1
|
Shi X, Liu X, Cooper AM, Silver K, Merzendorfer H, Zhu KY, Zhang J. Vacuolar (H + )-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria. PEST MANAGEMENT SCIENCE 2022; 78:1555-1566. [PMID: 34981606 DOI: 10.1002/ps.6774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vacuolar (H+ )-ATPase (V-ATPase) is a multi-subunit enzyme that hydrolyzes adenosine triphosphate (ATP) to transport protons across a cellular membrane, and it plays an important role in numerous biological processes, including in growth, development and immune responses. The c subunit of V-ATPase is a highly conserved subunit of the rotatory proteolipid ring that is required for binding and transporting protons. To date, there are only a few published reports on V-ATPase-c functions in insects. RESULTS We identified and characterized the V-ATPase-c gene in Locusta migratoria, one of the most destructive agricultural insect pests in the world. LmV-ATPase-c was predominately expressed in Malpighian tubules of nymphs, followed by the hindgut and ovary, while the other tissues showed relatively low expression levels. Silencing of LmV-ATPase-c caused severe molting defects in nymphs and a high mortality rate of > 90%. Histological staining and microscopic examination of sections from the abdominal cuticle revealed the absence of newly formed cuticle in nymphs that were injected with dsLmV-ATPase-c. In addition, silencing of LmV-ATPase-c transcript levels significantly impaired RNA interference (RNAi) efficiency of a reporter gene. By quantifying double-stranded RNA (dsRNA) amounts by quantitative polymerase chain reaction (PCR), we found that RNAi against LmV-ATPase-c provoked a dramatic accumulation of dsRNA in the endosomes of epidermal and midgut cells of Locusta migratoria. CONCLUSION Our results indicate that LmV-ATPase-c is indispensable for the formation of new cuticle during the molting process and has pivotal functions in dsRNA escape from endosomes. LmV-ATPase-c might be a valuable target for developing new strategies for insect pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Mohanty S, Jobichen C, Chichili VPR, Velázquez-Campoy A, Low BC, Hogue CWV, Sivaraman J. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans. J Biol Chem 2015; 290:27280-27296. [PMID: 26370083 DOI: 10.1074/jbc.m115.677492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.
Collapse
Affiliation(s)
- Soumya Mohanty
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Adrián Velázquez-Campoy
- the Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit Institute of Physical Chemistry "Rocasolano (IQFR)-Spanish National Research Council (CSIC)-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza and Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Christopher W V Hogue
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,.
| |
Collapse
|
3
|
Polarization of the vacuolar adenosine triphosphatase delineates a transition to high-grade pancreatic intraepithelial neoplasm lesions. Pancreas 2014; 43:1256-63. [PMID: 25072283 PMCID: PMC4519037 DOI: 10.1097/mpa.0000000000000201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES A functional vacuolar adenosine triphosphatase (v-ATPase) complex regulates canonical Wnt/β-catenin signaling. The goal of this study was to identify the distribution of the v-ATPase in human and murine models of pancreatic intraepithelial neoplasms (PanINs) and assess its role in Wnt/β-catenin signaling. METHODS We evaluated the immunolabeling pattern of the v-ATPase in human PanIN specimens and murine PanIN-1 and PanIN-2 lesions obtained from Ptf1a(Cre/+); LSL-Kras(G12D) mice. Wnt/β-catenin signaling was interrogated in primary PanIN cells by examining the phosphorylated levels of its surface coreceptor, low-density lipoprotein receptor-related protein-6 (LRP6), and its intracellular effector, nonphosphorylated β-catenin. The response of primary PanIN cells to epidermal growth factor (EGF) was assessed in the absence and presence of the v-ATPase inhibitor, concanamycin. RESULTS In advanced (PanIN-2), but not early (PanIN-1), lesions, the v-ATPase assumed a polarized phenotype. Blocking the v-ATPase disrupted Wnt/β-catenin signaling in primary PanIN cells despite significantly higher levels of the total and activated Wnt cell surface coreceptor, LRP6. Vacuolar adenosine triphosphatase blockade significantly decreased the total and activated levels of EGF receptor, a determinant of PanIN progression. The activation of EGF receptor and its intracellular mediator, p44/42 mitogen-activated protein kinase, was also reduced by v-ATPase blockade. This led to diminished proliferation in response to EGF ligand. CONCLUSIONS The v-ATPase regulates Wnt/β-catenin and EGF receptor signaling in PanINs.
Collapse
|
4
|
Abstract
All life on earth can be naturally classified into cellular life forms and virus-like selfish elements, the latter being fully dependent on the former for their reproduction. Cells are reproducers that not only replicate their genome but also reproduce the cellular organization that depends on semipermeable, energy-transforming membranes and cannot be recovered from the genome alone, under the famous dictum of Rudolf Virchow, Omnis cellula e cellula. In contrast, simple selfish elements are replicators that can complete their life cycles within the host cell starting from genomic RNA or DNA alone. The origin of the cellular organization is the central and perhaps the hardest problem of evolutionary biology. I argue that the origin of cells can be understood only in conjunction with the origin and evolution of selfish genetic elements. A scenario of precellular evolution is presented that involves cohesion of the genomes of the emerging cellular life forms from primordial pools of small genetic elements that eventually segregated into hosts and parasites. I further present a model of the coevolution of primordial membranes and membrane proteins, discuss protocellular and non-cellular models of early evolution, and examine the habitats on the primordial earth that could have been conducive to precellular evolution and the origin of cells.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, 20894, USA,
| |
Collapse
|
5
|
Getz HP, Klein M. The Vacuolar ATPase of Red Beet Storage Tissue: Electron Microscopic Demonstration of the “Head-and-Stalk” Structure*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1995.tb00826.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Chung C, Mader CC, Schmitz J, Atladottir J, Fitchev P, Cornwell M, Koleske AJ, Crawford SE, Gorelick F. The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. J Transl Med 2011; 91:732-43. [PMID: 21339745 PMCID: PMC3084324 DOI: 10.1038/labinvest.2011.8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vacuolar-ATPase (v-ATPase) is a proton transporter found on many intracellular organelles and the plasma membrane (PM). The v-ATPase on PMs of cancer cells may contribute to their invasive properties in vitro. Its relevance to human cancer tissues remains unclear. We investigated whether the expression and cellular localization of v-ATPase corresponded to the stage of human pancreatic cancer, and its effect on matrix metalloproteinase (MMP) activation in vitro. The intensity of v-ATPase staining increased significantly across the range of pancreatic histology from normal ducts to pancreatic intraepithelial neoplasms (PanIN), and finally pancreatic ductal adenocarcinoma (PDAC). Low-grade PanIN lesions displayed polarized staining confined to the basal aspect of the cell in the majority (86%) of fields examined. High-grade PanIN lesions and PDAC showed intense and diffuse v-ATPase localization. In pancreatic cancer cells, PM-associated v-ATPase colocalized with cortactin, a component of the leading edge that helps direct MMP release. Blockade of the v-ATPase with concanamycin or short-hairpin RNA targeting the V₁E subunit reduced MMP-9 activity; this effect was greatest in cells with prominent PM-associated v-ATPase. In cells with detectable MMP-2 activities, however, treatment with concanamycin markedly increased MMP-2's most activated forms. V-ATPase blockade inhibited functional migration and invasion in those cells with predominantly MMP-9 activity. These results indicate that human PDAC specimens show loss of v-ATPase polarity and increased expression that correlates with increasing invasive potential. Thus, v-ATPase selectively modulates specific MMPs that may be linked to an invasive cancer phenotype.
Collapse
Affiliation(s)
- Chuhan Chung
- Department of Medicine, Section of Digestive Diseases, VA CT Research, VA CT Healthcare System, Yale University School of Medicine, West Haven, CT 06516, USA.
| | | | | | | | - Phillip Fitchev
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine
| | - Mona Cornwell
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine
| | | | - Susan E Crawford
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine
| | - Fred Gorelick
- Section of Digestive Diseases, Department of Medicine, VA CT Healthcare System, Yale University School of Medicine
| |
Collapse
|
7
|
Meuric V, Rouillon A, Chandad F, Bonnaure-Mallet M. Putative respiratory chain of Porphyromonas gingivalis. Future Microbiol 2010; 5:717-34. [PMID: 20441545 DOI: 10.2217/fmb.10.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electron transfer chain in Porphyromonas gingivalis, or periodontopathogens, has not yet been characterized. P. gingivalis, a strict anaerobic bacteria and the second colonizer of the oral cavity, is considered to be a major causal agent involved in periodontal diseases. Primary colonizers create a favorable environment for P. gingivalis growth by decreasing oxygen pressure. Oxygen does not appear to be the final electron acceptor of the respiratory chain. Fumarate and cytochrome b have been implicated as major components of the respiratory activity. However, the P. gingivalis genome shows many other enzymes that could be implicated in aerobic or nitrite respiration. Using bioinformatic tools and literature studies of respiratory pathways, the ATP synthesis mechanism from the sodium cycle and nutrients metabolism, the putative respirasome of P. gingivalis has been proposed.
Collapse
Affiliation(s)
- Vincent Meuric
- Equipe de Microbiologie, UPRES-EA 1254, Université Européenne de Bretagne, Université de Rennes I, UFR Odontologie, Bâtiment 15, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE In normal physiology, a vacuolar-type proton pump (V-ATPase) maintains an intracellular acid microenvironment in lysosome, endosome, and other endomembrane systems. Cancer cells overexpress V-ATPase compared with normal cells, and disturbances of the acid environment are thought to significantly impact the cancer cell infiltration and growth. Bafilomycin A1 (Baf-A1) is a specific inhibitor of the proton-pump inhibitor (PPI) V-ATPase. Neoplastic cells are reportedly more sensitive to Baf-A1 than normal cells, and the difference between the susceptibility to Baf-A1 in normal cells and that in cancer cells may become a target in the cancer therapy. With this in mind, we used cells of hepatoblastoma, the cancer type accounting for 80% of all childhood liver cancers, to investigate the effects of Baf-A1 as an inducer of cancer cell apoptosis and inhibitor of cancer cell reproduction METHODS AND RESULTS Electron microscopy showed significant morphological change of the hepatoblastoma cells of the Baf-A1-treated group compared with hepatoblastoma cells of the Baf-A1-free group. The rate of the apoptotic cell increased, and cell reproduction was inhibited. Moreover, the analysis of hepatoblastoma cells using the gene Chip gene expression analysis arrays showed that three of the 27 V-ATPase-related transcripts (ATP6V0D2, ATP6V1B1, and ATP6V0A1) were more weakly expressed in the Baf-A1-treated cells than in the Baf-A1-free cells. In normal human hepatic cells, on the other hand, the inhibition of cell growth of the Baf-A1-treated cells was negligible compared to that of the cells without Baf-A1 treatment. The result of apoptotic cell detection by morphological observations and flow cytometry revealed that Baf-A1 inhibits hepatoblastoma cellular reproduction by inducing apoptosis. On the other hand, the Baf-A1-conferred inhibition of cell growth was negligible in normal human hepatocytes CONCLUSION The V-ATPase inhibitor Baf-A1 has been proven to selectively inhibit the reproduction and induce the apoptosis of hepatoblastoma cells without adversely influencing normal hepatic cells. With these effects, V-ATPase inhibitors may hold promise as therapeutic agents for hepatoblastoma. Given that three V-ATPase-related genes (ATP6V0D2, ATP6V1B1, and ATP6V0A1) were more weakly expressed in the hepatoblastoma cells of the Baf-A1-treated group than in the Baf-A1-free cells, drug development targeting V-ATPase gene of hepatoblastomas is expected.
Collapse
|
9
|
Abstract
Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
10
|
Hinoki A, Yoshimura K, Fujita K, Akita M, Ikeda R, Nagashima M, Nomura M, Satomi A. Suppression of proinflammatory cytokine production in macrophages by lansoprazole. Pediatr Surg Int 2006; 22:915-23. [PMID: 16932910 DOI: 10.1007/s00383-006-1767-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macrophages (MPs) produce increased levels of proinflammatory cytokines in Crohn's disease; these cytokines are thought to play a central role in the occurrence of the disease. Biologics are currently available for anti-cytokine therapy, but treating intestinal inflammation through direct suppression of proinflammatory cytokine production could be more effective. P-ATPase inhibitors have been reported to be anti-inflammatory, and these inhibitors might suppress the production of MP proinflammatory cytokines. In this study, we examined the effect of two types of ATPase inhibitors on the expression patterns of typical proinflammatory cytokines. Peritoneal MPs from 6- to 8-week-old mice were cultured for 48 h in the presence of lansoprazole (P-ATPase inhibitor), bafilomycin A(1) (V-ATPase inhibitor), or the control solvent dimethylsulfoxide. The MPs were then examined for cytokine expression by quantitative real-time polymerase chain reaction (PCR), and culture supernatants were examined for cytokine production with a multiplex assay in a suspension array system. The possible existence of P-ATPase mRNA in MPs was explored using reverse-transcriptase PCR. P-ATPase mRNA was not detected in MP cells. However, all examined proinflammatory cytokines decreased significantly in their mRNA and protein expression in the lansoprazole-treated group. Conversely, bafilomycin A(1) increased the levels of these cytokines. Lansoprazole might be useful for the treatment of inflammatory bowel diseases (IBDs), including Crohn's disease, as it suppresses the production of relevant MP proinflammatory cytokines. However, because P-ATPase was not detected in MPs, the mechanism is unclear and remains to be studied further in an IBD animal model.
Collapse
Affiliation(s)
- Akinari Hinoki
- Department of Pediatric Surgery, Saitama Medical School, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jeong HJ, Kim HJ, Lee SH, Kwack K, Ahn SY, Choi YJ, Kim HG, Lee KW, Lee CN, Cha KY. Gene expression profiling of the pre-implantation mouse embryo by microarray analysis: comparison of the two-cell stage and two-cell block. Theriogenology 2006; 66:785-96. [PMID: 16777209 DOI: 10.1016/j.theriogenology.2006.01.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/16/2006] [Accepted: 01/20/2006] [Indexed: 01/03/2023]
Abstract
To improve our understanding of the molecular mechanisms underlying early embryo development, further characterization of gene activity in oocytes and embryos is urgently required. The transition from the two-cell to four-cell stage is particularly important in pre-implantation embryonic development, as it involves transcriptional reprogramming and cellular differentiation. In this study, we used a 7.4 K cDNA microarray to screen mRNA transcript levels in the pre-implantation mouse embryo. Real-time PCR was used to confirm microarray data. We profiled 7,410 genes and identified 4,562 genes that were differentially expressed in the pre-implantation embryo. We selected a total of 248 genes with significant expression changes that are functionally involved in the two-cell and two-cell block embryo. Of these genes, 114 were down-regulated and the remainder (n=134) were up-regulated in the two-cell embryo. This study provides a developmental map of a large number of genes in the pre-implantation mouse embryo with particular emphasis on gene expression in the two-cell embryo and two-cell block embryo. Further investigations based on this data will provide a better understanding of the effects of various external conditions and may facilitate comparative analysis of pre-implantation development in other mammalian species, including human.
Collapse
Affiliation(s)
- Hye-Jin Jeong
- Genome Research Center for Reproductive Medicine and Infertility of Korea, Ministry of Health & Welfare, Seoul 135-081, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Beyenbach KW, Wieczorek H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. ACTA ACUST UNITED AC 2006; 209:577-89. [PMID: 16449553 DOI: 10.1242/jeb.02014] [Citation(s) in RCA: 440] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It was nearly 30 years before the V-type H+ ATPase was admitted to the small circle of bona fide transport ATPases alongside F-type and P-type ATPases. The V-type H+ ATPase is an ATP-driven enzyme that transforms the energy of ATP hydrolysis to electrochemical potential differences of protons across diverse biological membranes via the primary active transport of H+. In turn, the transmembrane electrochemical potential of H+ is used to drive a variety of (i) secondary active transport systems via H+-dependent symporters and antiporters and (ii) channel-mediated transport systems. For example, expression of Cl- channels or transporters next to the V-type H+ ATPase in vacuoles of plants and fungi and in lysosomes of animals brings about the acidification of the endosomal compartment, and the expression of the H+/neurotransmitter antiporter next to the V-type H+ ATPase concentrates neurotransmitters in synaptic vesicles. First found in association with endosomal membranes, the V-type H+ ATPase is now also found in increasing examples of plasma membranes where the proton pump energizes transport across cell membranes and entire epithelia. The molecular details reveal up to 14 protein subunits arranged in (i) a cytoplasmic V1 complex, which mediates the hydrolysis of ATP, and (ii) a membrane-embedded V0 complex, which translocates H+ across the membrane. Clever experiments have revealed the V-type H+ ATPase as a molecular motor akin to F-type ATPases. The hydrolysis of ATP turns a rotor consisting largely of one copy of subunits D and F of the V1 complex and a ring of six or more copies of subunit c of the V0 complex. The rotation of the ring is thought to deliver H+ from the cytoplasmic to the endosomal or extracellular side of the membrane, probably via channels formed by subunit a. The reversible dissociation of V1 and V0 complexes is one mechanism of physiological regulation that appears to be widely conserved from yeast to animal cells. Other mechanisms, such as subunit-subunit interactions or interactions of the V-type H+ ATPase with other proteins that serve physiological regulation, remain to be explored. Some diseases can now be attributed to genetic alterations of specific subunits of the V-type H+ ATPase.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
13
|
Lapierre P, Shial R, Gogarten JP. Distribution of F- and A/V-type ATPases in Thermus scotoductus and other closely related species. Syst Appl Microbiol 2005; 29:15-23. [PMID: 16423651 DOI: 10.1016/j.syapm.2005.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Indexed: 11/27/2022]
Abstract
The presence of an A/V-type ATPase in different Thermus species and in the deeper branching species Meiothermus ruber and Deinococcus radiodurans suggests that the presence of the archaeal-type ATPase is a primitive character of the Deinococci that was acquired through horizontal gene transfer (HGT). However, the presence of a bacterial type F-ATPases was reported in two newly identified Thermus species (Thermus scotoductus DSM 8553 and Thermus filiformis DSM 4687). Two different scenarios can explain this finding, either the recent replacement of the ancestral A/V-type ATPase in Thermus scotoductus and Thermus filiformis with a newly acquired F-type ATPase or a long-term persistence of both F and A type ATPase in the Deinococci, which would imply several independent losses of the F-type ATPase in the Deinococci. Using PCR with redundant primers, sequencing and Southern blot analyses, we tried to confirm the presence of an F-type ATPase in the genome of Thermus scotoductus and Thermus filiformis, and determine its phylogenetic affinities. Initial experiments appeared to confirm the presence of an F-type ATPase in Thermus scotoductus that was similar to the F-ATPases found in Bacillus. However, further experiments revealed that the detection of an F-ATPase was due to a culture contamination. For all the Thermus and Deinococcus species surveyed, including Thermus scotoductus, cultures that were free of contamination only contained an A/V-type ATP synthases.
Collapse
Affiliation(s)
- Pascal Lapierre
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
14
|
Bageshwar UK, Taneja-Bageshwar S, Moharram HM, Binzel ML. Two isoforms of the A subunit of the vacuolar H(+)-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization. PLANTA 2005; 220:632-643. [PMID: 15449061 DOI: 10.1007/s00425-004-1377-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 08/07/2004] [Indexed: 05/24/2023]
Abstract
The plant vacuolar H(+)-translocating ATPase (V-ATPase, EC 3.6.1.34) generates a H+ electro-chemical gradient across the tonoplast membrane. We isolated two full-length cDNA clones (VHA-A1 and VHA-A2) from tomato (Lycopersicon esculentum Mill. cv. Large Cherry Red) coding for two isoforms of the V-ATPase catalytic subunit (V-ATPases A1 and A2). The cDNA clones encoding the two isoforms share 90% identity at the nucleotide level and 96% identity at the amino acid level. The 5'- and 3'-untranslated regions, however, are highly diverse. Both V-ATPase A1 and A2 isoforms encode polypeptides of 623 amino acids, with calculated molecular masses of 68,570 and 68,715, respectively. The expression of VHA-A1 and accumulation of V-ATPase A1 polypeptide were ubiquitous in all tissues examined. In response to salinity, the abundances of both transcript (VHA-A1) and protein (V-ATPase A1) of the A1 isoform in leaves were nearly doubled. In contrast to the A1 isoform, VHA-A2 transcript and V-ATPase A2 polypeptide were only detected in abundance in roots, and in minor quantities in mature fruit. In roots, accumulation of transcripts and polypeptides did not change in response to salinity for either isoform. Subcellular localization indicated that the highest levels of both V-ATPase A1 and A2 isoforms were in the tonoplast. However, significant quantities of both isoforms were detected in membranes associated with endoplasmic reticulum and/or Golgi. Immunoprecipitation of dissociated V1 domains using isoform-specific antibodies showed that V1 domains consist of either V-ATPase A1 or A2 catalytic subunit isoforms.
Collapse
Affiliation(s)
- Umesh K Bageshwar
- Institute of Plant Genomics and Biotechnology/Department of Horticulture, Texas A & M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPase has a structure and mechanism of action similar to F-ATPase and several of their subunits probably evolved from common ancestors. In eukaryotic cells, F-ATPase is confined to the semiautonomous organelles, chloroplasts and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the protonmotive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. It was the survival of the yeast mutant without the active enzyme and yeast genetics that allowed the identification of genuine subunits of the V-ATPase. It also revealed special properties of individual subunits, factors that are involved in the enzyme's biogenesis and assembly, as well as the involvement of V-ATPase in the secretory pathway, endocytosis, and respiration. It may be the insect V-ATPase that unconventionally resides in the plasma membrane of their midgut, that will give the first structure resolution of this complex.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv Israel.
| |
Collapse
|
16
|
Wieczorek H, Huss M, Merzendorfer H, Reineke S, Vitavska O, Zeiske W. The insect plasma membrane H+ V-ATPase: intra-, inter-, and supramolecular aspects. J Bioenerg Biomembr 2004; 35:359-66. [PMID: 14635781 DOI: 10.1023/a:1025733016473] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The plasma membrane H+ V-ATPase from the midgut of larval Manduca sexta, commonly called the tobacco hornworm, is the sole energizer of epithelial ion transport in this tissue, being responsible for the alkalinization of the gut lumen up to a pH of more than 11 and for any active ion movement across the epithelium. This minireview deals with those topics of our recent research on this enzyme that may contribute novel aspects to the biochemistry and physiology of V-ATPases. Our research approaches include intramolecular aspects such as subunit topology and the inhibition by macrolide antibiotics, intermolecular aspects such as the hormonal regulation of V-ATPase biosynthesis and the interaction of the V-ATPase with the actin cytoskeleton, and supramolecular aspects such as the interactions of V-ATPase, K+/H+ antiporter, and ion channels, which all function as an ensemble in the transepithelial movement of potassium ions.
Collapse
Affiliation(s)
- Helmut Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Crider BP, Xie XS. Characterization of the functional coupling of bovine brain vacuolar-type H(+)-translocating ATPase. Effect of divalent cations, phospholipids, and subunit H (SFD). J Biol Chem 2003; 278:44281-8. [PMID: 12949075 DOI: 10.1074/jbc.m307372200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H+-translocating ATPases (V-ATPases or V-pumps) are complex proteins containing multiple subunits and are organized into two functional domains: a peripheral catalytic sector V1 and a membranous proton channel V0. The functional coupling of ATP hydrolysis activity to proton transport in V-pumps requires a regulatory component known as subunit H (SFD) as has been shown both in vivo and in vitro (Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993) J. Biol. Chem. 268, 18286-18292; Xie, X. S., Crider, B. P., Ma, Y. M., and Stone, D. K. (1994) J. Biol. Chem. 269, 25809-25815). Ca2+ is thought to uncouple V-pumps because it is found to support ATP hydrolysis but not proton transport, while Mg2+ supports both activities. The direct effect of phospholipids on the coupling of V-ATPases has not been reported, likely due to the fact that phospholipids are constituents of biological membranes. We now report that Ca2+-induced uncoupling of the bovine brain V-ATPase can be reversed by imposition of a favorable membrane potential. Furthermore we report a simple "membrane-free" assay system using the V0 proton channel-specific inhibitor bafilomycin as a probe to detect the coupling of V-ATPase under certain conditions. With this system, we have characterized the functional effect of subunit H, divalent cations, and phospholipids on bovine brain V-ATPase and have found that each of these three factors plays a critical role in the functional coupling of the V-pump.
Collapse
Affiliation(s)
- Bill P Crider
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591, USA
| | | |
Collapse
|
18
|
Johnson JM, Mulloy JC, Ciminale V, Fullen J, Nicot C, Franchini G. The MHC class I heavy chain is a common target of the small proteins encoded by the 3' end of HTLV type 1 and HTLV type 2. AIDS Res Hum Retroviruses 2000; 16:1777-81. [PMID: 11080826 DOI: 10.1089/08892220050193308] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human T cell leukemia/lymphotropic virus types 1 and 2 are two immunologically and phylogenetically related retroviruses that differ in their pathogenicity in vivo. The overall genetic structure of HTLV-1 and -2 is similar. Each contains a unique region at the 3' end of the genome, designated the pX region. p12(I) is a membrane-associated protein encoded by the open reading frame I (ORF I) region of HTLV-1, which lies within the pX region. A corresponding protein, p10(I) is encoded by the ORF I region of HTLV-2 and an additional protein, p11(V), is encoded by ORF V, which overlaps the HTLV-2 ORF I region. As with HTLV-1, the small proteins encoded by the pX region of HTLV-2 appear to be dispensable for viral replication and cellular transformation in vitro. However, the small open reading frames of both viruses are important for viral replication in vivo, which suggests they may play an important role during the viral life cycle. This study was undertaken to investigate and compare the cellular targets of the p10(I), p11(V), and p12(I) putative proteins.
Collapse
Affiliation(s)
- J M Johnson
- National Cancer Institute, Basic Research Laboratory, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
19
|
Decker G, Wanner G, Zenk MH, Lottspeich F. Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 2000; 21:3500-16. [PMID: 11079569 DOI: 10.1002/1522-2683(20001001)21:16<3500::aid-elps3500>3.0.co;2-o] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The opium poppy (Papaver somniferum) belongs to the group of latex-containing plants. Latex is the milky-like fluid within laticifer cells. In this study, poppy latex was analyzed with respect to ultrastructure, alkaloid, and protein content. The main goal of this project was the examination of the proteins by two-dimensional gel electrophoresis. In a proteomics approach, we investigated two main fractions of the latex, namely the cytosolic serum and the sedimented fraction containing the alkaloid-accumulating vesicles. Of the serum, representing the protein-rich part of the latex, 75 spots were analyzed by internal peptide microsequencing, followed by a database searching. For 69 proteins a function could be assigned due to homology to known proteins, whereas six spots could not be identified. Furthermore, codeinone reductase, a representative of the specific enzyme system in morphine biosynthesis, could be detected within the cytosolic serum fraction. In the vesicle-containing pellet, 23 protein spots were analyzed. An attempt was also made to separate the vesicle pellet by density centrifugation, followed by investigation of the alkaloid content, ultrastructure, and protein pattern. This study describes the first database of soluble proteins present in the latex of P. somniferum
Collapse
Affiliation(s)
- G Decker
- Max Planck Institute for Biochemistry, Analytical Protein Chemistry Group, Martinsried, Germany.
| | | | | | | |
Collapse
|
20
|
Aviezer-Hagai K, Nelson H, Nelson N. Cloning and expression of cDNAs encoding plant V-ATPase subunits in the corresponding yeast null mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:489-98. [PMID: 11004467 DOI: 10.1016/s0005-2728(00)00188-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complementation of yeast null mutants is widely used for cloning of homologous genes from heterologous sources. We have used this method to clone the relevant V-ATPase genes from lemon fruit and Arabidopsis thaliana cDNA libraries. The pH levels are very different in the vacuoles of the lemon fruit and the A. thaliana, yet both are the result of the activity of the same enzyme complex, namely the V-ATPase. In order to investigate the mechanism that enables the enzyme to maintain such differences in pH values, we have compared the subunit composition of the V-ATPase complex from both sources. Towards this end, we have constructed a cDNA library from lemon fruit and cloned it into a similar shuttle vector to the one of the A. thaliana cDNA library, which is commercially available. In this work, we report the cloning and expression of VMA10 from both sources, two isoforms of the lemon proteolipid (VMA3) and the lemon homologue of yeast VPH1/STV1 subunit, LEMAC.
Collapse
Affiliation(s)
- K Aviezer-Hagai
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
21
|
Kulaev IS, Kulakovskaya TV, Andreeva NA, Lichko LP. Metabolism and function of polyphosphates in bacteria and yeast. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 23:27-43. [PMID: 10448671 DOI: 10.1007/978-3-642-58444-2_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- I S Kulaev
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
22
|
Abstract
Proton-translocating, vacuolar-type ATPases, well known energizers of eukaryotic, vacuolar membranes, now emerge as energizers of many plasma membranes. Just as Na(+) gradients, imposed by Na(+)/K(+) ATPases, energize basolateral plasma membranes of epithelia, so voltage gradients, imposed by H(+) V-ATPases, energize apical plasma membranes. The energized membranes acidify or alkalinize compartments, absorb or secrete ions and fluids, and underwrite cellular homeostasis. V-ATPases acidify extracellular spaces of single cells such as phagocytes and osteoclasts and of polarized epithelia, such as vertebrate kidney and epididymis. They alkalinize extracellular spaces of lepidopteran midgut. V-ATPases energize fluid secretion by insect Malpighian tubules and fluid absorption by insect oocytes. They hyperpolarize external plasma membranes for Na(+) uptake by amphibian skin and fish gills. Indeed, it is likely that ion uptake by osmotically active membranes of all fresh water organisms is energized by V-ATPases. Awareness of plasma membrane energization by V-ATPases provides new perspectives for basic science and presents new opportunities for medicine and agriculture.
Collapse
Affiliation(s)
- H Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, D-49069, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
23
|
Förster C, Santos MA, Ruffert S, Krämer R, Revuelta JL. Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 1999; 274:9442-8. [PMID: 10092625 DOI: 10.1074/jbc.274.14.9442] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPase subunit A structural gene VMA1 of the biotechnologically important riboflavin overproducer Ashbya gossypii was cloned and disrupted to prevent riboflavin retention in the vacuolar compartment and to redirect the riboflavin flux into the medium. Cloning was achieved by polymerase chain reaction using oligonucleotide primers derived form conserved sequences of the Vma1 proteins from yeast and filamentous fungi. The deduced polypeptide comprises 617 amino acids with a calculated molecular mass of 67.8 kDa. The deduced amino acid sequence is highly similar to that of the catalytic subunits of Saccharomyces cerevisiae (67 kDa), Candida tropicalis (67 kDa), and Neurospora crassa (67 kDa) with 89, 87, and 60% identity, respectively, and shows about 25% identity to the beta-subunit of the FoF1-ATPase of S. cerevisiae and Schizosaccharomyces pombe. In contrast to S. cerevisiae, however, where disruption of the VMA1 gene was conditionally lethal, and to N. crassa, where viable disruptants could not be isolated, disruption of the VMA1 gene in A. gossypii did not cause a lethal phenotype. Disruption of the AgVMA1 gene led to complete excretion of riboflavin into the medium instead of retention in the vacuolar compartment, as observed in the wild type.
Collapse
Affiliation(s)
- C Förster
- Institut für Biochemie der Universität zu Köln, Zülpicher Strasse 47, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
24
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPases have similar structure and mechanism of action with F-ATPase and several of their subunits evolved from common ancestors. In eukaryotic cells, F-ATPases are confined to the semi-autonomous organelles, chloroplasts, and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The mechanistic and structural relations between the two enzymes prompted us to suggest similar functional units in V-ATPase as was proposed to F-ATPase and to assign some of the V-ATPase subunit to one of four parts of a mechanochemical machine: a catalytic unit, a shaft, a hook, and a proton turbine. It was the yeast genetics that allowed the identification of special properties of individual subunits and the discovery of factors that are involved in the enzyme biogenesis and assembly. The V-ATPases play a major role as energizers of animal plasma membranes, especially apical plasma membranes of epithelial cells. This role was first recognized in plasma membranes of lepidopteran midgut and vertebrate kidney. The list of animals with plasma membranes that are energized by V-ATPases now includes members of most, if not all, animal phyla. This includes the classical Na+ absorption by frog skin, male fertility through acidification of the sperm acrosome and the male reproductive tract, bone resorption by mammalian osteoclasts, and regulation of eye pressure. V-ATPase may function in Na+ uptake by trout gills and energizes water secretion by contractile vacuoles in Dictyostelium. V-ATPase was first detected in organelles connected with the vacuolar system. It is the main if not the only primary energy source for numerous transport systems in these organelles. The driving force for the accumulation of neurotransmitters into synaptic vesicles is pmf generated by V-ATPase. The acidification of lysosomes, which are required for the proper function of most of their enzymes, is provided by V-ATPase. The enzyme is also vital for the proper function of endosomes and the Golgi apparatus. In contrast to yeast vacuoles that maintain an internal pH of approximately 5.5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red alga maintain internal pH as low as 0.1 in their vacuoles. One of the outstanding questions in the field is how such a conserved enzyme as the V-ATPase can fulfill such diverse functions.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
25
|
Svergun DI, Konrad S, Huss M, Koch MH, Wieczorek H, Altendorf K, Volkov VV, Grüber G. Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities. Biochemistry 1998; 37:17659-63. [PMID: 9922131 DOI: 10.1021/bi982367a] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The V1 ATPase from the tobacco hornworm Manduca sexta and the Escherichia coli F1 ATPase were characterized by small-angle X-ray scattering (SAXS). The radii of gyration (Rg) of the complexes were 6.2 +/- 0.1 and 4.7 +/- 0.02 nm, respectively. The shape of the M. sexta V1 ATPase was determined ab initio from the scattering data showing six masses, presumed to be the A and B subunits, arranged in an alternating manner about a 3-fold axis. A seventh mass with a length of about 11.0 nm extends perpendicularly to the center of the hexameric unit. This central mass is presumed to be the stalk that connects V1 with the membrane domain (V(O)) in the intact V1V(O)-ATPase. In comparison, the shape of the F1 ATPase from E. coli possesses a quasi-3-fold symmetry over the major part of the enzyme. The overall asymmetry of the structure is given by a stem, assumed to include the central stalk subunits. The features of the V1 and F1 ATPase reveal structural homologies and diversities of the key components of the complexes.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Takanokura Y, Komatsu A, Omura M, Akihama T. Cloning and expression analysis of vacuolar H+-ATPase 69-kDa catalytic subunit cDNA in citrus (Citrus unshiu marc.)1. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:265-72. [PMID: 9804972 DOI: 10.1016/s0005-2736(98)00148-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
To investigate the mechanism of sugar accumulation in fruit vacuoles, a full length cDNA (CitVATP-A) encoding the vacuolar H+-ATPase 69-kDa catalytic subunit was isolated from a cDNA library constructed from citrus fruit (Citrus unshiu Marc.). A 2304-bp insert of CitVATP-A was coded for a 623 amino acid polypeptide with a predicted molecular mass of 68.68 kDa. The deduced amino acid sequence for CitVATP-A showed a 96.5% homology with the carrot homologue. Genomic Southern blot analysis suggested that CitVATP-A is a low-copy number gene. Northern blot analysis of leaves and fruits during the developing stages showed that the level of expression is high in young leaves and is low in mature leaves, and that it increased in both the edible parts and the peel, during fruit growth and maturity.
Collapse
Affiliation(s)
- Y Takanokura
- Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa 214, Japan
| | | | | | | |
Collapse
|
27
|
Ferreira OC, Planelles V, Rosenblatt JD. Human T-cell leukemia viruses: epidemiology, biology, and pathogenesis. Blood Rev 1997; 11:91-104. [PMID: 9242992 DOI: 10.1016/s0268-960x(97)90015-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human T-cell lymphotropic viruses type I and type II are closely related human retroviruses that have similar biological properties, genetic organization and tropism for T lymphocytes. Along with the simian T-cell lymphoma virus type I, they define the group of retroviruses known as the primate T-cell leukemia/lymphoma viruses. Initially identified in 1980, the human T-cell lymphotropic virus type I has been implicated as the etiologic agent of adult T-cell leukemia/lymphoma and of a degenerative neurologic disorder known as tropical spastic paraparesis or human T-cell lymphotropic virus type I-associated myelopathy. The intriguing link between human T-cell lymphotropic virus type, T-cell malignancy, and a totally unrelated and non-overlapping neurological disorder suggests divergent and unique pathogenetic mechanisms. This review will address the epidemiology, molecular biology, and pathogenesis of human T-cell leukemia viruses.
Collapse
Affiliation(s)
- O C Ferreira
- University of Rochester Medical Center, NY 14642, USA
| | | | | |
Collapse
|
28
|
Abstract
Archaea are forming one of the three kingdoms defining the universal phylogenetic tree of living organisms. Within itself this kingdom is heterogenous regarding the mechanisms for deriving energy from the environment for support of cellular functions. These comprise fermentative and chemolithotrophic pathways as well as light driven and respiratory energy conservation. Due to their extreme growth conditions access to the molecular machineries of energy transduction in archaea can be experimentally limited. Among the aerobic, extreme thermoacidophilic archaea, the genus Sulfolobus has been studied in greater detail than many others and provides a comprehensive picture of bioenergetics on the level of substrate metabolism, formation and utilization of high energy phosphate bonds, and primary energy conservation in respiratory electron transport. A number of novel metabolic reactions as well as unusual structures of respiratory enzyme complexes have been detected. Since their genomic organization and many other primary structures could be determined, these studies shed light on the evolution of various bioenergetic modules. It is the aim of this comprehensive review to bring the different aspects of Sulfolobus bioenergetics into focus as a representative example of, and point of comparison for closely related, aerobic archaea.
Collapse
Affiliation(s)
- G Schäfer
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| |
Collapse
|
29
|
Nelson N, Klionsky DJ. Vacuolar H(+)-ATPase: from mammals to yeast and back. EXPERIENTIA 1996; 52:1101-10. [PMID: 8988252 DOI: 10.1007/bf01952108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vacuolar H(+)-adenosine triphosphatase (V-ATPase) is composed of distinct catalytic (V1) and membrane (V0) sectors containing several subunits. The biochemistry of the enzyme was mainly studied in organelles from mammalian cells such as chromaffin granules and clathrin-coated vesicles. Subsequently, mammalian cDNAs and yeast genes encoding subunits of V-ATPase were cloned and sequenced. The sequence information revealed the relation between V- and F-ATPase that evolved from a common ancestor. The isolation of yeast genes encoding subunits of V-ATPase opened an avenue for molecular biology studies of the enzyme. Because V-ATPase is present in every known eukaryotic cell and provides energy for vital transport systems, it was anticipated that disruption of genes encoding V-ATPase subunits would be lethal. Fortunately, yeast cells can survive the absence of V-ATPase by 'drinking' the acidic medium. So far only yeast cells have been shown to be viable without an active V-ATPase. In contrast to yeast, mammalian cells may have more than one gene encoding each of the subunits of the enzyme. Some of these genes encode tissue- and/or organelle-specific subunits. Expression of these specific cDNAs in yeast cells may reveal their unique functions in mammalian cells. Following the route from mammals to yeast and back may prove useful in the study of many other complicated processes.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
30
|
Pacheco G, Lippo de Bécemberg I, Gonzalez de Alfonzo R, Alfonzo MJ. Biochemical characterization of a V-ATPase of tracheal smooth muscle plasma membrane fraction. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:182-92. [PMID: 8703972 DOI: 10.1016/0005-2736(96)00038-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A biochemical characterization of a Mg(2+)-ATPase activity associated with a plasma membrane fraction isolated from airway (tracheal) smooth muscle was performed. This enzyme is an integral part of the membrane remaining tightly bound after 0.6 M KCl extraction. This enzyme activity showed a cold inactivation in the presence of ATP and Mg2+. Also, this Mg(2+)-ATPase was stimulated by monovalent anions being Cl-, the best anion for such stimulation, even though Br- and I- were good substitutes and F- was ineffective. This Cl--stimulated activity showed a powerful nucleosidetriphosphatase activity having the following divalent cation specificity: Mg2+ > Mn2+ > Ca2+, where Zn2+ and Fe2+ were ineffective. This ATPase activity was not inhibited by ouabain oligomycin C and vanadate indicating that neither P- or F-ATPases were associated with this enzyme activity. However, the existence of a V-ATPase was shown by the significant inhibition causes by bafilomycin A1. Additionally, this V-ATPase seems to be coupled to Cl- conductor because duramycin inhibited this ATPase activity. The presence of a H+ pump associated to this V-ATPase was shown indirectly, through the stimulatory effect produced by uncouplers such as FCCP and 1799, which were able to produce significant stimulation of this V-ATPase indicating the existence of a H(+)-ATPase. Finally, the immunodetection of a 72 kDa polypeptide using a specific antibody against the A subunit (72 kDa) of V-ATPase from chromaffin granule demonstrated the presence of a V-ATPase in this plasma membrane fraction.
Collapse
Affiliation(s)
- G Pacheco
- Catedras de Bioquímica y Patología General y Fisiopatología, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | |
Collapse
|
31
|
Ohta T, Numata M, Yagishita H, Futagami F, Tsukioka Y, Kitagawa H, Kayahara M, Nagakawa T, Miyazaki I, Yamamoto M, Iseki S, Ohkuma S. Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer. Br J Cancer 1996; 73:1511-7. [PMID: 8664121 PMCID: PMC2074554 DOI: 10.1038/bjc.1996.285] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies have shown that bafilomycin A1-sensitive vacuolar-type H(+)-ATPase (V-ATPase) plays important roles in cell growth and differentiation. However, there is no published study that has focused on the expression of V-ATPase in human tumour tissues. This study was designed to examine the mRNA and protein levels for the 16 kilodalton (kDa) proteolipid of V-ATPase in human pancreatic carcinoma tissues. We first investigated the mRNA level for V-ATPase in six cases of invasive pancreatic cancers and two normal pancreases, using reverse transcription-polymerase chain reaction technique. Then, we examined immunohistochemically the level of V-ATPase protein in 49 pancreatic cancers and ten benign cystic neoplasms of the pancreas, using antisera raised against the 16 kDa proteolipid. There was a notable difference in the level of V-ATPase mRNA between normal and pancreatic carcinoma tissues, with no evident difference in the expression of the beta-actin gene. Immunohistochemically, 42 out of 46 invasive ductal cancers (92%) displayed a mild to marked immunoreactivity for V-ATPase in the cytoplasm, whereas neither non-invasive ductal cancers nor benign cystic neoplasms expressed detectable immunoreactive proteins. These findings suggest that the overexpression of V-ATPase protein is characteristic of invasive pancreatic tumours. V-ATPase may play some crucial roles in tumour progression.
Collapse
Affiliation(s)
- T Ohta
- Department of Surgery (II), School of Medicine, Kanazawa University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Laitala-Leinonen T, Howell ML, Dean GE, Väänänen HK. Resorption-cycle-dependent polarization of mRNAs for different subunits of V-ATPase in bone-resorbing osteoclasts. Mol Biol Cell 1996; 7:129-42. [PMID: 8741845 PMCID: PMC278618 DOI: 10.1091/mbc.7.1.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein sorting in eukaryotic cells is mainly done by specific targeting of polypeptides. The present evidence from oocytes, neurons, and some other polarized cells suggests that protein sorting can be further facilitated by concentrating mRNAs to their corresponding subcellular areas. However, very little is known about the mechanism(s) involved in mRNA targeting, or how widespread and dynamic such mRNA sorting might be. In this study, we have used an in vitro cell culture system, where large multinucleated osteoclasts undergo continuous structural and functional changes from polarized (resorbing) to a nonpolarized (resting) stage. We demonstrate here, using a nonradioactive in situ hybridization technique and confocal microscopy, that mRNAs for several vacuolar H(+)-ATPase subunits change their localization and polarity in osteoclasts according to the resorption cycle, whereas mRNA for cytoplasmic carbonic anhydrase II is found diffusely located throughout the osteoclast during the whole resorption cycle. Antisense RNA against the 16-kDa or 60-kDa V-ATPase subunit inhibits polarization of the osteoclasts, as determined by cytoskeleton staining. Antisense RNA against carbonic anhydrase II, however, has no such effect.
Collapse
|
33
|
Blair A, Ngo L, Park J, Paulsen IT, Saier MH. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 1):17-32. [PMID: 8581162 DOI: 10.1099/13500872-142-1-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sequences of the three integral membrane subunits (subunits a, b and c) of the F0 sector of the proton-translocating F-type (F0F1-) ATPases of bacteria, chloroplasts and mitochondria have been analysed. All homologous-sequenced proteins of these subunits, comprising three distinct families, have been identified by database searches, and the homologous protein sequences have been aligned and analysed for phylogenetic relatedness. The results serve to define the relationships of the members of each of these three families of proteins, to identify regions of relative conservation, and to define relative rates of evolutionary divergence. Of these three subunits, c-subunits exhibited the slowest rate of evolutionary divergence, b-subunits exhibited the most rapid rate of evolutionary divergence, and a-subunits exhibited an intermediate rate of evolutionary divergence. The results allow definition of the relative times of occurrence of specific events during evolutionary history, such as the intragenic duplication event that gave rise to large c-subunits in eukaryotic vacuolar-type ATPases after eukaryotes diverged from archaea, and the extragenic duplication of F-type ATPase b-subunits that occurred in blue-green bacteria before the advent of chloroplasts. The results generally show that the three F0 subunits evolved as a unit from a primordial set of genes without appreciable horizontal transmission of the encoding genetic information although a few possible exceptions were noted.
Collapse
Affiliation(s)
- Alan Blair
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Linh Ngo
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - James Park
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Ian T Paulsen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
34
|
Moriyama Y, Yamamoto A. Vesicular L-glutamate transporter in microvesicles from bovine pineal glands. Driving force, mechanism of chloride anion activation, and substrate specificity. J Biol Chem 1995; 270:22314-20. [PMID: 7673214 DOI: 10.1074/jbc.270.38.22314] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pinealocytes, endocrine cells that synthesize and secrete melatonin, possess a large number of synaptic-like microvesicles (MVs) containing the L-glutamate transporter (Moriyama, Y., and Yamamoto, A. (1995) FEBS Lett., 367, 233-236). In this study, the L-glutamate transporter in MVs isolated from bovine pineal glands was characterized as to its driving force, requirement of anions, and substrate specificity. Upon the addition of ATP, the MVs accumulated L-glutamate. The uptake was significantly dependent on the extravesicular Cl- concentration, being negligible in the absence of Cl- and maximum at 2-5 mM and decreasing gradually at 20-100 mM. The membrane potential (inside positive) was maximum at 0-10 mM Cl- and then decreased gradually depending on the Cl- concentration, whereas a pH gradient was practically absent without Cl- and increased gradually up to 100 mM Cl-. Ammonium acetate or nigericin plus K+, a dissipator of a pH gradient, had little effect on or was slightly stimulatory toward the uptake, whereas valinomycin plus K+ inhibited both formation of the membrane potential and the glutamate uptake to similar extents. The ATP- and Cl(-)-dependent glutamate uptake was inhibited by fluoride, iodide, or thiocyanate, without vacuolar H(+)-ATPase being affected. An anion channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, similarly inhibited the glutamate uptake in a Cl- protectable manner. Furthermore, ATP- and glutamate-dependent acidification of MVs was observed when 4 mM Cl- was present. Among more than 50 kinds of glutamate analogues tested, only a few compounds, including 1-aminocyclohexane-trans-1,3-dicarboxylic acid, caused similar acidification. A good correlation was observed between the acidification and the inhibition of glutamate uptake by glutamate analogues. These results indicated that 1) the major driving force of the glutamate uptake is the membrane potential, 2) Cl- regulates the glutamate uptake, probably via anion-binding site(s) on the transporter, and 3) the transporter shows strict substrate specificity. Hence, the overall properties of the vesicular glutamate transporter in the MVs well matched those of the synaptic vesicle glutamate transporter. We concluded that the vesicular glutamate transporter, being similar if not identical to the neuronal counterpart, operates in endocrine cells.
Collapse
Affiliation(s)
- Y Moriyama
- Graduate Department of Gene Sciences, Faculty of Sciences, Hiroshima University, Japan
| | | |
Collapse
|
35
|
Abstract
Tooth eruption depends on bone resorption to form an eruption pathway. We have previously shown that a 2-wk local infusion of bafilomycin A1, an inhibitor of vacuolar H(+)-ATPases in osteoclasts, into the crypts of erupting mandibular premolars in dogs blocks bone resorption during this period and eruption of these teeth is delayed for 8 wk. Here we report the limits of inhibition of resorption that still permit eruption of these teeth. In 3 dogs 10(-6) M bafilomycin was delivered by osmotic minipumps early (18 wk) in eruption to the fourth premolar for 1, 3 or 4 wk. Radiographs taken at weekly intervals thereafter showed that bafilomycin delivery for 1 wk delayed eruption for 3 wk, delivery for 3 wk delayed eruption 9 wk and delivery for 4 wk prevented eruption. These data show that tooth eruption is delayed in direct proportion to the time resorption is blocked, and that this process for dog premolars cannot be blocked for more than 3 wk with 10(-6) M bafilomycin without blocking eruption itself.
Collapse
Affiliation(s)
- S C Marks
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, USA
| | | |
Collapse
|
36
|
Ziegler K, Hauska G, Nelson N. Cyanidium caldarium genes encoding subunits A and B of V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1230:202-6. [PMID: 7619836 DOI: 10.1016/0005-2728(95)00060-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genes encoding subunits A and B of V-ATPase in Cyanidium caldarium were cloned and sequenced. While the gene encoding subunit A is not interrupted by introns, the gene encoding subunit B contains seven introns ranging from 36 to 60 nucleotides.
Collapse
Affiliation(s)
- K Ziegler
- Fachbereich Biologie, Humboldt Universitat zu Berlin, Germany
| | | | | |
Collapse
|
37
|
Supeková L, Supek F, Nelson N. The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H(+)-ATPase. J Biol Chem 1995; 270:13726-32. [PMID: 7775427 DOI: 10.1074/jbc.270.23.13726] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) functions as a primary proton pump that generates an electrochemical gradient of protons across the membranes of several internal organelles. It is composed of distinct catalytic and membrane sectors, each containing several subunits. We identified a protein (M16) that copurifies with the V-ATPase complex from Saccharomyces cerevisiae and appears to be present at multiple copies/enzyme. Amino acid sequencing of its proteolytic products yielded three nonoverlapping peptide sequences matching an unidentified reading frame located on chromosome VIII. Sequence analysis of cDNA encoding M16 revealed that the gene encoding this protein (VMA10) is interrupted by a 162-nucleotide intron that begins after the ATG codon of the initiator methionine. The cDNA encodes an hydrophilic protein of 12,713 Da with a basic isoelectric point of pH 9. A delta vma10::URA3 null mutant exhibited growth characteristics typical of other vma disruptant mutants in genes encoding subunits of V-ATPase. The null mutant does not grow on medium buffered at pH 7.5. It fails to accumulate quinacrine into its vacuole, and subunits of the catalytic sector are not assembled onto the vacuolar membrane in the absence of M16. A cold inactivation experiment demonstrated that M16 is a subunit of the membrane sector of V-ATPase. M16 exhibits a significant sequence homology with subunit b of F-ATPase membrane sector.
Collapse
Affiliation(s)
- L Supeková
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | |
Collapse
|
38
|
Moriyama Y, Yamamoto A, Yamada H, Tashiro Y, Tomochika K, Takahashi M, Maeda M, Futai M. Microvesicles isolated from bovine posterior pituitary accumulate norepinephrine. J Biol Chem 1995; 270:11424-9. [PMID: 7744779 DOI: 10.1074/jbc.270.19.11424] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Histochemical study indicated that the posterior pituitary possesses numerous microvesicles (MVs) containing synaptophysin, a marker protein specific for brain synaptic vesicles (Navone, F., Di Gioia, G., Jahn, R., Browning, M., Greengard, P., and De Camilli, P. (1989) J. Cell Biol. 109, 3425-2433). By monitoring cross-reactivity with anti-synaptophysin antibody, the MVs were highly purified from bovine posterior pituitaries by a combination of differential and sucrose density gradient centrifugations. The purified MVs had an average diameter of about 60 nm and were associated with synaptophysin as revealed by immunoelectron microscopy. The vesicles contained ATPase activity partially sensitive to bafilomycin A1 and to vanadate. The membrane fraction immunoisolated with anti-synaptophysin antibody also exhibited similar ATPase activity. The two ATPases could be purified separately; the vandate-sensitive enzyme was identified as a 115-kDa polypeptide immunochemically similar to chromaffin granule P-ATPase (forming phosphoenzyme intermediate), and the bafilomycin A1-sensitive ATPase showed essentially the same properties as those of vacuolar type H(+)-ATPases. Upon addition of ATP, the MVs formed an electrochemical gradient of protons and took up norepinephrine in a reserpine-sensitive manner, indicating the presence of secondary monoamine transporter coupled with vacuolar type H(+)-ATPase. No uptake of L-glutamate, gamma-aminobutyrate, glycine, or acetylcholine was observed. The identification of MVs as organelles responsible for storage of monoamines is important for understanding the physiological function of the posterior pituitary.
Collapse
Affiliation(s)
- Y Moriyama
- Department of Biochemistry and Organic Chemistry, Osaka University
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 1995; 6:525-39. [PMID: 7663021 PMCID: PMC301213 DOI: 10.1091/mbc.6.5.525] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The FAB1 gene of budding yeast is predicted to encode a protein of 257 kDa that exhibits significant sequence homology to a human type II PI(4)P 5-kinase (PIP5K-II). The recently cloned human PIP5K-II specifically converts PI(4)P to PI(4,5)P2 (Boronenkov and Anderson, 1995). The region of highest similarity between Fab1p and PIP5K-II includes a predicted nucleotide binding motif, which is likely to correspond to the catalytic domain of the protein. Interestingly, neither PIP5K-II nor Fab1p exhibit significant homology with cloned PI 3-kinases or PI 4-kinases. fab1 mutations result in the formation of aploid and binucleate cells (hence the name FAB). In addition, loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth. Experiments with a temperature conditional fab1 mutant revealed that their vacuoles rapidly (within 30 min) enlarge to more than double the size upon shifting cells to the nonpermissive temperature. Additional experiments with the fab1 ts mutant together with results obtained with fab1 vps (vacuolar protein sorting defective) double mutants indicate that the nuclear division and cell surface integrity defects observed in fab1 mutants are secondary to the vacuole morphology defects. Based on these data, we propose that Fab1p is a PI(4)P 5-kinase and that the product of the Fab1p reaction, PIP2, functions as an important regulator of vacuole homeostasis perhaps by controlling membrane flux to and/or from the vacuole. Furthermore, a comparison of the phenotypes of fab1 mutants and other yeast mutants affecting PI metabolism suggests that phosphoinositides may serve as general regulators of several different membrane trafficking pathways.
Collapse
Affiliation(s)
- A Yamamoto
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nelson H, Mandiyan S, Nelson N. A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A 1995; 92:497-501. [PMID: 7831318 PMCID: PMC42768 DOI: 10.1073/pnas.92.2.497] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Subunit D of vacuolar H(+)-ATPase (V-ATPase) from bovine chromaffin granules was subjected to partial proteolysis and amino acid sequencing. A cDNA encoding this subunit was isolated and sequenced. The predicted open reading frame encodes a protein of 247 amino acids with a calculated molecular weight of 28,336. Northern blot analysis revealed an mRNA distribution with higher transcript amounts in tissues that are active in secretion. A homologous gene was identified as open reading frame 11 in chromosome V of Saccharomyces cerevisiae. The two proteins exhibit 55% identity with several conservative replacements. Interruption of the yeast gene, denoted as VMA8, resulted in the null mutant delta vma8::URA3 that, like all the other V-ATPase null mutants, did not grow on medium buffered at pH 7.5 and showed no accumulation of quinacrine into their vacuoles. Transformation of the null mutant with a plasmid containing the VMA8 gene restored the wild-type phenotype. This supports the conclusion that subunit D is an integral subunit of the catalytic sector of V-ATPase and its structural analysis suggests analogy to the gamma subunit of F-ATPases.
Collapse
Affiliation(s)
- H Nelson
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | |
Collapse
|
41
|
Roseth S, Fonnum F. A study of the uptake of glutamate, gamma-aminobutyric acid (GABA), glycine and beta-alanine in synaptic brain vesicles from fish and avians. Neurosci Lett 1995; 183:62-6. [PMID: 7746489 DOI: 10.1016/0304-3940(94)11115-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ATP-dependent uptake of amino acids into synaptic vesicles isolated from mammalian brain is well characterized. To determine whether these characteristics are fundamental to the vesicular uptake system, synaptic vesicles were isolated from brains of the vertebrate species, rainbow trout and chicken and assayed for glutamate, gamma-aminobutyric acid (GABA) and glycine uptake activity. Uptake was dependent upon temperature, Mg2+ and ATP and was also strongly inhibited by the alkylating agent N-ethylmaleimide which is known to inhibit the ATPase, confirming that this was an energy requiring process. Interestingly GABA and beta-alanine were inhibitors of vesicular uptake of glycine in both species. Likewise the uptake of GABA was inhibited by glycine and beta-alanine. Glutamate, GABA, glycine and beta-alanine were all taken up into vesicles from both trout and chicken, and the uptake ratios were similar to the corresponding uptake ratios in synaptic vesicles from rat. These results indicate that the synaptic vesicle uptake system for glutamate, GABA and glycine uptake system is conserved throughout the vertebrate class both in respect to ATP-dependency and substrate specificity.
Collapse
Affiliation(s)
- S Roseth
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| | | |
Collapse
|
42
|
|
43
|
Sundquist K, Larson EK, Marks SC. Altering tooth eruption by blocking bone resorption--the local delivery of bafilomycin A1. Connect Tissue Res 1995; 32:159-63. [PMID: 7554912 DOI: 10.3109/03008209509013719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tooth eruption is a complicated process requiring a coordination of bone resorption and bone formation by a variety of factors in and around the dental follicle proper and bone resorption is the rate-limiting step early in the process. We have recently described a method to deliver to the crypt of erupting dog premolars a reversible blocker of bone resorption, bafilomycin A1, and shown that its delivery for two week blocks bone resorption and eruption during this period without effect on adjacent teeth or on bone formation. In this study we show that delivery of 10(-6) M bafilomycin A1 via a cannulated osmotic minipump for two weeks early in the eruption of premolars delayed the eruption of these teeth for eight weeks. Similar delivery of the vehicle to the contralateral premolar had no effect on eruption. These data are the first clinical application of this potent drug and show that a short term local delivery is reversible and that blocking resorption for two weeks causes a fourfold delay in tooth eruption. Modifications of this approach may have clinical applications in dentistry.
Collapse
Affiliation(s)
- K Sundquist
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|
44
|
Dunant Y, Israël M. Mediatophore and other presynaptic proteins. A cybernetic linking at the active zone. JOURNAL OF PHYSIOLOGY, PARIS 1995; 89:147-56. [PMID: 7581304 DOI: 10.1016/0928-4257(96)80112-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In rapidly transmitting synapses, the mediatophore, a protein located in the presynaptic membrane, seems to play a key role in the last step of transmitter release. Reconstituted either in proteoliposomes or in Xenopus oocytes, or transfected in particular cell lines, the mediatophore is able to release acetylcholine with characteristics which meet several typical features of transmitter release in natural synapses. Good correspondence between the two conditions was found for: i) the dependency of release upon calcium concentration; ii) the desensitisation of release by persistence of internal calcium; iii) the effect of several drugs; iv) the fleeting formation of a population of large intramembrane particles during the precise time of release; and v) the pulsatile or quantal nature of transmitter release. All these features therefore could well be ascribed to intrinsic properties of the mediatophore molecule. How is the mediatophore integrated in the whole presynaptic apparatus? To what extent is its function regulated by the other proteins of the active zone? These questions are far from being solved. We want nevertheless to propose here a general view in which characteristic presynaptic functions such as transmitter release, calcium entry, sequestration and extrusion, regulation of short- and long-term changes in release efficiency, are supported by an ordered succession of molecular events involving the proteins of the active zone. It will be seen that some proteins compete for a common binding site. It is thus expected that they will occupy this site in a regulated succession, according to simple cybernetic rules.
Collapse
Affiliation(s)
- Y Dunant
- Département de Pharmacologie, CMU, Geneva, Switzerland
| | | |
Collapse
|
45
|
Supek F, Supekova L, Nelson N. Features of vacuolar H(+)-ATPase revealed by yeast suppressor mutants. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47219-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Abstract
It has been shown that a specific inhibitor of vacuolar H(+)-ATPases, bafilomycin A1, inhibits bone resorption by isolated chicken osteoclasts by blocking the proton pump in the ruffled border membrane. We report here the effects of bafilomycin A1 on bone resorption in vivo. Using a cannulated osmotic minipump delivery system, we infused bafilomycin locally to the eruption pathway of permanent premolars of beagle dogs. We used pit formation by osteoclasts in vitro to estimate the concentrations and heat stability of bafilomycin to be used in vivo. In this model, osteoclasts were cultured on thin bone slices, in which they form pits indicative of resorption. After 2 weeks preincubation at 37 degrees C, bafilomycin concentrations of 10(-6) and 10(-7) M but not 10(-8) M completely inhibited the resorptive activity of cultured osteoclasts, and the two larger doses were chosen for use in vivo. Local delivery of 10(-6) M bafilomycin to the eruption pathway of the fourth permanent mandibular premolar during mideruption inhibited tooth eruption by blocking bone resorption as assayed by radiography, light microscopy, and scanning electron microscopy. Bafilomycin at 10(-7) M had similar but less intensive effects. Moreover, osteoclasts in the alveolar bone of crypts treated with 10(-7) M bafilomycin A1 stained very weakly for tartrate-resistant acid phosphatase. The effect of bafilomycin on bone resorption was shown to be very local, and no side effects of treatment with bafilomycin were observed in adjacent teeth or the behavior of dogs. We report here, for the first time, inhibition of tooth eruption caused by inhibited bone resorption using bafilomycin A1 in vivo.
Collapse
Affiliation(s)
- K T Sundquist
- University of Massachusetts Medical School, Department of Cell Biology, Worcester
| | | |
Collapse
|
47
|
Just F, Walz B. Immunocytochemical localization of Na+/K(+)-ATPase and V-H(+)-ATPase in the salivary glands of the cockroach, Periplaneta americana. Cell Tissue Res 1994; 278:161-70. [PMID: 7954697 DOI: 10.1007/bf00305788] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The acinous salivary glands of the cockroach (Periplaneta americana) consist of four morphologically different cell types with different functions: the peripheral cells are thought to produce the fluid component of the primary saliva, the central cells secrete the proteinaceous components, the inner acinar duct cells stabilize the acini and secrete a cuticular intima, whereas the distal duct cells modify the primary saliva via the transport of water and electrolytes. Because there is no direct information available on the distribution of ion transporting enzymes in the salivary glands, we have mapped the distribution of two key transport enzymes, the Na+/K(+)-ATPase (sodium pump) and a vacuolar-type H(+)-ATPase, by immunocytochemical techniques. In the peripheral cells, the Na+/K(+)-ATPase is localized to the highly infolded apical membrane surface. The distal duct cells show large numbers of sodium pumps localized to the basolateral part of their plasma membrane, whereas their highly folded apical membranes have a vacuolar-type H(+)-ATPase. Our immunocytochemical data are supported by conventional electron microscopy, which shows electron-dense 10-nm particles (portasomes) on the cytoplasmic surface of the infoldings of the apical membranes of the distal duct cells. The apically localized Na+/K(+)-ATPase in the peripheral cells is probably directly involved in the formation of the Na(+)-rich primary saliva. The latter is modified by the distal duct cells by transport mechanisms energized by the proton motive force of the apically localized V-H(+)-ATPase.
Collapse
Affiliation(s)
- F Just
- Institut für Zoologie der Universität, Regensburg, Germany
| | | |
Collapse
|
48
|
Nelson H, Mandiyan S, Nelson N. The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H(+)-ATPase catalytic sector. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51061-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Laitala T, Väänänen HK. Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H(+)-ATPase. J Clin Invest 1994; 93:2311-8. [PMID: 8200964 PMCID: PMC294435 DOI: 10.1172/jci117235] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The bone resorbing cells, osteoclasts, express high levels of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) during bone resorption. We have used antisense RNA and DNA molecules targeted against CA II, and against 16- and 60-kD subunits of vacuolar H(+)-ATPase (V-ATPase), to block the expression of these proteins in vitro. Osteoclastic bone resorption was studied in two in vitro culture systems: release of 45Calcium from prelabeled newborn mouse calvaria cultures, and resorption pit assays performed with rat osteoclasts cultured on bovine bone slices. Both antisense RNA and DNA against CA II and the V-ATPase were used to compare their specificities as regards inhibiting bone resorption in vitro. The antisense molecules inhibited the synthesis of these proteins by decreasing the amounts of mRNA in the cells in a highly specific manner. In osteoclast cultures treated with the 16-kD V-ATPase antisense RNA, acidification of an unknown population of intracellular vesicles was highly stimulated. The acidification of these vesicles was not sensitive to amiloride or bafilomycin A1. This suggests the existence of a back-up system for acidification of intracellular vesicles, when the expression of the V-ATPase is blocked. Our results further indicate that blocking the expression of CA II and V-ATPase with antisense RNA or DNA leads to decreased bone resorption.
Collapse
Affiliation(s)
- T Laitala
- Department of Anatomy, University of Oulu, Finland
| | | |
Collapse
|
50
|
Franchini G, Mulloy JC, Koralnik IJ, Lo Monico A, Sparkowski JJ, Andresson T, Goldstein DJ, Schlegel R. The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. J Virol 1993; 67:7701-4. [PMID: 8230493 PMCID: PMC238245 DOI: 10.1128/jvi.67.12.7701-7704.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human T-cell leukemia/lymphotropic virus type I (HTLV-I) induces T-cell leukemia and transforms human T cells in vitro. A recently identified protein with a molecular weight of 12,000 (12K) (p12I), encoded by single- and double-spliced mRNAs transcribed from the 3' end of the HTLV-I genome, has been shown to localize in the perinuclear compartment and in the cellular endomembranes. The p12I protein exhibits significant amino acid sequence similarity to the E5 oncoprotein of bovine papillomavirus type 1 (BPV-1). Both proteins are very hydrophobic, contain a glutamine residue in the middle of a potential transmembrane region(s), and are localized in similar cellular compartments. Because of these observations, we investigated whether the p12I resemblance to E5 correlated with a similarity in their biological behavior. We expressed the p12I protein to evaluate its ability to functionally cooperate with the BPV-1 E5 oncoprotein and to bind to a cellular target of the E5 protein, the 16K component of the vacuolar H+ ATPase. Cotransfection of the mouse C127 cell line with the p12I and E5 cDNAs showed that although p12I alone could not induce focus formation, it strongly potentiated the transforming activity of E5. In addition, the p12I protein bound to the 16K protein as efficiently as the E5 protein. These findings might provide new insight for potential mechanisms of HTLV-I transformation and suggest that p12I and E5 represent an example of convergent evolution between RNA and DNA viruses.
Collapse
Affiliation(s)
- G Franchini
- Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|