) and in the pPOR-substrate complexes, such as pPOR-PChlide or pPOR-PChlide-NADPH, seems to react independently of the mature region of the polypeptide, and thus is able to bind to the plastid envelope. When envelope-bound pPOR-PChlide-NADPH complexes were exposed to light during a short preincubation, the enzymatically produced Chlide slowed down the actual translocation step, giving rise to the sequential appearance of two partially processed translocation intermediates. However, ongoing translocation induced by feeding the chloroplasts delta-aminolevulinic acid, a precursor of PChlide, was able to override these two early blocks in translocation, suggesting that the plastid import machinery has a substantial capacity to denature a tightly folded, envelope-bound precursor protein. Together, our results show that pPOR with Chlide attached to it is impaired both in the ATP-dependent step of binding to a receptor protein component of the outer chloroplast envelope membrane, as well as in the PChlide-dependent step of precursor translocation.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), ETH-Zentrum
| | | | | | | |
Collapse
|
12
|
Friemann A, Brinkmann K, Hachtel W. Sequence of a cDNA encoding nitrite reductase from the tree Betula pendula and identification of conserved protein regions. ACTA ACUST UNITED AC 1992; 231:411-6. [PMID: 1347145 DOI: 10.1007/bf00292710] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sequence of an mRNA encoding nitrite reductase (NiR, EC 1.7.7.1.) from the tree Betula pendula was determined. A cDNA library constructed from leaf poly(A)+ mRNA was screened with an oligonucleotide probe deduced from NiR sequences from spinach and maize. A 2.5 kb cDNA was isolated that hybridized to an mRNA, the steady-state level of which increased markedly upon induction with nitrate. The nucleotide sequence of the cDNA contains a reading frame encoding a protein of 583 amino acids that reveals 79% identity with NiR from spinach. The transit peptide of the NiR precursor from birch was determined to be 22 amino acids in size by sequence comparison with NiR from spinach and maize and is the shortest transit peptide reported so far. A graphical evaluation of identities found in the NiR sequence alignment revealed nine well conserved sections each exceeding ten amino acids in size. Sequence comparisons with related redox proteins identified essential residues involved in cofactor binding. A putative binding site for ferredoxin was found in the N-terminal half of the protein.
Collapse
Affiliation(s)
- A Friemann
- Botanisches Institut der Universität Bonn, FRG
| | | | | |
Collapse
|