1
|
Takahashi K, Kitaoka Y, Hatta H. Effects of endurance training under calorie restriction on energy substrate metabolism in mouse skeletal muscle and liver. J Physiol Sci 2024; 74:32. [PMID: 38849720 PMCID: PMC11157813 DOI: 10.1186/s12576-024-00924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
2
|
Dotzert MS, McDonald MW, Murray MR, Nickels JZ, Noble EG, Melling CWJ. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type 1 Diabetes. Can J Diabetes 2017; 42:404-411. [PMID: 29212609 DOI: 10.1016/j.jcjd.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. METHODS Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. RESULTS After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). CONCLUSIONS Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids.
Collapse
Affiliation(s)
- Michelle S Dotzert
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Matthew W McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Michael R Murray
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - J Zachary Nickels
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Earl G Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - C W James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic. Chem Biol Interact 2017; 272:188-196. [PMID: 28483572 DOI: 10.1016/j.cbi.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023]
Abstract
Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease.
Collapse
|
4
|
Coleman SK, Rebalka IA, D’Souza DM, Hawke TJ. Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 2015; 6:1323-1336. [PMID: 26674848 PMCID: PMC4673386 DOI: 10.4239/wjd.v6.i17.1323] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease targeting the pancreatic beta-cells and rendering the person hypoinsulinemic and hyperglycemic. Despite exogenous insulin therapy, individuals with T1DM will invariably develop long-term complications such as blindness, kidney failure and cardiovascular disease. Though often overlooked, skeletal muscle is also adversely affected in T1DM, with both physical and metabolic derangements reported. As the largest metabolic organ in the body, impairments to skeletal muscle health in T1DM would impact insulin sensitivity, glucose/lipid disposal and basal metabolic rate and thus affect the ability of persons with T1DM to manage their disease. In this review, we discuss the impact of T1DM on skeletal muscle health with a particular focus on the proposed mechanisms involved. We then identify and discuss established and potential adjuvant therapies which, in association with insulin therapy, would improve the health of skeletal muscle in those with T1DM and thereby improve disease management- ultimately delaying the onset and severity of other long-term diabetic complications.
Collapse
|
5
|
Zuo CS, Sung YH, Simonson DC, Habecker E, Wang J, Haws C, Villafuerte RA, Henry ME, Dobbins RL, Hodge RJ, Nunez DJR, Renshaw PF. Reduced T2* values in soleus muscle of patients with type 2 diabetes mellitus. PLoS One 2012. [PMID: 23189142 PMCID: PMC3506632 DOI: 10.1371/journal.pone.0049337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tissue water transverse relaxation times (T2) are highly sensitive to fluid and lipid accumulations in skeletal muscles whereas the related T2* is sensitive to changes in tissue oxygenation in addition to factors affecting T2. Diabetes mellitus (DM) affects muscles of lower extremities progressively by impairing blood flow at the macrovascular and microvascular levels. This study is to investigate whether T2 and T2* are sensitive enough to detect abnormalities in skeletal muscles of diabetic patients in the resting state. T2 and T2* values in calf muscle of 18 patients with type 2 DM (T2DM), 22 young healthy controls (YHC), and 7 age-matched older healthy controls (OHC) were measured at 3T using multi-TE spin echo and gradient echo sequences. Regional lipid levels of the soleus muscle were also measured using the Dixon method in a subset of the subjects. Correlations between T2, T2*, lipid levels, glycated hemoglobin (HbA1c) and presence of diabetes were evaluated. We found that T2 values were significantly higher in calf muscles of T2DM subjects, as were T2* values in anterior tibialis, and gastrocnemius muscles of T2DM participants. However, soleus T2* values of the T2DM subjects were significantly lower than those of the older, age-matched HC cohort (22.9±0.5 vs 26.7±0.4 ms, p<0.01). The soleus T2* values in the T2DM cohort were inversely correlated with the presence of diabetes (t = −3.46, p<0.001) and with an increase in HbA1c, but not with body mass index or regional lipid levels. Although multiple factors may contribute to changes in T2* values, the lowered T2* value observed in the T2DM soleus muscle is most consistent with a combination of high oxygen consumption and poor regional perfusion. This finding is consistent with results of previous perfusion studies and suggests that the soleus in individuals with T2DM is likely under tissue oxygenation stress.
Collapse
Affiliation(s)
- Chun S. Zuo
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
- * E-mail: (JW); (CZ)
| | - Young-Hoon Sung
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Donald C. Simonson
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin Habecker
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (JW); (CZ)
| | - Charlotte Haws
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Rosemond A. Villafuerte
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Michael E. Henry
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Robert L. Dobbins
- GlaxoSmithKline, Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Rebecca J. Hodge
- GlaxoSmithKline, Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Derek J. R. Nunez
- GlaxoSmithKline, Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Perry F. Renshaw
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| |
Collapse
|
6
|
Hulmi JJ, Silvennoinen M, Lehti M, Kivelä R, Kainulainen H. Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab 2012; 302:E307-15. [PMID: 22068602 DOI: 10.1152/ajpendo.00398.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Type 1 diabetes, if poorly controlled, leads to skeletal muscle atrophy, decreasing the quality of life. We aimed to search highly responsive genes in diabetic muscle atrophy in a common diabetes model and to further characterize associated signaling pathways. Mice were killed 1, 3, or 5 wk after streptozotocin or control. Gene expression of calf muscles was analyzed using microarray and protein signaling with Western blotting. We identified translational repressor protein REDD1 (regulated in development and DNA damage responses) that increased seven- to eightfold and was associated with muscle atrophy in diabetes. The diabetes-induced increase in REDD1 was confirmed at the protein level. This result was accompanied by the increased gene expression of DNA damage/repair pathways and decreased expression in ATP production pathways. Concomitantly, increased phosphorylation of AMPK and dephosphorylation of the Akt/mTOR/S6K1/FoxO pathway of proteins were observed together with increased protein ubiquitination. These changes were especially evident during the first 3 wk, along with the strong decrease in muscle mass. Diabetes also induced an increase in myostatin protein and decreased MAPK signaling. These, together with decreased serum insulin and increased serum glucose, remained altered throughout the 5-wk period. In conclusion, diabetic myopathy induced by streptozotocin led to alteration of multiple signaling pathways. Of those, increased REDD1 and myostatin together with decreased Akt/mTOR/FoxO signaling are associated with diabetic muscle atrophy. The increased REDD1 and decreased Akt/mTOR/FoxO signaling followed a similar time course and thus may be explained, in part, by increased expression of genes in DNA damage/repair and possibly also decrease in ATP-production pathways.
Collapse
Affiliation(s)
- Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
7
|
Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 2011; 12:345-64. [PMID: 20860561 DOI: 10.1111/j.1399-5448.2010.00699.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Matthew P Krause
- Dept of Pathology & Molecular Medicine, McMaster University, 1200 Main St., W. Hamilton, ON, Canada L8N 3Z5
| | | | | |
Collapse
|
8
|
Krause MP, Riddell MC, Gordon CS, Imam SA, Cafarelli E, Hawke TJ. Diabetic myopathy differs between Ins2Akita+/- and streptozotocin-induced Type 1 diabetic models. J Appl Physiol (1985) 2009; 106:1650-9. [PMID: 19246652 DOI: 10.1152/japplphysiol.91565.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanistic studies examining the effects of Type 1 diabetes mellitus (T1DM) on skeletal muscle have largely relied on streptozotocin-induced diabetic (STZ) rodents. Unfortunately, characterization of diabetic myopathy in this model is confounded by the effects of streptozotocin on skeletal muscle independent of the diabetic phenotype. Here we define adolescent diabetic myopathy in a novel, genetic model of T1DM, Ins2(Akita+/-) mice, and contrast these findings with STZ mice. Eight weeks of diabetes resulted in significantly reduced gastrocnemius-plantaris-soleus mass (control: 0.16 +/- 0.005 g; Ins2(Akita+/-): 0.12 +/- 0.003 g; STZ: 0.12 +/- 0.01g) and IIB/D fiber area in Ins2(Akita+/-) (1,294 +/- 94 microm(2)) and STZ (1,768 +/- 163 microm(2)) compared with control (2,241 +/- 144 microm(2)). Conversely, STZ type I fibers (1,535 +/- 165 microm(2)) were significantly larger than Ins2(Akita+/-) (915 +/- 76 microm(2)) but not control (1,152 +/- 86 microm(2)). Intramyocellular lipid increased in STZ (122.9 +/- 3.6% of control) but not Ins2(Akita+/-) likely resultant from depressed citrate synthase (control: 6.2 +/- 1.2 micromol.s(-1).mg(-1); Ins2(Akita+/-): 5.2 +/- 0.8 micromol.s(-1).mg(-1); STZ: 2.8 +/- 0.5 micromol.s(-1).mg(-1)) and 3-beta-hydroxyacyl coenzyme-A dehydrogenase (control: 4.2 +/- 0.6 nmol.s(-1).mg(-1); Ins2(Akita+/-): 5.0 +/- 0.6 nmol.s(-1).mg(-1); STZ: 2.7 +/- 0.6 nmol.s(-1).mg(-1)) enzyme activity in STZ muscle. In situ muscle stimulation revealed lower absolute peak tetanic force in Ins2(Akita+/-) (70.2 +/- 8.2% of control) while STZ exhibited an insignificant decrease (87.6 +/- 7.9% of control). Corrected for muscle mass, no force loss was observed in Ins2(Akita+/-), while STZ was significantly elevated vs. control and Ins2(Akita+/-). These results demonstrate that atrophy and specific fiber-type loss in Ins2(Akita+/-) muscle did not affect contractile properties (relative to muscle mass). Furthermore, we demonstrate distinctive contractile, metabolic, and phenotypic properties in STZ vs. Ins2(Akita+/-) diabetic muscle despite similarity in hyperglycemia/hypoinsulinemia, raising concerns of our current state of knowledge regarding the effects of T1DM on skeletal muscle.
Collapse
Affiliation(s)
- Matthew P Krause
- Dept. of Pathology and Molecular Medicine, McMaster Univ., 4N65, Health Sciences Centre, 1200 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Overton JD, Adams GS, McCall RD, Kinsey ST. High energy phosphate concentrations and AMPK phosphorylation in skeletal muscle from mice with inherited differences in hypoxic exercise tolerance. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:478-85. [PMID: 19100334 DOI: 10.1016/j.cbpa.2008.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/18/2022]
Abstract
The effect of chronic hypobaric hypoxia (1/2 atmospheric pressure) on high energy phosphate (HEP) compounds was investigated in slow (soleus; SOL) and fast twitch (extensor digitorum longus; EDL) muscle from 3 strains of mice with large differences in hypoxic exercise tolerance (HET). Phosphocreatine concentration ([PCr]) decreased 16-29% following hypoxia in EDL and SOL in all strains, while [ADP] and [AMP] increased. In the EDL, HET was negatively correlated with the PCr/ATP ratio and positively correlated with the ATP/P(i) ratio. The free energy of ATP hydrolysis (DeltaG(obs)) remained constant despite the substantial changes that occurred in HEP profiles. The alteration of HEP set points and preservation of DeltaG(obs) are consistent with the notion that (1) maximal rates of steady-state ATP turnover are reduced under hypoxia, and (2) HEP perturbations during rest to work transitions are reduced in skeletal muscle from hypoxia acclimated animals. We therefore expected a lower phosphorylation ratio of AMP-activated protein kinase (AMPK-P/AMPK) during stimulation in hypoxic acclimated animals. However, neither the resting nor stimulated AMPK-P/AMPK was influenced by hypoxia, although there were significant differences among strains.
Collapse
Affiliation(s)
- Jeffrey D Overton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA
| | | | | | | |
Collapse
|
10
|
Vignaud A, Ramond F, Hourdé C, Keller A, Butler-Browne G, Ferry A. Diabetes provides an unfavorable environment for muscle mass and function after muscle injury in mice. Pathobiology 2007; 74:291-300. [PMID: 17890896 DOI: 10.1159/000105812] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/07/2007] [Indexed: 12/19/2022] Open
Abstract
It is of common knowledge that diabetes decreases skeletal muscle contractility and induces atrophy. However, how hyperglycemia and insulin deficiency modify muscle mass and neuromuscular recovery after muscle injury is not well known. We have analyzed two models of diabetes: streptozotocin (STZ)-treated Swiss mice and Akita mice that spontaneously develop diabetes. A fast muscle, the tibialis anterior, was injured following injection of a myotoxic agent (cardiotoxin). Neuromuscular function was evaluated by examining in situ isometric contractile properties of regenerating muscles in response to nerve stimulation 14, 28 and 56 days after myotoxic injury. We found that STZ-induced diabetes reduces muscle weight and absolute maximal tetanic force in both regenerating and uninjured muscles (p = 0.0001). Moreover, it increases specific maximal tetanic force and tetanic fusion in regenerating and uninjured muscles (p = 0.04). In the Akita mice, diabetes decreases muscle weight and absolute maximal tetanic force, and increases tetanic fusion in both regenerating and uninjured muscles (p < or = 0.003). Interestingly, STZ-induced diabetes exerts more marked effects than diabetes of genetic origin, in particular on muscle weight. This reduction in muscle mass was not due to an increased expression of the atrogenes MuRF1 and atrogin-1 during STZ-induced diabetes. The present study in mice demonstrates that both models of diabetes impair regenerating muscles as well as uninjured muscles. Regenerating fast muscles are weaker, lighter and slower in diabetic compared with nondiabetic mice.
Collapse
Affiliation(s)
- A Vignaud
- INSERM U787 and Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Lesniewski LA, Miller TA, Armstrong RB. Mechanisms of force loss in diabetic mouse skeletal muscle. Muscle Nerve 2003; 28:493-500. [PMID: 14506722 DOI: 10.1002/mus.10468] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathologic changes to alpha-motoneurons may contribute to decreases in skeletal muscle strength in diabetes. The present study examines this possibility. Female ICR mice (approximately 25 g) were given a single injection of streptozotocin (200 mg/kg). After 2, 4, and 8 weeks of diabetes, we measured maximum isometric tetanic torque of the fast-twitch anterior crural muscles at the ankle when stimulated through the common peroneal nerve, and maximal isometric tetanic force in the directly stimulated extensor digitorum longus (EDL) muscle. After 4 weeks, the relative loss of torque via nerve stimulation (-43%) was greater (P = 0.02) than the force loss in the directly stimulated muscle (-24%), indicating a functional neural deficit. However, the percent changes in strength in these two methods of stimulation were not different (P = 0.41) in the 8-week diabetic animals, indicating that functional impairment resided in the muscle. This suggests an early distal motoneuron or neuromuscular junction deficit that improved as the intrinsic muscle deficit worsened. Preliminary evidence also suggests excitation-contraction uncoupling may contribute to the loss of strength in fast-twitch muscles.
Collapse
Affiliation(s)
- Lisa A Lesniewski
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843-4243, USA
| | | | | |
Collapse
|
12
|
He S, Shelly DA, Moseley AE, James PF, James JH, Paul RJ, Lingrel JB. The alpha(1)- and alpha(2)-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol 2001; 281:R917-25. [PMID: 11507009 DOI: 10.1152/ajpregu.2001.281.3.r917] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na-K-ATPase, which maintains the Na(+) and K(+) gradients across the plasma membrane, can play a major role in modulation of skeletal muscle contractility. Although both alpha(1)- and alpha(2)-isoforms of the Na-K-ATPase are expressed in skeletal muscle, the physiological significance of these isoforms in contractility is not known. Evaluation of the contractile parameters of mouse extensor digitorum longus (EDL) was carried out using gene-targeted mice lacking one copy of either the alpha(1)- or alpha(2)-isoform gene of the Na-K-ATPase. The EDL muscles from heterozygous mice contain approximately one-half of the alpha(1)- or alpha(2)-isoform, respectively, which permits differentiation of the functional roles of these isoforms. EDL from the alpha(1)(+/-) mouse shows lower force compared with wild type, whereas that from the alpha(2)(+/-) mouse shows greater force. The different functional roles of these two isoforms are further demonstrated because inhibition of the alpha(2)-isoform with ouabain increases contractility of alpha(1)(+/-) EDL. These results demonstrate that the Na-K-ATPase alpha(1)- and alpha(2)-isoforms may play different roles in skeletal muscle contraction.
Collapse
Affiliation(s)
- S He
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:143-223. [PMID: 9002237 DOI: 10.1016/s0074-7696(08)61622-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|