1
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
2
|
Fan L, Wang H, Kassab GS, Lee LC. Review of cardiac-coronary interaction and insights from mathematical modeling. WIREs Mech Dis 2024; 16:e1642. [PMID: 38316634 PMCID: PMC11081852 DOI: 10.1002/wsbm.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Cardiac-coronary interaction is fundamental to the function of the heart. As one of the highest metabolic organs in the body, the cardiac oxygen demand is met by blood perfusion through the coronary vasculature. The coronary vasculature is largely embedded within the myocardial tissue which is continually contracting and hence squeezing the blood vessels. The myocardium-coronary vessel interaction is two-ways and complex. Here, we review the different types of cardiac-coronary interactions with a focus on insights gained from mathematical models. Specifically, we will consider the following: (1) myocardial-vessel mechanical interaction; (2) metabolic-flow interaction and regulation; (3) perfusion-contraction matching, and (4) chronic interactions between the myocardium and coronary vasculature. We also provide a discussion of the relevant experimental and clinical studies of different types of cardiac-coronary interactions. Finally, we highlight knowledge gaps, key challenges, and limitations of existing mathematical models along with future research directions to understand the unique myocardium-coronary coupling in the heart. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lei Fan
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, California, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Bellafiore M, Battaglia G, Bianco A, Palma A. Expression Pattern of Angiogenic Factors in Healthy Heart in Response to Physical Exercise Intensity. Front Physiol 2019; 10:238. [PMID: 30984008 PMCID: PMC6447665 DOI: 10.3389/fphys.2019.00238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Recently, many studies showing the regeneration potential of both cardiac and hematopoietic stem cells in adult heart following injury were definitively retracted by the literature. Therefore, stimulating myocardial angiogenesis becomes to be important for preventing cardiovascular diseases. Regular endurance exercise has been reported to induce capillary growth in healthy and diseased myocardium resulting in cardioprotective phenotype. Previously, we demonstrated a significantly increased capillary proliferation in mouse hearts following 30 and 45 days of endurance training. In the present study, we examined the localization and expression pattern of vascular endothelial growth factor receptors (VEGFR-1/Flt-1 and VEGFR-2/Flk-1), hypoxia-inducible factor-1α (HIF-1α), and inducible nitric oxide synthase (iNOS) in heart neocapillarization in response to a mild, moderate, and high intensity of endurance training. Sixty-three Swiss male mice were divided into four untrained control groups and three groups trained for 15 (T15), 30 (T30), and 45 (T45) days with a gradually increasing intensity on a treadmill. We observed the localization of studied proteins with immunostaining and their expression level with Western blot analyses. We found that VEGFR-2/Flk-1 expression progressively increased in trained groups compared with controls, while VEGFR-1/Flt-1 and HIF-1α were higher in T15 than in controls, T30, and T45 animals. Differently, iNOS levels enhanced after 15 and 30 days of exercise. The localization of these factors was not altered by exercise. The results showed that the expression of VEGFR-1/Flt-1, VEGFR-2/Flk-1, HIF-1α, and iNOS is differently regulated in cardiac angiogenesis according to the exercise intensity. VEGFR-1/Flt-1 and HIF-1α are upregulated by a mild intensity exercise, while VEGFR-2/Flk-1 progressively enhances with increasing workload. Differently, iNOS protein is modulated by a moderate intensity exercise. VEGF pathway appears to be involved in exercise-related angiogenesis in heart and VEGF might act in a paracrine and endocrine manner. Understanding this relationship is important for developing exercise strategies to protect the heart by insults.
Collapse
Affiliation(s)
- Marianna Bellafiore
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Bellafiore M, Battaglia G, Bianco A, Farina F, Palma A, Paoli A. The involvement of MMP-2 and MMP-9 in heart exercise-related angiogenesis. J Transl Med 2013; 11:283. [PMID: 24195673 PMCID: PMC3827823 DOI: 10.1186/1479-5876-11-283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the involvement of matrix metalloproteinases (MMPs) in cardiac vascular remodelling induced by exercise. Our aim was to evaluate and localize MMP-2 and MMP-9's activities in relation to capillary proliferation in mouse hearts trained for 15, 30 and 45 days. METHODS Sixty-three mice were randomly assigned to 7 groups: four control sedentary groups (C0, C15, C30 and C45) and three groups trained by an endurance protocol (T15, T30 and T45). MMP-2 and MMP-9 were examined with zymography and immunostaining analyses. Capillary proliferation was evaluated counting the number of CD31-positive cells. RESULTS Different activity patterns of the latent form of both MMPs were found. Pro-MMP-9 increased after 15 days of training; whereas pro-MMP-2 gradually decreased after 30 and 45 days of training below the control groups. The latter was inversely correlated with capillary growth. MMP-9 was mainly localized in myocardiocytes and less evident in capillaries. Conversely, MMP-2 was more intense in capillary endothelial cells and slightly in myocardiocytes. CONCLUSIONS A different spatiotemporal modulation of pro-MMP-2 and pro-MMP-9 activities has been detected in the myocardium during angiogenesis related to the aerobic training. These results can be useful to draw up training protocols for improving the performance of healthy and diseased human hearts.
Collapse
Affiliation(s)
- Marianna Bellafiore
- Department of Legal, Society and Sport Sciences, University of Palermo, Via E, Duse 2, 90146 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Al Sabti H. Therapeutic angiogenesis in cardiovascular disease. J Cardiothorac Surg 2007; 2:49. [PMID: 18021404 PMCID: PMC2169246 DOI: 10.1186/1749-8090-2-49] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 11/16/2007] [Indexed: 01/13/2023] Open
Abstract
Atherosclerotic disease of the arteries is a major cause of coronary artery disease, peripheral vascular disease and stroke. Some patients are however not candidate for the standard treatment of angioplasty or bypass surgery. Hence there is tremendous enthusiasm for the utilization of angiogenesis as a therapeutic modality for atherosclerotic arterial disease. This augmentation of physiological neo-vascularization in cardiovascular disease can be achieved through different pathways. In this article we are reviewing the Use of Gene therapy, Protein therapy and cellular therapy.
Collapse
Affiliation(s)
- Hilal Al Sabti
- Department of surgery, Sultan Qaboos University Hospital, Code 123, P.Box 35, Al Khod, Sultanate of Oman.
| |
Collapse
|
6
|
Munk VC, Sanchez de Miguel L, Petrimpol M, Butz N, Banfi A, Eriksson U, Hein L, Humar R, Battegay EJ. Angiotensin II Induces Angiogenesis in the Hypoxic Adult Mouse Heart In Vitro Through an AT
2
–B2 Receptor Pathway. Hypertension 2007; 49:1178-85. [PMID: 17339539 DOI: 10.1161/hypertensionaha.106.080242] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II is a vasoactive peptide that may affect vascularization of the ischemic heart via angiogenesis. In this study we aimed at studying the mechanisms underlying the angiogenic effects of angiotensin II under hypoxia in the mouse heart in vitro. Endothelial sprout formation from pieces of mouse hearts was assessed under normoxia (21% O
2
) and hypoxia (1% O
2
) during a 7-day period of in vitro culture. Only under hypoxia did angiotensin II dose-dependently induce endothelial sprout formation, peaking at 10
−7
mol/L of angiotensin II. Angiotensin II type 1 (AT
1
) receptor blockade by losartan did not affect angiotensin II–induced sprouting in wild-type mice. Conversely, the angiotensin II type 2 (AT
2
) receptor antagonist PD 123319 blocked this response. In hearts from AT
1
−/−
mice, angiotensin II–elicited sprouting was preserved but blocked again by AT
2
receptor antagonism. In contrast, no angiotensin II–induced sprouting was found in preparations from hearts of AT
2
−/−
mice. Angiotensin II–mediated angiogenesis was also abolished by a specific inhibitor of the B2 kinin receptor in both wild-type and AT
1
−/−
mice. Furthermore, angiotensin II failed to induce endothelial sprout formation in hearts from B2
−/−
mice. Finally, NO inhibition completely blunted sprouting in hearts from wild-type mice, whereas NO donors could restore sprouting in AT
2
−/−
and B2
−/−
hearts. This in vitro study suggests the obligatory role of hypoxia in the angiogenic effect of angiotensin II in the mouse heart via the AT
2
receptor through a mechanism that involves bradykinin, its B2 receptor, and NO as a downstream effector.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Dose-Response Relationship, Drug
- Hypoxia/metabolism
- Hypoxia/physiopathology
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic
- Nitric Oxide/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Bradykinin B2/deficiency
- Receptor, Bradykinin B2/metabolism
Collapse
Affiliation(s)
- Veronica C Munk
- Department of Research, Laboratory of Vascular Biology, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mousa SA, Feng X, Xie J, Du Y, Hua Y, He H, O'Connor L, Linhardt RJ. Synthetic oligosaccharide stimulates and stabilizes angiogenesis: structure-function relationships and potential mechanisms. J Cardiovasc Pharmacol 2006; 48:6-13. [PMID: 16954815 PMCID: PMC4140568 DOI: 10.1097/01.fjc.0000238591.90062.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To determine the proangiogenesis effect of series of saccharides and a synthetic oligosaccharide and potential mechanisms, an in vitro 3-dimensional endothelial cell sprouting (3D-ECS) assay and the chick chorioallantoic membrane (CAM) model were used. We demonstrated that a sulfated oligosaccharide significantly promotes the endothelial capillary network initiated by vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF). Furthermore, although the capillary network initiated by VEGF and b-FGF lasts no more than 7 days, addition of a sulfated oligosaccharide significantly amplifies angiogenesis and stabilizes the capillary network of new blood vessels. In the CAM model, sulfated oligosaccharide also stimulated angiogenesis. In both the CAM and the 3D-ECS assay, structure-function studies reveal that increased saccharide chain length up to the hexa- to decasaccharide show optimal proangiogenesis efficacy. In addition, the sulfation and molecular shape (branched vs linear) of oligosaccharide are important for sustained proangiogenesis efficacy. Data indicate that chemically defined synthetic oligosaccharides can play an important role in regulation of capillary structure and stability, which may contribute to future advances in therapeutic angiogenesis. The proangiogenesis efficacy of an oligosaccharide is mediated via integrin alphavbeta3 and involves mitogen-activated protein kinase signaling mechanisms.
Collapse
Affiliation(s)
- S A Mousa
- Pharmaceutical Research Institute at Albany and Albany College of Pharmacy, Albany, NY 12208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mousa SA, O'Connor L, Davis FB, Davis PJ. Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 2006; 147:1602-7. [PMID: 16384862 DOI: 10.1210/en.2005-1390] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently described the proangiogenesis effects of thyroid hormone in the chick chorioallantoic membrane (CAM) model. Generation of new blood vessels from existing vessels was promoted 2- to 3-fold by either T(4) or T(3) at 10(-8)-10(-7) M total hormone concentrations. In the present studies, nanomolar concentrations of 3,5-diiodothyropropionic acid (DITPA), a thyroid hormone analog with inotropic but not chronotropic properties, exhibited potent proangiogenic activity that was comparable to that obtained with T(3) and T(4) in both the CAM model and in an in vitro three-dimensional human microvascular endothelial sprouting assay. The proangiogenesis effect of DITPA was inhibited by tetraiodothyroacetic acid, a thyroid hormone analog that competes with T(4) and T(3) for a novel cell surface hormone receptor site on integrin alphavbeta3. The thyroid hormone analogs DITPA, T(4), and T(4)-agarose, as well as basic fibroblast growth factor (b-FGF) and vascular endothelial cell growth factor, demonstrated comparable proangiogenic effects in the CAM model and in the three-dimensional human microvascular endothelial sprouting model. The proangiogenesis effect of either DITPA or b-FGF was blocked by PD 98059, an inhibitor of the ERK1/2 signal transduction cascade. Additionally, a specific integrin alphavbeta3 small molecule antagonist, XT199, effectively inhibited the proangiogenesis effect of DITPA and b-FGF. Thus, the proangiogenesis actions of thyroid hormone and its analog DITPA are initiated at the plasma membrane, apparently at integrin alphavbeta3, and are MAPK dependent.
Collapse
Affiliation(s)
- Shaker A Mousa
- The Pharmaceutical Research Institute and Albany College of Pharmacy, New York 12208, USA
| | | | | | | |
Collapse
|
9
|
Brown MD, Davies MK, Hudlicka O. Angiogenesis in ischaemic and hypertrophic hearts induced by long-term bradycardia. Angiogenesis 2005; 8:253-62. [PMID: 16308735 DOI: 10.1007/s10456-005-9012-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
Angiogenesis and improved left ventricular function as a consequence of long-term bradycardia were first demonstrated in normal hearts, either electrically paced (rabbits, pigs) or treated with a selective sinus blocking drug alinidine (rats). Here we review the evidence that chronic heart rate reduction can have similar effects in the heart with compromised vascular supply, due to either hypertensive or haemodynamic overload hypertrophy (rats, rabbits) or ischaemic damage (rats, rabbits, pigs). Bradycardia induced over several weeks increased capillarity in all hypertrophied hearts, and in border and remote left ventricular myocardium of infarcted hearts. In some, but not all cases, coronary blood flow was improved by heart rate reduction, suggesting enlargement of the resistance vasculature in some circumstances. Cardiac or left ventricular function indices, which were depressed by hypertrophy or ischaemic damage, were preserved or even enhanced by chronic heart rate reduction. The expansion of the capillary bed in the vascularly compromised heart induced by bradycardia may be stimulated by mechanical stretch of the endothelium and/or VEGF activated by chamber dilation and myocyte stretch. The increased number of capillaries and more homogeneous distribution of capillary perfusion would support the better pump function, even in the absence of higher coronary flow. The beneficial impact of chronic heart rate reduction on myocardial angiogenesis and function in cardiac hypertrophy and infarction may be major factor in the success of beta-blockers in treatment of human heart failure.
Collapse
Affiliation(s)
- M D Brown
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
10
|
Ziada AM, Hassan MO, Tahlilkar KI, Inuwa IM. Long-term exercise training and angiotensin-converting enzyme inhibition differentially enhance myocardial capillarization in the spontaneously hypertensive rat. J Hypertens 2005; 23:1233-40. [PMID: 15894900 DOI: 10.1097/01.hjh.0000170387.61579.ab] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate whether combined treatment with lisinopril, an angiotensin-converting enzyme (ACE) inhibitor and exercise training would have an additive effect in enhancing the capillary supply of the left ventricular (LV) myocardium in spontaneously hypertensive rats (SHR). DESIGN Twelve-week-old male SHR were divided into four groups (10-12 each): sedentary, sedentary treated with lisinopril (15-20 mg/kg per day by gavage), exercise trained, and exercise trained while treated with lisinopril. Exercise training consisted of 1 h a day/5 days a week of running on a treadmill. METHODS After 10 weeks of experimental protocols, capillary surface density and length density were sterologically determined in 1 mum thick LV tissue samples from perfuse-fixed hearts. RESULTS Lisinopril significantly reduced systolic blood pressure (SBP) and LV mass in the sedentary with lisinopril and exercise trained with lisinopril groups but did not affect the heart rate (HR). Exercise training did not reduce SBP or LV mass, but significantly reduced HR in the exercise trained and exercise trained with lisinopril groups. Lisinopril treatment (sedentary with lisinopril), exercise training (exercise) and their combination (exercise trained with lisinopril) significantly increased myocardial capillary surface area density by 26, 38 and 65% and length density by 38, 48 and 67%, respectively. CONCLUSION Lisinopril administration and exercise training independently enhanced myocardial capillarization through a reduction of myocardial mass and stimulation of angiogenesis, respectively. A combination of the two treatments enhanced myocardial capillarization more than either intervention alone. This may aid in the restoration of the normal nutritional status of cardiac myocytes compromised by the hypertrophic state of hypertension.
Collapse
Affiliation(s)
- Amal M Ziada
- Department of Physiology, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | | | |
Collapse
|
11
|
Tomanek RJ, Zheng W, Yue X. Growth factor activation in myocardial vascularization: therapeutic implications. Mol Cell Biochem 2005; 264:3-11. [PMID: 15544030 DOI: 10.1023/b:mcbi.0000044369.88528.a3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A rapid growth of the coronary vasculature occurs during prenatal and early postnatal periods as precursor cells from the epi- and sub-epicardium differentiate, migrate and form vascular structures (vasculogenesis) which then fuse, branch and in some cases recruit cells to form three tunics (angiogenesis). These processes are tightly controlled by temporally and spatially expressed growth factors which are stimulated by metabolic and mechanical factors. The process of angiogenesis in the myocardium is not limited to developmental periods of life, but may occur when the heart is challenged by enhanced loading conditions or during hypoxia or ischemia. This review focuses on the activation of growth factors by metabolic and mechanical stimuli in the developing heart and in the adult heart undergoing adaptive responses. Experimental studies support the hypotheses that both metabolic (hypoxia) and mechanical (stretch) factors serve as powerful stimuli for the up-regulation of growth factors which facilitate angiogenesis and arteriogenesis. Both hypoxia and stretch are powerful inducers of VEGF and its receptors, and provide for paracrine and autocrine signaling. In addition to the VEGF family, bFGF and angiopoietins play major roles in myocardial vascularization. Sufficient evidence supports the hypothesis that mechanical (e.g., bradycardia) and metabolic (e.g., thyroxine analogs) may provide effective non-invasive angiogenic therapies for the ischemic and post-infarcted heart.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
12
|
Davis FB, Mousa SA, O'Connor L, Mohamed S, Lin HY, Cao HJ, Davis PJ. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 2004; 94:1500-6. [PMID: 15117822 DOI: 10.1161/01.res.0000130784.90237.4a] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of thyroid hormone analogues on modulation of angiogenesis have been studied in the chick chorioallantoic membrane model. Generation of new blood vessels from existing vessels was increased 3-fold by either l-thyroxine (T4; 10(-7) mol/L) or 3,5,3'-triiodo-l-thyronine (10(-9) mol/L). T4-agarose reproduced the effects of T4, and tetraiodothyroacetic acid (tetrac) inhibited the effects of both T4 and T4-agarose. Tetrac itself was inactive and is known to block actions of T4 on signal transduction that are initiated at the plasma membrane. T4 and basic fibroblast growth factor (FGF2) were comparably effective as inducers of angiogenesis. Low concentrations of FGF2 combined with submaximal concentrations of T4 produced an additive angiogenic response. Anti-FGF2 inhibited the angiogenic effect of T4. The proangiogenic effects of T4 and FGF2 were blocked by PD 98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor. Endothelial cells (ECV304) treated with T4 or FGF2 for 15 minutes demonstrated activation of MAPK, an effect inhibited by PD 98059 and the protein kinase C inhibitor CGP41251. Reverse transcription-polymerase chain reaction of RNA extracted from endothelial cells treated with T4 revealed increased abundance of FGF2 transcript at 6 to 48 hours, and after 72 hours, the medium of treated cells showed increased FGF2 content, an effect inhibited by PD 98059. Thus, thyroid hormone is shown to be a proangiogenic factor. This action, initiated at the plasma membrane, is MAPK dependent and mediated by FGF2.
Collapse
Affiliation(s)
- Faith B Davis
- Department of Veterans Affairs Medical Center, Albany, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mehrabi MR, Serbecic N, Tamaddon F, Pacher R, Horvath R, Mall G, Glogar HD. Clinical benefit of prostaglandin E1-treatment of patients with ischemic heart disease: stimulation of therapeutic angiogenesis in vital and infarcted myocardium. Biomed Pharmacother 2003; 57:173-8. [PMID: 12818480 DOI: 10.1016/s0753-3322(03)00026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New evidence suggests that Prostaglandin E1 (PGE-1) stimulates myocardial angiogenesis in human chronic ischemic myocardium. We sought to investigate whether PGE-1 may participate in the process of neoangiogenesis within the myocardial infarct scar. Neovascularization was investigated in 14 explanted hearts from patients with ischemic cardiomyopathy, who had been bridged to heart transplantation (HTX) with PGE-1 and compared with 14 hearts from patients who did not receive PGE-1 prior to HTX. In transmural sections obtained from the left ventricular wall and containing myocardial scar tissue, CD34 and vascular endothelial growth factor (VEGF) were quantified immunohistochemically to estimate capillary density and amount of angiogenesis. Additionally, to assess the hypoxic state of myocardium of the infarct border zone, hypoxia inducible factor 1-alpha (HIF-1alpha) was determined by immunohistochemistry and quantified by means of planimetric analysis. PGE-1-treated patients had significantly more CD34-and VEGF-positive cells in infarct areas as compared to nonPGE-1 group, respectively (CD34: 116.7 +/- 5.9 vs. 45.1 +/- 5.2 capillary profiles/mm(2), P < 0.001, and VEGF: 48.3 +/- 4.9 vs. 22.9 +/- 4.7 capillary profiles/mm(2)). HIF-1alpha enrichment (in %) as well as staining intensity (in estimated units (eU)) was significantly decreased in PGE-1-treated as compared to non-treated controls (enrichment: 11.3 +/- 2.5% vs. 19.4 +/- 4.36%; staining intensity: 0.95 +/- 0.3 vs. 1.97 +/- 0.44 eU). Our data demonstrate that PGE-1 stimulates neoangiogenesis in infarct areas adjacent to viable myocardium, via upregulation of VEGF expression. The induction of therapeutic angiogenesis along with the improved hypoxic state of chronic ischemic myocardial tissue might explain the favorable clinical outcome in PGE-1 treated patients.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of Cardiology, General Hospital (AKH), University of Vienna, Postfach 120, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gabison EE, Hoang-Xuan T, Mauviel A, Menashi S. [Metalloproteinases and angiogenesis]. PATHOLOGIE-BIOLOGIE 2003; 51:161-6. [PMID: 12781798 DOI: 10.1016/s0369-8114(03)00018-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metalloproteinases (MMPs) are essential regulators during various phases of the angiogenic process. These include the degradation of the basement membrane and the extracellular matrix, the mobilisation and activation of growth factors and the production of fragments with pro- or anti-angiogenic activity. In addition to their role in migration and invasion, MMPs can influence endothelial cell proliferation and survival by modifying the balance between angiogenic and anti-angiogenic molecules.
Collapse
Affiliation(s)
- E E Gabison
- Unité 532 Inserm, Institut de recherche sur la peau, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | | | | | |
Collapse
|
15
|
Mehrabi MR, Ekmekcioglu C, Stanek B, Thalhammer T, Tamaddon F, Pacher R, Steiner GE, Wild T, Grimm M, Spieckermann PG, Mall G, Glogar HD. Angiogenesis stimulation in explanted hearts from patients pre-treated with intravenous prostaglandin E(1). J Heart Lung Transplant 2001; 20:465-73. [PMID: 11295585 DOI: 10.1016/s1053-2498(00)00317-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prostaglandin E(1) (PGE(1)) is a potent vasodilator and induces angiogenesis in animal tissues. Previous clinical studies demonstrated that PGE(1) improves hemodynamic parameters in patients with heart failure listed for heart transplantation (HTX). Therefore, we designed a retrospective immunohistochemistry study to investigate various markers of angiogenesis using hearts explanted from PGE(1)-treated patients with idiopathic dilated cardiomyopathy (IDCM). METHODS AND RESULTS We investigated neovascularization in 18 hearts explanted from patients with IDCM: 9 patients received treatment with chronic infusions of PGE(1) for end-stage heart failure before HTX, whereas the remaining patients with IDCM did not receive PGE(1) and served as controls. We used immunoreactivity against CD34, von Willebrand factor (vWf), vascular endothelial growth factor (VEGF), and MIB-1 (Ki-67) to quantify angiogenesis, and used sirius red staining to determine the degree of fibrosis. Compared with the control group, PGE(1)-treated patients had significantly more CD34-, vWf- and MIB-1-positive cells in the sub-endocardium, myocardium and sub-epicardium (p < 0.01). The degree of fibrosis in the hearts of PGE(1)-treated patients was significantly lower than in control patients (p < 0.05), but we did not see any difference in the percentage of muscle mass. Finally, throughout the ventricles, we found significantly more VEGF-positive capillaries in the PGE(1) group (p < 0.0001). CONCLUSIONS The data suggest that PGE(1) could be a potent inducer of angiogenesis and the angiogenic factor VEGF, and could cause reduced fibrosis in the failing human heart.
Collapse
Affiliation(s)
- M R Mehrabi
- Department of Cardiology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hildick-Smith DJ, Johnson PJ, Wisbey CR, Winter EM, Shapiro LM. Coronary flow reserve is supranormal in endurance athletes: an adenosine transthoracic echocardiographic study. Heart 2000; 84:383-9. [PMID: 10995406 PMCID: PMC1729440 DOI: 10.1136/heart.84.4.383] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To compare coronary flow reserve in endurance athletes and healthy sedentary controls, using adenosine transthoracic echocardiography. METHODS 29 male endurance athletes (mean (SD) age 27.3 (6.6) years, body mass index (BMI) 22.1 (1.9) kg/m(2)) and 23 male controls (age 27.2 (6.1) years, BMI 23.9 (2.6) kg/m(2)) with no coronary risk factors underwent transthoracic echocardiographic assessment of distal left anterior descending coronary artery (LAD) diameter and flow, both at rest and during intravenous adenosine infusion (140 microg/kg/min). RESULTS Distal LAD diameter and flow were adequately assessed in 19 controls (83%) and 26 athletes (90%). Distal LAD diameter in athletes (2.04 (0.25) mm) was not significantly greater than in sedentary controls (1.97 (0.27) mm). Per cent increase in LAD diameter following 400 microg sublingual nitrate was greater in the athletes than in the controls, at 14.1 (7. 2)% v 8.8 (5.7)% (p < 0.01). Left ventricular mass index in athletes exceeded that of controls, at 130 (19) v 98 (14) g/m(2) (p < 0.01). Resting flow among the athletes (10.6 (3.1) ml/min; 4.4 (1.2) ml/min/100 g left ventricular mass) was less than in the controls (14.3 (3.6) ml/min; 8.2 (2.2) ml/min/100 g left ventricular mass) (both p < 0.01). Hyperaemic flow among the athletes (61.9 (17.8) ml/min) exceeded that of the controls (51.1 (14.6) ml/min; p = 0.02), but not when corrected for left ventricular mass (25.9 (5.6) v 28.5 (7.4) ml/min/100 g left ventricular mass; NS). Coronary flow reserve was therefore substantially greater in the athletes than in the controls, at 5.9 (1.0) v 3.7 (0.7) (p < 0.01). CONCLUSIONS Coronary flow reserve in endurance athletes is supranormal and endothelium independent vasodilatation is enhanced. Myocardial hypertrophy per se does not necessarily impair coronary flow reserve. Adenosine transthoracic echocardiography is a promising technique for the investigation of coronary flow reserve.
Collapse
|
17
|
Van Kerckhoven R, van Veen TA, Boomsma F, Saxena PR, Schoemaker RG. Chronic administration of moxonidine suppresses sympathetic activation in a rat heart failure model. Eur J Pharmacol 2000; 397:113-20. [PMID: 10844105 DOI: 10.1016/s0014-2999(00)00232-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Excessive sympathetic activity contributes to cardiovascular abnormalities, which negatively affect the prognosis of heart failure. The present study evaluated the effects of moxonidine, an imidazoline I(1) receptor agonist, on sympathetic activation and myocardial remodelling in a rat heart failure model. Rats were subjected to coronary artery ligation, and treated with moxonidine, 3 or 6 mg/kg/day, from 1 to 21 days after myocardial infarction. After 21 days, heart rate and blood pressure were measured in conscious, chronically instrumented rats. Plasma catecholamine levels were determined by high-performance liquid chromatography. Effects on post-myocardial infarction remodelling were evaluated from the ventricular weight body weight ratio and interstitial collagen deposition, measured morphometrically in the interventricular septum remote from the infarcted area. Moxonidine dose-dependently decreased myocardial infarction induced tachycardia but did not affect myocardial infarction reduced blood pressure. Plasma noradrenaline levels, which were elevated after myocardial infarction, decreased below sham-values with 6 mg/kg/day moxonidine. Ventricular weight-body weight ratio as well as interstitial collagen were significantly elevated in myocardial infarcted rats, and restored to sham values with 6 mg/kg/day moxonidine. These data suggest that moxonidine suppresses myocardial infarction induced sympathetic activation in a dose-dependent way as indicated by reduced heart rate and plasma noradrenaline levels. Furthermore, post-myocardial infarction remodelling may be attenuated at a higher dose-range of moxonidine as shown by normalisation of ventricular weight body weight ratio and interstitial collagen.
Collapse
Affiliation(s)
- R Van Kerckhoven
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Zheng W, Brown MD, Brock TA, Bjercke RJ, Tomanek RJ. Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res 1999; 85:192-8. [PMID: 10417401 DOI: 10.1161/01.res.85.2.192] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A marked coronary angiogenesis is known to occur with chronic bradycardia. We tested the hypothesis that vascular endothelial growth factor (VEGF), an endothelial cell mitogen and a major regulator of angiogenesis, is upregulated in response to low heart rate and consequential increased stroke volume. Bradycardia was induced in rats by administering the bradycardic drug alinidine (3 mg/kg body weight) twice daily. Heart rate decreased by 32% for 20 to 40 minutes after injection and was chronically reduced by 10%, 14%, and 18.5% after 1, 2, and 3 weeks of treatment, respectively. Arterial pressure and cardiac output were unchanged. Left ventricular capillary length density (mm/mm(3)) increased gradually with alinidine administration; a 15% increase after 2 weeks and a 40% increase after 3 weeks of alinidine treatment were documented. Left ventricular weight, body weight, and their ratio were not significantly altered by alinidine treatment. After 1 week of treatment, before an increase in capillary length density, VEGF mRNA increased >2-fold and then declined to control levels after 3 weeks of treatment. VEGF protein was higher in alinidine-treated rats than in controls after 2 weeks and increased further after 3 weeks of treatment. Injection of VEGF-neutralizing antibodies over a 2-week period completely blocked alinidine-stimulated angiogenesis. In contrast, bFGF mRNA was not altered by alinidine treatment. These data suggest that VEGF plays a key role in the angiogenic response that occurs with chronic bradycardia. The mechanism underlying this VEGF-associated angiogenesis may be an increase in stretch due to enhanced diastolic filling.
Collapse
Affiliation(s)
- W Zheng
- Department of Anatomy and Cell Biology and The Cardiovascular Center, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
19
|
Roca J, Gavin TP, Jordan M, Siafakas N, Wagner H, Benoit H, Breen E, Wagner PD. Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle. J Appl Physiol (1985) 1998; 85:1142-9. [PMID: 9729593 DOI: 10.1152/jappl.1998.85.3.1142] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To examine this hypothesis, we compared the change in abundance of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor-beta1 (TGF-beta1) mRNA in skeletal muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol A) and electrical stimulation of the femoral and sciatic nerves producing muscle contraction (protocol B). The increase in leg blood flow (5.4- and 5. 9-fold change from resting values, respectively) was similar in both groups. Passive hyperperfusion alone did not increase message abundance for VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion, 0.94 +/- 0.08) or bFGF (1.08 +/- 0.05) but slightly increased that of TGF-beta1 (1.14 +/- 0.07; P < 0.03). In contrast, as previously found in the rat, electrical stimulation provoked more than a threefold increase in VEGF mRNA abundance (3.40 +/- 1.45; P < 0.02). However, electrical stimulation produced no significant changes in either bFGF (1.16 +/- 0.13) or TGF-beta1 (1.31 +/- 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute exercise. We speculate that other factors, such as local hypoxia, metabolite concentration changes, or mechanical effects of contraction per se, may be responsible for the effects of exercise.
Collapse
Affiliation(s)
- J Roca
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Role of Fibroblast Growth Factor -2 and Endothelial Cell Stimulating Angiogenic Factor (ESAF) in Capillary Growth in Skeletal Muscles Exposed to Long-Term High Activity. Angiogenesis 1998. [DOI: 10.1007/978-1-4757-9185-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
|