1
|
Zavaglia M, Malherbe C, Schlaadt S, Nachev P, Hilgetag CC. Ground-truth validation of uni- and multivariate lesion inference approaches. Brain Commun 2024; 6:fcae251. [PMID: 39291162 PMCID: PMC11406464 DOI: 10.1093/braincomms/fcae251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/15/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Lesion analysis aims to reveal the causal contributions of brain regions to brain functions. Various strategies have been used for such lesion inferences. These approaches can be broadly categorized as univariate or multivariate methods. Here we analysed data from 581 patients with acute ischaemic injury, parcellated into 41 Brodmann areas, and systematically investigated the inferences made by two univariate and two multivariate lesion analysis methods via ground-truth simulations, in which we defined a priori contributions of brain areas to assumed brain function. Particularly, we analysed single-region models, with only single areas presumed to contribute functionally, and multiple-region models, with two contributing regions that interacted in a synergistic, redundant or mutually inhibitory mode. The functional contributions could vary in proportion to the lesion damage or in a binary way. The analyses showed a considerably better performance of the tested multivariate than univariate methods in terms of accuracy and mis-inference error. Specifically, the univariate approaches of Lesion Symptom Mapping as well as Lesion Symptom Correlation mis-inferred substantial contributions from several areas even in the single-region models, and also after accounting for lesion size. By contrast, the multivariate approaches of Multi-Area Pattern Prediction, which is based on machine learning, and Multi-perturbation Shapley value Analysis, based on coalitional game theory, delivered consistently higher accuracy and specificity. Our findings suggest that the tested multivariate approaches produce largely reliable lesion inferences, without requiring lesion size consideration, while the application of the univariate methods may yield substantial mis-localizations that limit the reliability of functional attributions.
Collapse
Affiliation(s)
- Melissa Zavaglia
- University Medical Center Hamburg-Eppendorf, Institute of Computational Neuroscience, 20246 Hamburg, Germany
- Jacobs University, Focus Area Health, 28759 Bremen, Germany
- Technical University Munich, MIRMI-Munich Institute of Robotics and Machine Intelligence, 80992 Munich, Germany
| | - Caroline Malherbe
- University Medical Center Hamburg-Eppendorf, Institute of Computational Neuroscience, 20246 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sebastian Schlaadt
- University Medical Center Hamburg-Eppendorf, Institute of Computational Neuroscience, 20246 Hamburg, Germany
| | - Parashkev Nachev
- Institute of Neurology, University College London, WC1E 6BT London, United Kingdom
| | - Claus C Hilgetag
- University Medical Center Hamburg-Eppendorf, Institute of Computational Neuroscience, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, MA 02215 Boston, USA
| |
Collapse
|
2
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
3
|
Zhao W, Ye L, Cao L, Song W. A bibliometric review of unilateral neglect: Trends, frontiers, and frameworks. Brain Circ 2024; 10:94-105. [PMID: 39036292 PMCID: PMC11259318 DOI: 10.4103/bc.bc_72_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Owing to the adverse effects of unilateral neglect (UN) on rehabilitation outcomes, fall risk, and activities of daily living, this field has gradually got considerable interest. Notwithstanding, there is presently an absence of efficient portrayals of the entire research field; hence, the motivation behind this study was to dissect and evaluate the literature published in the field of UN following stroke and other nonprogressive brain injuries to identify hotspots and trends for future research. MATERIALS AND METHODS Original articles and reviews related to UN from 1970 to 2022 were retrieved from the Science Citation Index Expanded of the Web of Science Core Collection. CiteSpace, VOSviewer, and Bibliometrix software were used to observe publication fields, countries, and authors. RESULTS A total of 1,202 publications were incorporated, consisting of 92% of original articles, with an overall fluctuating upward trend in the number of publications. Italy, the United Kingdom, and the United States made critical contributions, with Neuropsychologia being the most persuasive academic journal, and Bartolomeo P. ranked first in both the quantity of publications and co-citations. Keywords were divided into four clusters, and burst keyword detection demonstrated that networks and virtual reality might additionally emerge as frontiers of future development and warrant additional attention. CONCLUSIONS UN is an emerging field, and this study presents the first bibliometric analysis to provide a comprehensive overview of research in the field. The insights and guidance garnered from our research on frontiers, trends, and popular topics could prove highly valuable in facilitating the rapid development of this field while informing future research directions.
Collapse
Affiliation(s)
- Wanying Zhao
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linlin Ye
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Cao
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ahsan SA, Dadario NB, Dhaliwal J, Briggs RG, Osipowicz K, Ahsan SM, Chendeb K, Conner AK, O'Neal CM, Glenn CA, Sughrue ME. A parcellation-based connectomic model of hemispatial neglect. J Neuroimaging 2024; 34:267-279. [PMID: 38115162 DOI: 10.1111/jon.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Hemispatial neglect is characterized by a reduced awareness to stimuli on the contralateral side. Current literature suggesting that damage to the right parietal lobe and attention networks may cause hemispatial neglect is conflicting and can be improved by investigating a connectomic model of the "neglect system" and the anatomical specificity of regions involved in it. METHODS A meta-analysis of voxel-based morphometry magnetic resonance imaging (MRI) studies of hemispatial neglect was used to identify regions associated with neglect. We applied parcellation schemes to these regions and performed diffusion spectrum imaging (DSI) tractography to determine their connectivity. By overlaying neglect areas and maps of the attention networks, we studied the relationship between them. RESULTS The meta-analysis generated a list of 13 right hemisphere parcellations. These 13 neglect-related parcellations were predominantly linked by the superior longitudinal fasciculus (SLF) throughout a fronto-parietal-temporal network. We found that the dorsal and ventral attention networks showed partial overlap with the neglect system and included various other higher-order networks. CONCLUSIONS We provide an anatomically specific connectomic model of the neurobehavioral substrates underlying hemispatial neglect. Our model suggests a fronto-parietal-temporal network linked via the SLF supports the functions impaired in neglect and implicates various higher-order networks which are not limited to the attention networks.
Collapse
Affiliation(s)
- Syed A Ahsan
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Karol Osipowicz
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Syed M Ahsan
- Faculty of Medicine, University of New England, Armidale, New South Wales, Australia
| | - Kassem Chendeb
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
6
|
de Pasquale F, Chiacchiaretta P, Pavone L, Sparano A, Capotosto P, Grillea G, Committeri G, Baldassarre A. Brain Topological Reorganization Associated with Visual Neglect After Stroke. Brain Connect 2023; 13:473-486. [PMID: 34269620 PMCID: PMC10618825 DOI: 10.1089/brain.2020.0969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.
Collapse
Affiliation(s)
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- IRCCS NEUROMED, Pozzilli, Italy
| |
Collapse
|
7
|
Ebisu T, Fukunaga M, Murase T, Matsuura T, Tomura N, Miyazaki Y, Osaki S, Okada T, Higuchi T, Umeda M. Functional Connectivity Pattern Using Resting-state fMRI as an Assessment Tool for Spatial Neglect during the Recovery Stage of Stroke: A Pilot Study. Magn Reson Med Sci 2023; 22:313-324. [PMID: 35370261 PMCID: PMC10449554 DOI: 10.2463/mrms.mp.2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/19/2022] [Indexed: 08/26/2023] Open
Abstract
PURPOSE To determine if functional connectivity measured with resting-state functional MRI could be used as a tool to assess unilateral spatial neglect during stroke recovery. METHODS Resting-state functional MRI was performed on 13 stroke patients with lesions in the right cerebral hemisphere and 31 healthy subjects. The functional connectivity score was defined as a correlation of a target region with the right inferior parietal lobule. Spatial neglect was measured with a behavioral inattention test. RESULTS First, the functional connectivity scores between the right inferior parietal lobule and right inferior frontal gyrus, including the opercular and triangular parts, were significantly decreased in stroke patients with unilateral spatial neglect compared with patients without unilateral spatial neglect and were significantly correlated with the behavioral inattention test score. Second, the functional connectivity scores between the bilateral inferior parietal lobules were also significantly decreased in patients with unilateral spatial neglect compared with patients without unilateral spatial neglect and were significantly correlated with the behavioral inattention test score. Third, negative functional connectivity scores between the right inferior parietal lobule and bilateral medial orbitofrontal cortexes, which are related to the default mode network, were detected in patients without unilateral spatial neglect in contrast to a reduction of this negative tendency in patients with unilateral spatial neglect. The functional connectivity scores between these regions were significantly different between patients with and without unilateral spatial neglect and were negatively correlated with the behavioral inattention test score. CONCLUSION Though still in the pilot research stage and using a small number of cases, our findings are consistent with the hypothesis that functional connectivity maps generated with resting-state functional MRI may be used as a tool to evaluate unilateral spatial neglect during stroke recovery.
Collapse
Affiliation(s)
- Toshihiko Ebisu
- Division of Rehabilitation Medicine, Kansai Electric Power Medical Research Institute, Osaka, Osaka, Japan
- Department of Rehabilitation Medicine, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tomokazu Murase
- Medical Education and Research Center, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| | - Toyoshi Matsuura
- Department of Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Naoya Tomura
- Department of Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Yasuhiro Miyazaki
- Division of Rehabilitation Medicine, Kansai Electric Power Medical Research Institute, Osaka, Osaka, Japan
- Department of Rehabilitation Medicine, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Shinpei Osaki
- Division of Rehabilitation Medicine, Kansai Electric Power Medical Research Institute, Osaka, Osaka, Japan
- Department of Rehabilitation Medicine, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Tsutomu Okada
- Department of Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Toshihiro Higuchi
- Department of Neurosurgery, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| | - Masahiro Umeda
- Medical Education and Research Center, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan
| |
Collapse
|
8
|
Havlík M, Hlinka J, Klírová M, Adámek P, Horáček J. Towards causal mechanisms of consciousness through focused transcranial brain stimulation. Neurosci Conscious 2023; 2023:niad008. [PMID: 37089451 PMCID: PMC10120840 DOI: 10.1093/nc/niad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Conscious experience represents one of the most elusive problems of empirical science, namely neuroscience. The main objective of empirical studies of consciousness has been to describe the minimal sets of neural events necessary for a specific neuronal state to become consciously experienced. The current state of the art still does not meet this objective but rather consists of highly speculative theories based on correlates of consciousness and an ever-growing list of knowledge gaps. The current state of the art is defined by the limitations of past stimulation techniques and the emphasis on the observational approach. However, looking at the current stimulation technologies that are becoming more accurate, it is time to consider an alternative approach to studying consciousness, which builds on the methodology of causal explanations via causal alterations. The aim of this methodology is to move beyond the correlates of consciousness and focus directly on the mechanisms of consciousness with the help of the currently focused brain stimulation techniques, such as geodesic transcranial electric neuromodulation. This approach not only overcomes the limitations of the correlational methodology but will also become another firm step in the following science of consciousness.
Collapse
Affiliation(s)
- Marek Havlík
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | - Jaroslav Hlinka
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic
| | - Monika Klírová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Petr Adámek
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Jiří Horáček
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
9
|
Moore MJ, Milosevich E, Mattingley JB, Demeyere N. The neuroanatomy of visuospatial neglect: A systematic review and analysis of lesion-mapping methodology. Neuropsychologia 2023; 180:108470. [PMID: 36621594 DOI: 10.1016/j.neuropsychologia.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
While visuospatial neglect is commonly associated with damage to the right posterior parietal cortex, neglect is an anatomically heterogenous syndrome. This project presents a systematic review of 34 lesion-mapping studies reporting on the anatomical correlates of neglect. Specifically, the reported correlates of egocentric versus allocentric, acute versus chronic, personal versus extra-personal, and left versus right hemisphere neglect are summarised. The quality of each included lesion-mapping analysis was then evaluated to identify methodological factors which may help account for the reported variance in correlates of neglect. Overall, the existing literature strongly suggests that egocentric and allocentric neglect represent anatomically dissociable conditions and that the anatomy of these conditions may not be entirely homologous across hemispheres. Studies which have compared the anatomy of acute versus chronic neglect have found that these conditions are associated with distinct lesion loci, while studies comparing the correlates of peripersonal/extrapersonal neglect are split as to whether these neglect subtypes are anatomically dissociable. The included studies employed a wide range of lesion-mapping analysis techniques, each producing results of varying quality and generalisability. This review concludes that the reported underlying anatomical correlates of heterogeneous visuospatial neglect vary considerably. Future, high quality studies are needed to investigate patterns of disconnection associated with clearly defined forms of visuospatial neglect in large and representative samples.
Collapse
Affiliation(s)
- Margaret Jane Moore
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia.
| | - Elise Milosevich
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia; School of Psychology, The University of Queensland, St Lucia, Australia
| | - Nele Demeyere
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Spadone S, de Pasquale F, Digiovanni A, Grande E, Pavone L, Sensi SL, Committeri G, Baldassarre A. Dynamic brain states in spatial neglect after stroke. Front Syst Neurosci 2023; 17:1163147. [PMID: 37205053 PMCID: PMC10185806 DOI: 10.3389/fnsys.2023.1163147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Previous studies indicated that spatial neglect is characterized by widespread alteration of resting-state functional connectivity and changes in the functional topology of large-scale brain systems. However, whether such network modulations exhibit temporal fluctuations related to spatial neglect is still largely unknown. This study investigated the association between brain states and spatial neglect after the onset of focal brain lesions. A cohort of right-hemisphere stroke patients (n = 20) underwent neuropsychological assessment of neglect as well as structural and resting-state functional MRI sessions within 2 weeks from stroke onset. Brain states were identified using dynamic functional connectivity as estimated by the sliding window approach followed by clustering of seven resting state networks. The networks included visual, dorsal attention, sensorimotor, cingulo-opercular, language, fronto-parietal, and default mode networks. The analyses on the whole cohort of patients, i.e., with and without neglect, identified two distinct brain states characterized by different degrees of brain modularity and system segregation. Compared to non-neglect patients, neglect subjects spent more time in less modular and segregated state characterized by weak intra-network coupling and sparse inter-network interactions. By contrast, patients without neglect dwelt mainly in more modular and segregated states, which displayed robust intra-network connectivity and anti-correlations among task-positive and task-negative systems. Notably, correlational analyses indicated that patients exhibiting more severe neglect spent more time and dwelt more often in the state featuring low brain modularity and system segregation and vice versa. Furthermore, separate analyses on neglect vs. non-neglect patients yielded two distinct brain states for each sub-cohort. A state featuring widespread strong connections within and between networks and low modularity and system segregation was detected only in the neglect group. Such a connectivity profile blurred the distinction among functional systems. Finally, a state exhibiting a clear separation among modules with strong positive intra-network and negative inter-network connectivity was found only in the non-neglect group. Overall, our results indicate that stroke yielding spatial attention deficits affects the time-varying properties of functional interactions among large-scale networks. These findings provide further insights into the pathophysiology of spatial neglect and its treatment.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- *Correspondence: Antonello Baldassarre
| |
Collapse
|
11
|
Xie Y, Guan M, Wang Z, Ma Z, Wang H, Fang P, Yin H. rTMS Induces Brain Functional and Structural Alternations in Schizophrenia Patient With Auditory Verbal Hallucination. Front Neurosci 2021; 15:722894. [PMID: 34539338 PMCID: PMC8441019 DOI: 10.3389/fnins.2021.722894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low-frequency transcranial magnetic stimulation (rTMS) over the left temporoparietal cortex reduces the auditory verbal hallucination (AVH) in schizophrenia. However, the underlying neural basis of the rTMS treatment effect for schizophrenia remains not well understood. This study investigates the rTMS induced brain functional and structural alternations and their associations with clinical as well as neurocognitive profiles in schizophrenia patients with AVH. METHODS Thirty schizophrenia patients with AVH and thirty-three matched healthy controls were enrolled. The patients were administered by 15 days of 1 Hz rTMS delivering to the left temporoparietal junction (TPJ) area. Clinical symptoms and neurocognitive measurements were assessed at pre- and post-rTMS treatment. The functional (amplitude of low-frequency fluctuation, ALFF) and structural (gray matter volume, GMV) alternations were compared, and they were then used to related to the clinical and neurocognitive measurements after rTMS treatment. RESULTS The results showed that the positive symptoms, including AVH, were relieved, and certain neurocognitive measurements, including visual learning (VisLearn) and verbal learning (VerbLearn), were improved after the rTMS treatment in the patient group. Furthermore, the rTMS treatment induced brain functional and structural alternations in patients, such as enhanced ALFF in the left superior frontal gyrus and larger GMV in the right inferior temporal cortex. The baseline ALFF and GMV values in certain brain areas (e.g., the inferior parietal lobule and superior temporal gyrus) could be associated with the clinical symptoms (e.g., positive symptoms) and neurocognitive performances (e.g., VerbLearn and VisLearn) after rTMS treatment in patients. CONCLUSION The low-frequency rTMS over the left TPJ area is an efficacious treatment for schizophrenia patients with AVH and could selectively modulate the neural basis underlying psychiatric symptoms and neurocognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Muzhen Guan
- Department of Mental Health, Xi’an Medical University, Xi’an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China,*Correspondence: Peng Fang,
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China,Hong Yin,
| |
Collapse
|
12
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
13
|
Ionta S. Visual Neuropsychology in Development: Anatomo-Functional Brain Mechanisms of Action/Perception Binding in Health and Disease. Front Hum Neurosci 2021; 15:689912. [PMID: 34135745 PMCID: PMC8203289 DOI: 10.3389/fnhum.2021.689912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Vision is the main entrance for environmental input to the human brain. Even if vision is our most used sensory modality, its importance is not limited to environmental exploration. Rather it has strong links to motor competences, further extending to cognitive and social aspects of human life. These multifaceted relationships are particularly important in developmental age and become dramatically evident in presence of complex deficits originating from visual aberrancies. The present review summarizes the available neuropsychological evidence on the development of visual competences, with a particular focus on the associated visuo-motor integration skills in health and disease. With the aim of supporting future research and interventional settings, the goal of the present review is to constitute a solid base to help the translation of neuropsychological hypotheses into straightforward empirical investigations and rehabilitation/training protocols. This approach will further increase the impact, ameliorate the acceptance, and ease the use and implementation of lab-derived intervention protocols in real-life situations.
Collapse
Affiliation(s)
- Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
14
|
Sani I, Stemmann H, Caron B, Bullock D, Stemmler T, Fahle M, Pestilli F, Freiwald WA. The human endogenous attentional control network includes a ventro-temporal cortical node. Nat Commun 2021; 12:360. [PMID: 33452252 PMCID: PMC7810878 DOI: 10.1038/s41467-020-20583-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.
Collapse
Affiliation(s)
- Ilaria Sani
- grid.134907.80000 0001 2166 1519Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA ,grid.8591.50000 0001 2322 4988Laboratory of Neurology & Imaging of Cognition, University of Geneva, Chemin de mines 9, 1202 Geneva, CH Switzerland
| | - Heiko Stemmann
- grid.7704.40000 0001 2297 4381Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334 Bremen, Germany
| | - Bradley Caron
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA
| | - Daniel Bullock
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA
| | - Torsten Stemmler
- grid.7704.40000 0001 2297 4381Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334 Bremen, Germany
| | - Manfred Fahle
- grid.7704.40000 0001 2297 4381Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334 Bremen, Germany
| | - Franco Pestilli
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA ,grid.89336.370000 0004 1936 9924Department of Psychology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Winrich A. Freiwald
- grid.134907.80000 0001 2166 1519Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA ,Center for Brains, Minds & Machines, Cambridge, MA USA
| |
Collapse
|
15
|
Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment. ENERGIES 2021. [DOI: 10.3390/en14010232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The physiological and cognitive effects of environmental stimuli from the built environment on humans have been studied for more than a century, over short time frames in terms of comfort, and over long-time frames in terms of health and wellbeing. The strong interdependence of objective and subjective factors in these fields of study has traditionally involved the necessity to rely on a number of qualitative sources of information, as self-report variables, which however, raise criticisms concerning their reliability and precision. Recent advancements in sensing technology and data processing methodologies have strongly contributed towards a renewed interest in biometric data as a potential high-precision tool to study the physiological effects of selected stimuli on humans using more objective and real-time measures. Within this context, this review reports on a broader spectrum of available and advanced biosensing techniques used in the fields of building engineering, human physiology, neurology, and psychology. The interaction and interdependence between (i) indoor environmental parameters and (ii) biosignals identifying human physiological response to the environmental stressors are systematically explored. Online databases ScienceDirect, Scopus, MDPI and ResearchGate were scanned to gather all relevant publications in the last 20 years, identifying and listing tools and methods of biometric data collection, assessing the potentials and drawbacks of the most relevant techniques. The review aims to support the introduction of biomedical signals as a tool for understanding the physiological aspects of indoor comfort in the view of achieving an improved balance between human resilience and building resilience, addressing human indoor health as well as energetic and environmental building performance.
Collapse
|
16
|
Bernard F, Lemee JM, Mazerand E, Leiber LM, Menei P, Ter Minassian A. The ventral attention network: the mirror of the language network in the right brain hemisphere. J Anat 2020; 237:632-642. [PMID: 32579719 DOI: 10.1111/joa.13223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022] Open
Abstract
Resting-state functional MRI (RfMRI) analyses have identified two anatomically separable fronto-parietal attention networks in the human brain: a bilateral dorsal attention network and a right-lateralised ventral attention network (VAN). The VAN has been implicated in visuospatial cognition and, thus, potentially in the unilateral spatial neglect associated with right hemisphere lesions. Its parietal, frontal and temporal endpoints are thought to be structurally supported by undefined white matter tracts. We investigated the white matter tract connecting the VAN. We used three approaches to study the structural anatomy of the VAN: (a) independent component analysis on RfMRI (50 subjects), defining the endpoints of the VAN, (b) tractography in the same 50 healthy volunteers, with regions of interest defined by the MNI coordinates of cortical areas involved in the VAN used in a seed-based approach and (c) dissection, by Klingler's method, of 20 right hemispheres, for ex vivo studies of the fibre tracts connecting VAN endpoints. The VAN includes the temporoparietal junction and the ventral frontal cortex. The endpoints of the superior longitudinal fasciculus in its third portion (SLF III) and the arcuate fasciculus (AF) overlap with the VAN endpoints. The SLF III connects the supramarginal gyrus to the ventral portion of the precentral gyrus and the pars opercularis. The AF connects the middle and inferior temporal gyrus and the middle and inferior frontal gyrus. We reconstructed the structural connectivity of the VAN and considered it in the context if the pathophysiology of unilateral neglect and right hemisphere awake brain surgery.
Collapse
Affiliation(s)
- Florian Bernard
- Laboratory of Anatomy, Faculté de Médecine, Angers, France.,Department of Neurosurgery, Angers Teaching Hospital, Angers, France.,UMR 1232 INSERM/CNRS and EA7315 Team, CRCINA, Angers, France
| | - Jean-Michel Lemee
- Department of Neurosurgery, Angers Teaching Hospital, Angers, France.,UMR 1232 INSERM/CNRS and EA7315 Team, CRCINA, Angers, France
| | - Edouard Mazerand
- Department of Neurosurgery, Angers Teaching Hospital, Angers, France
| | | | - Philippe Menei
- Department of Neurosurgery, Angers Teaching Hospital, Angers, France.,UMR 1232 INSERM/CNRS and EA7315 Team, CRCINA, Angers, France
| | - Aram Ter Minassian
- Department of Reanimation, Angers Teaching Hospital, Angers, France.,EA7315 Team, INSERM 1066, Angers, France
| |
Collapse
|
17
|
Zebhauser PT, Vernet M, Unterburger E, Brem AK. Visuospatial Neglect - a Theory-Informed Overview of Current and Emerging Strategies and a Systematic Review on the Therapeutic Use of Non-invasive Brain Stimulation. Neuropsychol Rev 2019; 29:397-420. [PMID: 31748841 PMCID: PMC6892765 DOI: 10.1007/s11065-019-09417-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
Visuospatial neglect constitutes a supramodal cognitive deficit characterized by reduction or loss of spatial awareness for the contralesional space. It occurs in over 40% of right- and 20% of left-brain-lesioned stroke patients with lesions located mostly in parietal, frontal and subcortical brain areas. Visuospatial neglect is a multifaceted syndrome - symptoms can be divided into sensory, motor and representational neglect - and therefore requires an individually adapted diagnostic and therapeutic approach. Several models try to explain the origins of visuospatial neglect, of which the "interhemispheric rivalry model" is strongly supported by animal and human research. This model proposes that allocation of spatial attention is balanced by transcallosal inhibition and both hemispheres compete to direct attention to the contralateral hemi-space. Accordingly, a brain lesion causes an interhemispheric imbalance, which may be re-installed by activation of lesioned, or deactivation of unlesioned (over-activated) brain areas through noninvasive brain stimulation. Research in larger patient samples is needed to confirm whether noninvasive brain stimulation can improve long-term outcomes and whether these also affect activities of daily living and discharge destination.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität, Munich, Germany
| | - Marine Vernet
- Section on Neurocircuitry, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| | - Evelyn Unterburger
- Division of Neuropsychology, Universitätsklinik Zürich USZ, Frauenklinikstrasse 26, Zurich, Switzerland
| | - Anna-Katharine Brem
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Abstract
In this article, we challenge the usefulness of "attention" as a unitary construct and/or neural system. We point out that the concept has too many meanings to justify a single term, and that "attention" is used to refer to both the explanandum (the set of phenomena in need of explanation) and the explanans (the set of processes doing the explaining). To illustrate these points, we focus our discussion on visual selective attention. It is argued that selectivity in processing has emerged through evolution as a design feature of a complex multi-channel sensorimotor system, which generates selective phenomena of "attention" as one of many by-products. Instead of the traditional analytic approach to attention, we suggest a synthetic approach that starts with well-understood mechanisms that do not need to be dedicated to attention, and yet account for the selectivity phenomena under investigation. We conclude that what would serve scientific progress best would be to drop the term "attention" as a label for a specific functional or neural system and instead focus on behaviorally relevant selection processes and the many systems that implement them.
Collapse
Affiliation(s)
- Bernhard Hommel
- Institute of Psychology, Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Craig S Chapman
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Cisek
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Heather F Neyedli
- School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Timothy N Welsh
- Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada.
| |
Collapse
|
19
|
Kang K, Thaut MH. Musical Neglect Training for Chronic Persistent Unilateral Visual Neglect Post-stroke. Front Neurol 2019; 10:474. [PMID: 31139135 PMCID: PMC6517600 DOI: 10.3389/fneur.2019.00474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Unilateral visual neglect from right hemispheric stroke is a condition that reduces a person's ability to attend to and process stimuli in their left visual field, resulting in neglect and inattention to the left side of their environment. This perceptual processing deficit can negatively affect individuals' daily living which in turn reduces functional independence. Musical Neglect Training (MNT) has been developed based on previous research evidence to improve left visual field processing. Two individuals with persistent chronic unilateral visual neglect participated in this study. Participants underwent six individual MNT sessions. Active MNT was used involving exercises on musical equipment (tone bars) to complete musical patterns emphasizing attentional focus toward the neglect visual field. Two standardized assessments (Albert's and Line Bisection Test) were used. The assessments were administered immediately before and after each of the 6 MNT sessions to assess the within-session effect of MNT. Follow-up testing was done 1 week after their 6th session to examine the longer-lasting effects of MNT. Paired t-test and Wilcoxon signed rank test were used to examine results. Both participants showed significant improvement pre vs. posttest on the Albert's Test but not on the Line Bisection Test. The current study presents the positive potential of MNT for patients with chronic persistent visual neglect. In particular, effects were shown for exploratory visuomotor neglect (Albert's test), but not for egocentric perceptive neglect (Line Bisection Test), and substantiated for within-session effects only. The predictable auditory stimulus patterns associated with object sequences (tone bars) to provide feedback, direct spatial attention and orientation, and initiate intention for movement into the neglect field may offer specific advantages to reduce persistent perceptual attention deficits.
Collapse
Affiliation(s)
- Kyurim Kang
- Music and Health Science Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada.,Collaborative Programs in Neuroscience (CPIN), University of Toronto, Toronto, ON, Canada
| | - Michael H Thaut
- Music and Health Science Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada.,Collaborative Programs in Neuroscience (CPIN), University of Toronto, Toronto, ON, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Lateralisation of the white matter microstructure associated with the hemispheric spatial attention dominance. PLoS One 2019; 14:e0216032. [PMID: 31026280 PMCID: PMC6485922 DOI: 10.1371/journal.pone.0216032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/13/2019] [Indexed: 11/19/2022] Open
Abstract
Objectives Healthy people have a slight leftward bias of spatial attention as measured on the Landmark task. Former studies indicated that lateralisation of brain activation contributes to this attentional bias. In this study we hypothesised that if the spatial bias was consistent over several measurements there would be structural background of it. Methods Reproducibility of the spatial bias of visuo-spatial attention was measured in twenty healthy subject in a Landmark task over three consecutive days. In order to evaluate the correlation between the spatial attentional bias and the white matter microstructure high angular resolution diffusion MRI was acquired for each subjects. The Track Based Spatial Statistics method was used to measure the hemispheric differences of the white matter microstructure. Probabilistic tractography was used to reveal the connection of the identified regions. Results The analysis showed correlation between the behavioural scores and the lateralisation of the white matter microstructure in the parietal white matter (p<0.05, corrected for multiple correlations). Higher FA values on the left are associated to rightward bias. The parietal cluster showed connectivity along the superior longitudinal fascicle on one end to posterior parietal cortex and anteriorly to the putative frontal eye field. From the frontal eye field some of the fibres run towards the nodes of the dorsal attention network to the intraparietal suclus, while some of the fibres travelled toward to ventral attention network to the temporo-parietal junction. Conclusions These results indicate that the structural integrity dorsal fronto-parietal network and the connection between the dorsal and ventral attention networks are responsible for the attentional bias in normal healthy controls.
Collapse
|
21
|
Cogné M, Guillaud E, Guillot L, Klinger E, Glize B, Jacquin-Courtois S, Cazalets JR, Joseph PA. Association between prism adaptation and auditory cues on spatial navigation in individuals with unilateral neglect. Ann Phys Rehabil Med 2019; 63:12-20. [PMID: 31009802 DOI: 10.1016/j.rehab.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Unilateral neglect is common among right-hemispheric stroke individuals and also concerns the auditory modality. Prism adaptation can improve auditory extinction during a dichotic listening task, but its effect during an ecological task has not been studied. OBJECTIVE The main objective was to evaluate whether lateralized cueing before and after prism adaptation improved virtual spatial navigation of stroke individuals with visual and auditory unilateral neglect. Secondary objectives were to assess spatial memory and obtain a better understanding of the mechanism of the cueing treatment by using an eye-tracker. METHODS We included 22 stroke individuals with left visual and auditory neglect, 14 individuals without neglect, and 12 healthy controls. After a familiarization task, participants underwent 3 evaluation sessions. Participants were first passively shown a path that they had then to actively reproduce by using a joystick. A path with lateralized beeping sounds indicating direction and a path without any sounds were followed in a randomized order. After prism adaptation, the participants followed a third path with lateralized beeping sounds. The time of navigation and number of trajectory mistakes were recorded. After navigation, spatial memory was assessed. Additionally, an eye-tracker was used during the navigation period. RESULTS The navigational performance of participants with neglect was significantly better with than without auditory cues, especially after prism adaptation. With auditory cues, participants without neglect reached the navigational performance of healthy controls. The spatial memory of individuals with neglect was significantly lower with auditory cues. Eye-tracking analyses showed that participants with neglect made more saccades and looked longer at the right-square angles in the absence of auditory cues. CONCLUSIONS This study demonstrates the positive effect of auditory cues in virtual spatial navigation of individuals with visual and auditory neglect and the potentiation of the help of cues after prism adaptation.
Collapse
Affiliation(s)
- Mélanie Cogné
- Rehabilitation unit, University hospital of Bordeaux, 33076 Bordeaux, France; EA4136, Bordeaux University, 33076 Bordeaux, France; Service de médecine physique et de réadaptation, rehabilitation unit, university hospital of Rennes, 35000 Rennes, France.
| | | | | | - Evelyne Klinger
- ESIEA, Digital Interactions Health and Disability Lab, 53000 Laval, France; French Institute for Research on Handicap (IFRH), 75651 Paris , France.
| | - Bertrand Glize
- Rehabilitation unit, University hospital of Bordeaux, 33076 Bordeaux, France; EA4136, Bordeaux University, 33076 Bordeaux, France.
| | - Sophie Jacquin-Courtois
- Inserm UMR-S 864, Espace et action, rehabilitation medicine unit, university hospital of Lyon, 16, avenue Lépine, 69676 Bron, France.
| | | | - Pierre-Alain Joseph
- Rehabilitation unit, University hospital of Bordeaux, 33076 Bordeaux, France; EA4136, Bordeaux University, 33076 Bordeaux, France; French Institute for Research on Handicap (IFRH), 75651 Paris , France.
| |
Collapse
|
22
|
Bogadhi AR, Bollimunta A, Leopold DA, Krauzlis RJ. Spatial Attention Deficits Are Causally Linked to an Area in Macaque Temporal Cortex. Curr Biol 2019; 29:726-736.e4. [PMID: 30773369 DOI: 10.1016/j.cub.2019.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 11/28/2022]
Abstract
Spatial neglect is a common clinical syndrome involving disruption of the brain's attention-related circuitry, including the dorsocaudal temporal cortex. In macaques, the attention deficits associated with neglect can be readily modeled, but the absence of evidence for temporal cortex involvement has suggested a fundamental difference from humans. To map the neurological expression of neglect-like attention deficits in macaques, we measured attention-related fMRI activity across the cerebral cortex during experimental induction of neglect through reversible inactivation of the superior colliculus and frontal eye fields. During inactivation, monkeys exhibited hallmark attentional deficits of neglect in tasks using either motion or non-motion stimuli. The behavioral deficits were accompanied by marked reductions in fMRI attentional modulation that were strongest in a small region on the floor of the superior temporal sulcus; smaller reductions were also found in frontal eye fields and dorsal parietal cortex. Notably, direct inactivation of the mid-superior temporal sulcus (STS) cortical region identified by fMRI caused similar neglect-like spatial attention deficits. These results identify a putative macaque homolog to temporal cortex structures known to play a central role in human neglect.
Collapse
Affiliation(s)
- Amarender R Bogadhi
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Walle KM, Nordvik JE, Becker F, Espeseth T, Sneve MH, Laeng B. Unilateral neglect post stroke: Eye movement frequencies indicate directional hypokinesia while fixation distributions suggest compensational mechanism. Brain Behav 2019; 9:e01170. [PMID: 30548825 PMCID: PMC6346647 DOI: 10.1002/brb3.1170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Eye movements and spatial attention are closely related, and eye-tracking can provide valuable information in research on visual attention. We investigated the pathology of overt attention in right hemisphere (RH) stroke patients differing in their severity of neglect symptoms by using eye-tracking during a dynamic attention task. METHODS Eye movements were recorded in 26 RH stroke patients (13 with and 13 without unilateral spatial neglect, and a matched group of 26 healthy controls during a Multiple Object Tracking task. We assessed the frequency and spatial distributions of fixations, as well as frequencies of eye movements to the left and to the right side of visual space so as to investigate individuals' efficiency of visual processing, distribution of attentional processing resources, and oculomotoric orienting mechanisms. RESULTS Both patient groups showed increased fixation frequencies compared to controls. A spatial bias was found in neglect patients' fixation distribution, depending on neglect severity (indexed by scores on the Behavioral Inattention Test). Patients with more severe neglect had more fixations within the right field, while patients with less severe neglect had more fixations within their left field. Eye movement frequencies were dependent on direction in the neglect patient group, as they made more eye movements toward the right than toward the left. CONCLUSION The patient groups' higher fixation rates suggest that patients are generally less efficient in visual processing. The spatial bias in fixation distribution, dependent on neglect severity, suggested that patients with less severe neglect were able to use compensational mechanisms in their contralesional space. The observed relation between eye movement rates and directions observed in neglect patients provides a measure of the degree of difficulty these patients may encounter during dynamic situations in daily life and supports the idea that directional oculomotor hypokinesia may be a relevant component in this syndrome.
Collapse
Affiliation(s)
- Kjersti M Walle
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Jan E Nordvik
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Frank Becker
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Markus H Sneve
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Foulon C, Cerliani L, Kinkingnéhun S, Levy R, Rosso C, Urbanski M, Volle E, Thiebaut de Schotten M. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience 2018; 7:1-17. [PMID: 29432527 PMCID: PMC5863218 DOI: 10.1093/gigascience/giy004] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023] Open
Abstract
Background Patients with brain lesions provide a unique opportunity to understand the functioning of the human mind. However, even when focal, brain lesions have local and remote effects that impact functionally and structurally connected circuits. Similarly, function emerges from the interaction between brain areas rather than their sole activity. For instance, category fluency requires the associations between executive, semantic, and language production functions. Findings Here, we provide, for the first time, a set of complementary solutions for measuring the impact of a given lesion on the neuronal circuits. Our methods, which were applied to 37 patients with a focal frontal brain lesions, revealed a large set of directly and indirectly disconnected brain regions that had significantly impacted category fluency performance. The directly disconnected regions corresponded to areas that are classically considered as functionally engaged in verbal fluency and categorization tasks. These regions were also organized into larger directly and indirectly disconnected functional networks, including the left ventral fronto-parietal network, whose cortical thickness correlated with performance on category fluency. Conclusions The combination of structural and functional connectivity together with cortical thickness estimates reveal the remote effects of brain lesions, provide for the identification of the affected networks, and strengthen our understanding of their relationship with cognitive and behavioral measures. The methods presented are available and freely accessible in the BCBtoolkit as supplementary software [1].
Collapse
Affiliation(s)
- Chris Foulon
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Leonardo Cerliani
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Serge Kinkingnéhun
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France
| | - Richard Levy
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Charlotte Rosso
- Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Abnormal Movements and Basal Ganglia team, Inserm U 1127, CNRS UMR 7225, Sorbonne Universities, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,APHP, Urgences Cérébro-Vasculaires, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Marika Urbanski
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Medicine and Rehabilitation Department, Hôpitaux de Saint-Maurice, Saint-Maurice, France
| | - Emmanuelle Volle
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
25
|
Neural correlates of visuospatial bias in patients with left hemisphere stroke: a causal functional contribution analysis based on game theory. Neuropsychologia 2018; 115:142-153. [DOI: 10.1016/j.neuropsychologia.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
|
26
|
Delazer M, Sojer M, Ellmerer P, Boehme C, Benke T. Eye-Tracking Provides a Sensitive Measure of Exploration Deficits After Acute Right MCA Stroke. Front Neurol 2018; 9:359. [PMID: 29942277 PMCID: PMC6004522 DOI: 10.3389/fneur.2018.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The eye-tracking study aimed at assessing spatial biases in visual exploration in patients after acute right MCA (middle cerebral artery) stroke. Patients affected by unilateral neglect show less functional recovery and experience severe difficulties in everyday life. Thus, accurate diagnosis is essential, and specific treatment is required. Early assessment is of high importance as rehabilitative interventions are more effective when applied soon after stroke. Previous research has shown that deficits may be overlooked when classical paper-and-pencil tasks are used for diagnosis. Conversely, eye-tracking allows direct monitoring of visual exploration patterns. We hypothesized that the analysis of eye-tracking provides more sensitive measures for spatial exploration deficits after right middle cerebral artery stroke. Twenty-two patients with right MCA stroke (median 5 days after stroke) and 28 healthy controls were included. Lesions were confirmed by MRI/CCT. Groups performed comparably in the Mini-Mental State Examination (patients and controls median 29) and in a screening of executive functions. Eleven patients scored at ceiling in neglect screening tasks, 11 showed minimal to severe signs of unilateral visual neglect. An overlap plot based on MRI and CCT imaging showed lesions in the temporo-parieto-frontal cortex, basal ganglia, and adjacent white matter tracts. Visual exploration was evaluated in two eye-tracking tasks, one assessing free visual exploration of photographs, the other visual search using symbols and letters. An index of fixation asymmetries proved to be a sensitive measure of spatial exploration deficits. Both patient groups showed a marked exploration bias to the right when looking at complex photographs. A single case analysis confirmed that also most of those patients who showed no neglect in screening tasks performed outside the range of controls in free exploration. The analysis of patients' scoring at ceiling in neglect screening tasks is of special interest, as possible deficits may be overlooked and thus remain untreated. Our findings are in line with other studies suggesting considerable limitations of laboratory screening procedures to fully appreciate the occurrence of neglect symptoms. Future investigations are needed to explore the predictive value of the eye-tracking index and its validity in everyday situations.
Collapse
Affiliation(s)
- Margarete Delazer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Martin Sojer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Philipp Ellmerer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Boehme
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Benke
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal injury. Cortex 2018; 107:229-237. [PMID: 29357980 PMCID: PMC6028302 DOI: 10.1016/j.cortex.2017.12.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Abstract
Traditional neuropsychological approaches emphasize the specificity of behavioral deficits and the modular organization of the brain. At the population level, however, there is emerging evidence that deficits are correlated resulting in a low dimensional structure of post-stroke neurological impairments. Here we consider the implications of low dimensionality for the three-way mapping between structural damage, altered physiology, and behavioral deficits. Understanding this mapping will be aided by large-sample studies that apply multivariate models and focus on explained percentage of variance, as opposed to univariate lesion-symptom techniques that report statistical significance. The low dimensionality of behavioral deficits following stroke is paralleled by widespread, yet relatively consistent, changes in functional connectivity (FC), including a reduction in modularity. Both are related to the structural damage to white matter and subcortical grey commonly produced by stroke. We suggest that large-scale physiological abnormalities following a stroke reduce the variety of neural states visited during task processing and at rest, resulting in a limited repertoire of behavioral states.
Collapse
|
28
|
Abstract
Unilateral spatial neglect is a disabling neurologic deficit, most frequent and severe after right-hemispheric lesions. In most patients neglect involves the left side of space, contralateral to a right-hemispheric lesion. About 50% of stroke patients exhibit neglect in the acute phase. Patients fail to orient, respond to, and report sensory events occurring in the contralateral sides of space and of the body, to explore these portions of space through movements by action effectors (eye, limbs), and to move the contralateral limbs. Neglect is a multicomponent higher-level disorder of spatial awareness, cognition, and attention. Spatial neglect may occur independently of elementary sensory and motor neurologic deficits, but it can mimic and make them more severe. Diagnostic tests include: motor exploratory target cancellation; setting the midpoint of a horizontal line (bisection), that requires the estimation of lateral extent; drawing by copy and from memory; reading, assessing neglect dyslexia; and exploring the side of the body contralateral to the lesion. Activities of daily living scales are also used. Patients are typically not aware of neglect, although they may exhibit varying degrees of awareness toward different components of the deficit. The neural correlates include lesions to the inferior parietal lobule of the posterior parietal cortex, which was long considered the unique neuropathologic correlate of neglect, to the premotor and to the dorsolateral prefrontal cortices, to the posterior superior temporal gyrus, at the temporoparietal junction, to subcortical gray nuclei (thalamus, basal ganglia), and to parietofrontal white-matter fiber tracts, such as the superior longitudinal fascicle. Damage to the inferior parietal lobule of the posterior parietal cortex is specifically associated with the mainly egocentric, perceptual, and exploratory extrapersonal, and with the personal, bodily components of neglect. Productive manifestations, such as perseveration, are not a correlate of posterior parietal cortex damage.
Collapse
|
29
|
Abstract
The vestibular cortex differs in various ways from other sensory cortices. It consists of a network of several distinct and separate temporoparietal areas. Its core region, the parietoinsular vestibular cortex (PIVC), is located in the posterior insula and retroinsular region and includes the parietal operculum. The entire network is multisensory (in particular, vestibular, visual, and somatosensory). The peripheral and central vestibular systems are bilaterally organized; there are various pontomesencephalic brainstem crossings and at least two transcallosal connections of both hemispheres, between the PIVC and the motion-sensitive visual cortex areas, which also mediate vestibular input. Structural and functional vestibular dominance characterizes the right hemisphere in right-handers and the left hemisphere in left-handers. This explains why right-hemispheric lesions in right-handers more often generally cause hemispatial neglect and the pusher syndrome, both of which involve vestibular function. Vestibular input also contributes to cognition and may determine individual lateralization of brain functions such as handedness. Bilateral organization is a major key to understanding cortical functions and disorders, for example, the visual-vestibular interaction that occurs in spatial orientation. Although the vestibular cortex is represented in both hemispheres, there is only one global percept of body position and motion. The chiefly vestibular aspects of the multiple functions and disorders of the parietal lobe dealt with in this chapter cannot be strictly separated from various multisensory vestibular functions within the entire brain.
Collapse
Affiliation(s)
- Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Vertigo and Balance Disorders-IFB, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders-IFB, Ludwig-Maximilians-University, Munich, Germany; Clinical Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
30
|
Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: Implications for understanding neglect. Cortex 2017; 97:327-338. [DOI: 10.1016/j.cortex.2016.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/03/2016] [Accepted: 12/04/2016] [Indexed: 01/17/2023]
|
31
|
Herbet G, Yordanova YN, Duffau H. Left Spatial Neglect Evoked by Electrostimulation of the Right Inferior Fronto-occipital Fasciculus. Brain Topogr 2017; 30:747-756. [DOI: 10.1007/s10548-017-0574-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
|
32
|
Arshad Q. Dynamic interhemispheric competition and vestibulo-cortical control in humans; A theoretical proposition. Neuroscience 2017; 353:26-41. [DOI: 10.1016/j.neuroscience.2017.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
33
|
Brandt T, Dieterich M. The dizzy patient: don't forget disorders of the central vestibular system. Nat Rev Neurol 2017; 13:352-362. [DOI: 10.1038/nrneurol.2017.58] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Structural connectivity in spatial attention network: reconstruction from left hemispatial neglect. Brain Imaging Behav 2017; 12:309-323. [DOI: 10.1007/s11682-017-9698-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Low E, Laycock R, Crewther S. Neural Markers Associated with the Temporal Deployment of Attention: A Systematic Review of Non-motor Psychophysical Measures Post-stroke. Front Hum Neurosci 2017; 11:31. [PMID: 28239343 PMCID: PMC5301011 DOI: 10.3389/fnhum.2017.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
|
36
|
Carter AR, McAvoy MP, Siegel JS, Hong X, Astafiev SV, Rengachary J, Zinn K, Metcalf NV, Shulman GL, Corbetta M. Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke. Cortex 2016; 88:81-97. [PMID: 28081452 DOI: 10.1016/j.cortex.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/07/2016] [Accepted: 12/08/2016] [Indexed: 02/05/2023]
Abstract
Visuospatial attention depends on the integration of multiple processes, and people with right hemisphere lesions after a stroke may exhibit severe or no visuospatial deficits. The anatomy of core components of visuospatial attention is an area of intense interest. Here we examine the relationship between the disruption of core components of attention and lesion distribution in a heterogeneous group (N = 70) of patients with right hemisphere strokes regardless of the presence of clinical neglect. Deficits of lateralized spatial orienting, measured as the difference in reaction times for responding to visual targets in the contralesional or ipsilesional visual field, and deficits in re-orienting attention, as measured by the difference in reaction times for invalidly versus validly cued targets, were measured using a computerized spatial orienting task. Both measures were related through logistic regression and a novel ridge regression method to anatomical damage measured with magnetic resonance imaging. While many regions were common to both deficit maps, a deficit in lateralized spatial orienting was more associated with lesions in the white matter underlying the posterior parietal cortex, and middle and inferior frontal gyri. A deficit in re-orienting of attention toward unattended locations was associated with lesions in the white matter of the posterior parietal cortex, insular cortex and less so with white matter involvement of the anterior frontal lobe. An hodological analysis also supports this partial dissociation between the white matter tracts that are damaged in lateralized spatial biases versus impaired re-orienting. Our results underscore that the integrity of fronto-parietal white matter tracts is crucial for visuospatial attention and that different attention components are mediated by partially distinct neuronal substrates.
Collapse
Affiliation(s)
- Alex R Carter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Mark P McAvoy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Siegel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Hong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Serguei V Astafiev
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Rengachary
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristi Zinn
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gordon L Shulman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maurizio Corbetta
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
37
|
Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. Neuroimage 2016; 146:341-354. [PMID: 27840240 DOI: 10.1016/j.neuroimage.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
In the neglect syndrome, the perceptual deficit for contra-lesional hemi-space is increasingly viewed as a dysfunction of fronto-parietal cortical networks, the disruption of which has been described in neuroanatomical and hemodynamic studies. Here we exploit the superior temporal resolution of electroencephalography (EEG) to study dynamic transient connectivity of fronto-parietal circuits at early stages of visual perception in neglect. As reflected by inter-regional phase synchronization in a full-field attention task, two functionally distinct fronto-parietal networks, in beta (15-25Hz) and theta (4-8Hz) frequency bands, were related to stimulus discrimination within the first 200 ms of visual processing. Neglect pathology was specifically associated with significant suppressions of both beta and theta networks engaging right parietal regions. These connectivity abnormalities occurred in a pattern that was distinctly different from what was observed in right-hemisphere lesion patients without neglect. Also, both beta and theta abnormalities contributed additively to visual awareness decrease, quantified in the Behavioural Inattention Test. These results provide evidence for the impairment of fast dynamic fronto-parietal interactions during early stages of visual processing in neglect pathology. Also, they reveal that different modes of fronto-parietal dysfunction contribute independently to deficits in visual awareness at the behavioural level.
Collapse
|
38
|
Abstract
The purpose of this perspective is twofold: 1) to alert and inform the neurospychology and neurology communities on how animal models can improve our understanding of spatial neglect in humans, and 2) to serve as a guide to rehabilitation strategies. Spatial neglect is a neurological syndrome that is inextricably linked to the ability to overtly or covertly reorient attention to new loci. Literature describing variants of neglect leads to the perception of lesion-induced neglect as a uniquely human syndrome for which there are limited treatment options. To the contrary, neglect has been reversed in laboratory animals, and results show that adequate neural representations and motor mechanisms for reversal are present despite damaged or deactivated cerebral cortex. These results and conclusions provoke thought on strategies that can be employed on humans to cancel neglect, and they suggest that long-term amelioration of neglect can be induced by training of specific bypass circuits.
Collapse
Affiliation(s)
- Bertram R Payne
- Cerebral Dynamics, Rehabilitation and Plasticity, Department of Anatomy and Neurobiology, Boston University School of Medicine, MA 02118, USA.
| | | |
Collapse
|
39
|
Baldassarre A, Ramsey L, Rengachary J, Zinn K, Siegel JS, Metcalf NV, Strube MJ, Snyder AZ, Corbetta M, Shulman GL. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke. Brain 2016; 139:2024-38. [PMID: 27225794 DOI: 10.1093/brain/aww107] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1-2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits.
Collapse
Affiliation(s)
- Antonello Baldassarre
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA 2 Department of Neuroscience, Imaging, and Clinical Sciences, University of Chieti, via dei Vestini 33, 66013, Chieti, Italy 3 Institute for Advanced Biomedical Technologies, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy
| | - Lenny Ramsey
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Jennifer Rengachary
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Kristi Zinn
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Joshua S Siegel
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Nicholas V Metcalf
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Michael J Strube
- 4 Department of Psychology, Washington University in St. Louis, 1 Brooking Dr., St Louis, MO, USA
| | - Abraham Z Snyder
- 5 Department of Radiology, Washington University in Saint Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA 5 Department of Radiology, Washington University in Saint Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA 6 Department of Neuroscience, University of Padua, Via Giustiniani, 5 35128, Padova, Italy 7 Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA 8 Department of Bioengineering, Washington University in St. Louis, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
40
|
Arshad Q, Nigmatullina Y, Nigmatullin R, Asavarut P, Goga U, Khan S, Sander K, Siddiqui S, Roberts RE, Cohen Kadosh R, Bronstein AM, Malhotra PA. Bidirectional Modulation of Numerical Magnitude. Cereb Cortex 2016; 26:2311-2324. [PMID: 26879093 PMCID: PMC4830300 DOI: 10.1093/cercor/bhv344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes.
Collapse
Affiliation(s)
- Qadeer Arshad
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | | | - Ramil Nigmatullin
- Institut für Quantenphysik and Centre for Integrated Quantum Science and Technology (IQST), Albert Einstein Allell, Universität Ulm, Ulm D-89069, Germany
| | - Paladd Asavarut
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Usman Goga
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Sarah Khan
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Kaija Sander
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Shuaib Siddiqui
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - R E Roberts
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Oxford University, Oxford 0X1 3UD, UK
| | | | - Paresh A Malhotra
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| |
Collapse
|
41
|
Vaessen MJ, Saj A, Lovblad KO, Gschwind M, Vuilleumier P. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 2016; 77:54-68. [PMID: 26922504 DOI: 10.1016/j.cortex.2015.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/03/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
Spatial neglect is a neuropsychological syndrome in which patients fail to perceive and orient to stimuli located in the space contralateral to the lesioned hemisphere. It is characterized by a wide heterogeneity in clinical symptoms which can be grouped into distinct behavioral components correlating with different lesion sites. Moreover, damage to white-matter (WM) fiber tracts has been suggested to disconnect brain networks that mediate different functions associated with spatial cognition and attention. However, it remains unclear what WM pathways are associated with functionally dissociable neglect components. In this study we examined nine patients with a focal right hemisphere stroke using a series of neuropsychological tests and diffusion tensor imaging (DTI) in order to disentangle the role of specific WM pathways in neglect symptoms. First, following previous work, the behavioral test scores of patients were factorized into three independent components reflecting perceptual, exploratory, and object-centered deficits in spatial awareness. We then examined the structural neural substrates of these components by correlating indices of WM integrity (fractional anisotropy) with the severity of deficits along each profile. Several locations in the right parietal and frontal WM correlated with neuropsychological scores. Fiber tracts projecting from these locations indicated that posterior parts of the superior longitudinal fasciculus (SLF), as well as nearby callosal fibers connecting ipsilateral and contralateral parietal areas, were associated with perceptual spatial deficits, whereas more anterior parts of SLF and inferior fronto-occipital fasciculus (IFOF) were predominantly associated with object-centered deficits. In addition, connections between frontal areas and superior colliculus were found to be associated with the exploratory deficits. Our results provide novel support to the view that neglect may result from disconnection lesions in distributed brain networks, but also extend these notions by highlighting the role of dissociable circuits in different functional components of the neglect syndrome. However these preliminary findings require replication with larger samples of patients.
Collapse
Affiliation(s)
- Maarten J Vaessen
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland.
| | - Arnaud Saj
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Karl-Olof Lovblad
- Department of Radiology, University Hospital of Geneva, Geneva, Switzerland
| | - Markus Gschwind
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Cooper SA, O'Sullivan M. Here, there and everywhere: higher visual function and the dorsal visual stream. Pract Neurol 2016; 16:176-83. [PMID: 26786007 DOI: 10.1136/practneurol-2015-001168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
Abstract
The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered.
Collapse
Affiliation(s)
- Sarah Anne Cooper
- Department of Neurology, Hurstwood Park Neurological Centre, Princess Royal Hospital, Haywards Heath, UK
| | - Michael O'Sullivan
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
43
|
Cazzoli D, Rosenthal CR, Kennard C, Zito GA, Hopfner S, Müri RM, Nyffeler T. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load. Cortex 2015; 73:317-29. [PMID: 26547867 DOI: 10.1016/j.cortex.2015.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
Abstract
Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.
Collapse
Affiliation(s)
- Dario Cazzoli
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Clive R Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giuseppe A Zito
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Simone Hopfner
- Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - René M Müri
- Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland; Division of Cognitive and Restorative Neurology, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Center for Cognition, Learning, and Memory, University of Bern, Bern, Switzerland
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland; Center of Neurology and Neurorehabilitation, Luzerner Kantonsspital, Luzern, Switzerland.
| |
Collapse
|
44
|
Masson N, Pesenti M, Dormal V. Duration and numerical estimation in right brain-damaged patients with and without neglect: Lack of support for a mental time line. Br J Psychol 2015; 107:467-83. [DOI: 10.1111/bjop.12155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 06/29/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Masson
- Psychological Sciences Research Institute and Institute of Neuroscience; Catholic University of Louvain; Louvain-la-Neuve Belgium
| | - Mauro Pesenti
- Psychological Sciences Research Institute and Institute of Neuroscience; Catholic University of Louvain; Louvain-la-Neuve Belgium
| | - Valérie Dormal
- Psychological Sciences Research Institute and Institute of Neuroscience; Catholic University of Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
45
|
The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration. Neuropsychologia 2015; 74:37-41. [DOI: 10.1016/j.neuropsychologia.2015.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
|
46
|
|
47
|
Oka N, Yoshino K, Yamamoto K, Takahashi H, Li S, Sugimachi T, Nakano K, Suda Y, Kato T. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving. PLoS One 2015; 10:e0127594. [PMID: 25993263 PMCID: PMC4438050 DOI: 10.1371/journal.pone.0127594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). RESEARCH DESIGN AND METHODS The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. RESULTS Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. CONCLUSIONS Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.
Collapse
Affiliation(s)
- Noriyuki Oka
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| | - Kayoko Yoshino
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| | - Kouji Yamamoto
- Department of Environment/Engineering, Tokyo Branch, Central Nippon Expressway Co., Ltd, Tokyo, Japan
| | - Hideki Takahashi
- Department of Environment/Engineering, Central Nippon Expressway Co., Ltd., Nagoya, Japan
| | - Shuguang Li
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | | | - Kimihiko Nakano
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | - Yoshihiro Suda
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | - Toshinori Kato
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| |
Collapse
|
48
|
Dieterich M, Brandt T. The bilateral central vestibular system: its pathways, functions, and disorders. Ann N Y Acad Sci 2015; 1343:10-26. [DOI: 10.1111/nyas.12585] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marianne Dieterich
- Department of Neurology; Ludwig-Maximilians-University Munich; München Germany
- German Center for Vertigo and Balance Disorders-IFB; Ludwig-Maximilians-University Munich; München Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders-IFB; Ludwig-Maximilians-University Munich; München Germany
- Clinical Neuroscience, Ludwig-Maximilians-University Munich; München Germany
| |
Collapse
|
49
|
Baldassarre A, Ramsey L, Hacker CL, Callejas A, Astafiev SV, Metcalf NV, Zinn K, Rengachary J, Snyder AZ, Carter AR, Shulman GL, Corbetta M. Large-scale changes in network interactions as a physiological signature of spatial neglect. Brain 2014; 137:3267-83. [PMID: 25367028 PMCID: PMC4240302 DOI: 10.1093/brain/awu297] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/26/2023] Open
Abstract
The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization.
Collapse
Affiliation(s)
- Antonello Baldassarre
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 2 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy 3 Institute for Advanced Biomedical Technologies, G. d'Annunzio University Foundation, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy
| | - Lenny Ramsey
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Carl L Hacker
- 4 Department of Biomedical Engineering, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Alicia Callejas
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Serguei V Astafiev
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Nicholas V Metcalf
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Kristi Zinn
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Jennifer Rengachary
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 5 Department of Radiology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Alex R Carter
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 2 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy 3 Institute for Advanced Biomedical Technologies, G. d'Annunzio University Foundation, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy 4 Department of Biomedical Engineering, Washington University in St. Louis School of Medicine, St. Louis, MO, USA 5 Department of Radiology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 6 Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine,660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Geddes MR, Tsuchida A, Ashley V, Swick D, Fellows LK. Material-specific interference control is dissociable and lateralized in human prefrontal cortex. Neuropsychologia 2014; 64:310-9. [DOI: 10.1016/j.neuropsychologia.2014.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022]
|