1
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Gürtler R, Mosesso P, Parent-Massin D, Tobback P, Chrysafidis D, Rincon AM, Tard A, Lambré C. Re-evaluation of calcium silicate (E 552), magnesium silicate (E 553a(i)), magnesium trisilicate (E 553a(ii)) and talc (E 553b) as food additives. EFSA J 2018; 16:e05375. [PMID: 32626019 PMCID: PMC7009349 DOI: 10.2903/j.efsa.2018.5375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of calcium silicate (E 552), magnesium silicate (E 553a) and talc (E 553b) when used as food additives. In 1991, the Scientific Committee on Food (SCF) established a group acceptable daily intake (ADI) 'not specified' for silicon dioxide and silicates. The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) recently provided a scientific opinion re-evaluating the safety of silicon dioxide (E 551) when used as a food additive. The Panel noted that the absorption of silicates and talc was very low; there was no indication for genotoxicity or developmental toxicity for calcium and magnesium silicate and talc; and no confirmed cases of kidney effects have been found in the EudraVigilance database despite the wide and long-term use of high doses of magnesium trisilicate up to 4 g/person per day over decades. However, the Panel considered that accumulation of silicon from calcium silicate in the kidney and liver was reported in rats, and reliable data on subchronic and chronic toxicity, carcinogenicity and reproductive toxicity of silicates and talc were lacking. Therefore, the Panel concluded that the safety of calcium silicate (E 552), magnesium silicate (E 553a(i)), magnesium trisilicate (E 553a(ii)) and talc (E 553b) when used as food additives cannot be assessed. The Panel considered that there is no mechanistic rationale for a group ADI for silicates and silicon dioxide and the group ADI established by the SCF is obsolete. Based on the food supplement scenario considered as the most representative for risk characterisation, exposure to silicates (E 552-553) for all population groups was below the maximum daily dose of magnesium trisilicate used as an antacid (4 g/person per day). The Panel noted that there were a number of approaches, which could decrease the uncertainties in the current toxicological database. These approaches include - but are not limited to - toxicological studies as recommended for a Tier 1 approach as described in the EFSA Guidance for the submission of food additives and conducted with an adequately characterised material. Some recommendations for the revision of the EU specifications were proposed by the Panel.
Collapse
|
2
|
Biber J, Murer H, Mohebbi N, Wagner C. Renal Handling of Phosphate and Sulfate. Compr Physiol 2014; 4:771-92. [DOI: 10.1002/cphy.c120031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Lee A, Markovich D. Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter. Pflugers Arch 2004; 448:490-9. [PMID: 15197597 DOI: 10.1007/s00424-004-1251-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Sulphate (SO(4)(2-)) plays an essential role during growth, development, and cellular metabolism. Recently, we have isolated the human renal Na(+)-SO(4)(2-) cotransporter (hNaSi-1) that is implicated in the regulation of serum SO(4)(2-) levels. To gain an insight into hNaSi-1 regulation, our aims were to clone and characterize functionally the hNaSi-1 gene ( NAS1) promoter. We PCR-amplified 3742 bp of the NAS1 5'-flanking region, which is 64% AT-rich and contains numerous putative cis-acting elements. The NAS1 transcription start site was mapped to 25 bp upstream from the translation start site. NAS1 promoter truncations fused to luciferase gene constructs transfected into renal LLC-PK1, MDCK and OK cells allowed us to establish that the first 169 bp of the NAS1 promoter are sufficient for basal transcription. Furthermore, the NAS1 promoter conferred responsiveness to the polycyclic aromatic hydrocarbon 3-methylcholanthrene (3-MC), but not to thyroid hormone (T(3)) or vitamin D [1,25-(OH)(2)D(3)]. Site-directed mutagenesis of the NAS1 promoter identified a functional xenobiotic response element at -2,052, which conferred 3-MC responsiveness. The human NAS1 gene promoter is not responsive to Vitamin D or T(3), unlike the mouse Nas1 promoter with which it shares approximately 40% sequence similarity, but is transactivated by 3-MC, suggesting that the control of renal SO(4)(2-) reabsorption via the regulation of NAS1 transcription may be important for maintaining the sulphation potential for kidney polycyclic aromatic hydrocarbon metabolism.
Collapse
Affiliation(s)
- Aven Lee
- Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, QLD 4072, Brisbane, Australia
| | | |
Collapse
|
4
|
Abstract
All cells require inorganic sulfate for normal function. Sulfate is among the most important macronutrients in cells and is the fourth most abundant anion in human plasma (300 microM). Sulfate is the major sulfur source in many organisms, and because it is a hydrophilic anion that cannot passively cross the lipid bilayer of cell membranes, all cells require a mechanism for sulfate influx and efflux to ensure an optimal supply of sulfate in the body. The class of proteins involved in moving sulfate into or out of cells is called sulfate transporters. To date, numerous sulfate transporters have been identified in tissues and cells from many origins. These include the renal sulfate transporters NaSi-1 and sat-1, the ubiquitously expressed diastrophic dysplasia sulfate transporter DTDST, the intestinal sulfate transporter DRA that is linked to congenital chloride diarrhea, and the erythrocyte anion exchanger AE1. These transporters have only been isolated in the last 10-15 years, and their physiological roles and contributions to body sulfate homeostasis are just now beginning to be determined. This review focuses on the structural and functional properties of mammalian sulfate transporters and highlights some of regulatory mechanisms that control their expression in vivo, under normal physiological and pathophysiological states.
Collapse
Affiliation(s)
- D Markovich
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Abstract
The renal proximal tubular reabsorption of sulfate plays an important role in the maintenance of sulfate homeostasis. Two different renal sulfate transport systems have been identified and characterized at the molecular level in the past few years: NaSi-1 and Sat-1. NaSi-1 belongs to a Na(+)-coupled transporter family comprising the Na(+)-dicarboxylate transporters and the recently characterized SUT1 sulfate transporter. NaSi-1 is a Na(+)-sulfate cotransporter located exclusively in the brush border membrane of renal proximal tubular and ileal cells. Recently, NaSi-1 was shown to be regulated at the protein and mRNA level by a number of factors, such as vitamin D, dietary sulfate, glucocorticoids and thyroid hormones, which are known to modulate sulfate reabsorption in vivo. The second member of renal sulfate transporters, denoted Sat-1, belongs to a family of Na+-independent sulfate transporter family comprising the DTDST, DRA and PDS genes. Sat-1 is a sulfate/bicarbonate-oxalate exchanger located at the basolateral membrane of proximal tubular epithelial cells and canalicular surface of hepatic cells. Contrary to NaSi-1, no physiological factor has been found to date to regulate Sat-1 gene expression. Both NaSi-1 and Sat-1 transporter activities are implicated in pathophysiological states such as heavy metal intoxication and chronic renal failure. This review focuses on recent developments in the molecular characterization of NaSi-1 and Sat-1 and the mechanisms involved in their regulation.
Collapse
Affiliation(s)
- L Beck
- INSERM U 426 and Institut Fédératif de Recherche Cellules Epithéliales, Faculté de Médecine Xavier Bichat, Paris, France
| | | |
Collapse
|
6
|
Abstract
Inorganic sulfate is an important physiological anion that is a required cofactor for sulfate conjugation reactions of both endogenous and exogenous compounds. It is necessary for the detoxification of xenobiotics and endogenous compounds (catecholamines, steroids, bile acids), for the synthesis of structural components of membranes and tissues (sulfated glycosaminoglycans), and for the biologic activity of endogenous compounds (heparin and cholecystokinin). Inorganic sulfate homeostasis is largely maintained by reabsorption in the renal proximal tubule. Sodium-dependent sulfate cotransport in the brush border membrane is of primary importance in the regulation of plasma inorganic sulfate concentrations. Altered renal reabsorption of sulfate has been observed under different physiological (age, pregnancy, low dietary intake), pathological (hypothyroidism, trace metal excess), and pharmacological conditions (treatment with nonsteroidal antiinflammatory agents). The recent identification of the sulfate transporter genes has allowed the investigation of the molecular mechanisms of altered sulfate transport. Although the regulation of sulfate homeostasis is not fully understood, recent investigations have explored the cellular mechanisms of some of these alterations. In this review, the physiological importance of inorganic sulfate, the availability of this anion, and the regulation of sulfate homeostasis are discussed.
Collapse
Affiliation(s)
- M E Morris
- Department of Pharmaceutics, State University of New York at Buffalo, Amherst 14260, USA
| | | |
Collapse
|
7
|
Cole DE, Evrovski J. Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. J Chromatogr A 1997; 789:221-32. [PMID: 9440288 DOI: 10.1016/s0021-9673(97)00821-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For assay of serum sulfate, quantitation by ion conductimetry after separation by anion-exchange chromatography is the method of choice. In comparison to classical barium precipitation methods, chromatographic methods demonstrate increased precision, specificity and sensitivity, and they may be superior to spectrophotometric methods that rely on organic cation precipitation of sulfate. The increased sensitivity and specificity, as well as the inherent capacity of chromatographic methods for simultaneous determination of other anions, has led to its increasing use in the determination of excreted sulfate in clinical profiles of urinary anion composition. Ion chromatography can also be used to quantitate free sulfate in other clinical samples, including cerebrospinal fluid, sweat, saliva, breast milk and human tissues. Finally, ion chromatography shows promise as a more precise and sensitive method for measurement of total acid-labile sulfoesters and thiosulfate.
Collapse
Affiliation(s)
- D E Cole
- Department of Laboratory Medicine, Banting Institute, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
8
|
Fernandes I, Hampson G, Cahours X, Morin P, Coureau C, Couette S, Prie D, Biber J, Murer H, Friedlander G, Silve C. Abnormal sulfate metabolism in vitamin D-deficient rats. J Clin Invest 1997; 100:2196-203. [PMID: 9410896 PMCID: PMC508414 DOI: 10.1172/jci119756] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To explore the possibility that vitamin D status regulates sulfate homeostasis, plasma sulfate levels, renal sulfate excretion, and the expression of the renal Na-SO4 cotransporter were evaluated in vitamin D-deficient (D-D-) rats and in D-D- rats rendered normocalcemic by either vitamin D or calcium/lactose supplementation. D-D- rats had significantly lower plasma sulfate levels than control animals (0.93+/-0.01 and 1.15+/-0.05 mM, respectively, P < 0.05), and fractional sulfate renal excretion was approximately threefold higher comparing D-D- and control rats. A decrease in renal cortical brush border membrane Na-SO4 cotransport activity, associated with a parallel decrease in both renal Na-SO4 cotransport protein and mRNA content (78+/-3 and 73+/-3% decreases, respectively, compared with control values), was also observed in D-D- rats. Vitamin D supplementation resulted in a return to normal of plasma sulfate, fractional sulfate excretion, and both renal Na-SO4 cotransport mRNA and protein. In contrast, renal sulfate excretion and renal Na-SO4 cotransport activity, protein abundance, and mRNA remained decreased in vitamin D-depleted rats fed a diet supplemented with lactose and calcium, despite that these rats were normocalcemic, and had significantly lower levels of parathyroid hormone and 25(OH)- and 1,25(OH)2-vitamin D levels than the vitamin D-supplemented groups. These results demonstrate that vitamin D modulates renal Na-SO4 sulfate cotransport and sulfate homeostasis. The ability of vitamin D status to regulate Na-SO4 cotransport appears to be a direct effect, and is not mediated by the effects of vitamin D on plasma calcium or parathyroid hormone levels. Because sulfate is required for synthesis of essential matrix components, abnormal sulfate metabolism in vitamin D-deficient animals may contribute to producing some of the abnormalities observed in rickets and osteomalacia.
Collapse
Affiliation(s)
- I Fernandes
- Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pena DR, Neiberger RE. Developmental differences in renal sulfate reabsorption: transport kinetics in brush border membrane vesicles. Pediatr Nephrol 1992; 6:532-5. [PMID: 1482640 DOI: 10.1007/bf00866495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Renal tubular reabsorption of inorganic sulfate is greater in younger than older guinea pigs. To determine the mechanism of this difference, we studied the transport of inorganic sulfate in renal brush border membrane vesicles (BBMV) obtained from young (< 25 days) and adult guinea pigs (> 60 days). BBMV were obtained by mechanical and osmotic disruption of dissected renal cortices followed by magnesium precipitation and differential centrifugation. After the membranes were incubated for 10 s in solutions containing inorganic sulfate at several concentrations (0.1-10 mM) and trace amounts of 35sulfate, intravesicular uptake was measured. Based on 35sulfur uptake, reabsorption transport kinetics (Vmax and Km) were estimated. BBMV obtained from young guinea pigs demonstrated higher sodium-sulfate cotransport, Vmax (51.79 +/- 4.34 pmol/mg protein per s) than those obtained from adult animals (Vmax = 34.28 +/- 9.17 pmol/mg per s), P < 0.05. Vmax values are represented as means plus or minus standard deviation. No differences in Km were observed. Our results indicate that age-related differences in renal inorganic sulfate reabsorption are due to a higher Vmax for sodium-sulfate cotransport in the younger animals, suggesting a higher density of sodium-sulfate cotransporters or an increased cotransport turnover rate in this age group.
Collapse
Affiliation(s)
- D R Pena
- Department of Pediatrics, JHMHC, University of Florida College of Medicine, Gainesville 32610-0296
| | | |
Collapse
|