1
|
DiNuzzo M, Giove F, Maraviglia B, Mangia S. Monoaminergic Control of Cellular Glucose Utilization by Glycogenolysis in Neocortex and Hippocampus. Neurochem Res 2015; 40:2493-504. [PMID: 26168779 DOI: 10.1007/s11064-015-1656-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy. .,Magnetic Resonance for Brain Investigation Laboratory, Via Ardeatina 306, 00179, Rome, Italy.
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| | - Bruno Maraviglia
- Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis 2015; 30:307-16. [PMID: 24643875 PMCID: PMC4169361 DOI: 10.1007/s11011-014-9524-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K(+) by astrocytes, thereby leading to increased extracellular K(+) and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K(+) homeostasis and increased susceptibility to seizures in epilepsy.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy,
| | | | | | | |
Collapse
|
3
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
4
|
Cloix JF, Hévor T. Glycogen as a Putative Target for Diagnosis and Therapy in Brain Pathologies. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/930729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Brain glycogen, a glucose polymer, is now considered as a functional energy store to the brain. Indeed, when neurons outpace their own possibilities to provide themselves with energy, astrocytic metabolism is in charge of feeding neurons, since brain glycogen synthesis is mainly due to astrocyte. Therefore, malfunctions or perturbations of astrocytic glycogen content, synthesis, or mobilization may be involved in processes of brain pathologies. This is the case, for example, in epilepsies and gliomas, two different situations in which, brain needs high level of energy during acute or chronic conditions. The purpose of the present paper is to demonstrate how brain glycogen might be relevant in these two pathologies and to pinpoint the possibilities of considering glycogen as a tool for diagnostic and therapeutic approaches in brain pathologies.
Collapse
Affiliation(s)
- Jean-François Cloix
- Neurobioloy Laboratory, University of Orléans, Chartres Street, 45067 Orléans Cedex 2, France
| | - Tobias Hévor
- Neurobioloy Laboratory, University of Orléans, Chartres Street, 45067 Orléans Cedex 2, France
| |
Collapse
|
5
|
Velásquez Z, Pérez M, Morán M, Yanez A, Ávila J, Slebe J, Gómez‐Ramos P. Ultrastructural localization of fructose‐1,6‐bisphosphatase in mouse brain. Microsc Res Tech 2011; 74:329-36. [DOI: 10.1002/jemt.20911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/24/2010] [Indexed: 02/05/2023]
Affiliation(s)
- Z.D. Velásquez
- Centro de Biología Molecular “Severo Ochoa,” CSIC/UAM, Fac. Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - M. Pérez
- Departamento de Anatomía, Histología y Neurociencia, Fac. Medicina, Universidad Autónoma de Madrid, Spain
| | - M.A. Morán
- Departamento de Anatomía, Histología y Neurociencia, Fac. Medicina, Universidad Autónoma de Madrid, Spain
| | - A.J. Yanez
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - J. Ávila
- Centro de Biología Molecular “Severo Ochoa,” CSIC/UAM, Fac. Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - J.C. Slebe
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - P. Gómez‐Ramos
- Departamento de Anatomía, Histología y Neurociencia, Fac. Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
6
|
Lapouble E, Montécot C, Sevestre A, Pichon J. Phosphinothricin induces epileptic activity via nitric oxide production through NMDA receptor activation in adult mice. Brain Res 2002; 957:46-52. [PMID: 12443979 DOI: 10.1016/s0006-8993(02)03597-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphinothricin (PPT), the active component of a widely used herbicide, induces convulsions in rodents and humans. PPT shares structural analogy with glutamate, which could explain its powerful inhibitory effect on glutamine synthetase and its probable binding to glutamate receptors. To characterize the epileptogenic effect of PPT, electrographic and behavioural studies were carried out on PPT-treated adult mice. We investigated the role of N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) production in induction of seizures triggered by PPT, by using specific NMDA antagonist and nitric oxide synthase (NOS) inhibitor. The inhibitory effect of PPT on glutamine synthetase of mouse brain was assessed after in vitro and in vivo treatments. The results obtained show that PPT induces tonic-clonic seizures and generalized convulsions in mice. They suggest that these seizures are mediated through an NMDA receptor activation and NO production, without involvement of inhibition of glutamine synthetase.
Collapse
Affiliation(s)
- Eve Lapouble
- Laboratoire du Métabolisme Cérébral et Neuropathologies (MCN), UPRES 2633, Université d'Orléans, avenue du parc floral, BP 6759, 45 067 Orléans cedex 2, France
| | | | | | | |
Collapse
|
7
|
Bernard-Hélary K, Ardourel MY, Hévor T, Cloix JF. In vivo and in vitro glycogenic effects of methionine sulfoximine are different in two inbred strains of mice. Brain Res 2002; 929:147-55. [PMID: 11864619 DOI: 10.1016/s0006-8993(01)03380-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the relationship between brain glycogen anabolism and methionine sulfoximine (MSO)-induced seizures in two inbred mouse strains that presented differential susceptibility to the convulsant. CBA/J was considered a MSO-high-reactive strain and C57BL/6J a MSO-low-reactive strain. Accordingly, the dose of MSO needed to induce seizures in CBA/J mice is lower than that in C57BL/6J mice, and CBA/J mice which had seizures, died during the first convulsion. In addition, the time--course of the MSO effect is faster in CBA/J mice than that in C57BL/6J mice. Analyses were performed in C57BL/6J and CBA/J mice after administration of 75 (subconvulsive dose) and 40 mg/kg of MSO (subconvulsive dose, not lethal dose), respectively. In the preconvulsive period, MSO induced an increase in the brain glycogen content of C57BL/6J mice only. Twenty-four hours after MSO administration, the brain glycogen content increased in both strains. The activity and expression of fructose-1,6-bisphosphatase, the last key enzyme of the gluconeogenic pathway, were increased in MSO-treated C57BL/6J mice as compared to control mice, at all experimental time points, whereas they were increased in CBA/J mice only 24 h after MSO administration. These latter results correspond to CBA/J mice that did not have seizures. Interestingly, the differences observed in vivo were consistent with results in primary cultured astrocytes from the two strains. This data suggests that the metabolism impairment, which was not a consequence of seizures, could be related to the difference in seizure susceptibility between the two strains, depending on their genetic background.
Collapse
Affiliation(s)
- Katy Bernard-Hélary
- Métabolisme Cérébral et Neuropathologies, UPRES EA 2633, Université d'Orléans, Enceinte du Château, Bâtiment 23, Avenue du Parc Floral, BP 6759, 45067 Orléans CEDEX 2, France
| | | | | | | |
Collapse
|
8
|
Bernard-Hélary K, Ardourel M, Magistretti P, Hévor T, Cloix JF. Stable transfection of cDNAs targeting specific steps of glycogen metabolism supports the existence of active gluconeogenesis in mouse cultured astrocytes. Glia 2002. [DOI: 10.1002/glia.10046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Löffler T, Al-Robaiy S, Bigl M, Eschrich K, Schliebs R. Expression of fructose-1,6-bisphosphatase mRNA isoforms in normal and basal forebrain cholinergic lesioned rat brain. Int J Dev Neurosci 2001; 19:279-85. [PMID: 11337196 DOI: 10.1016/s0736-5748(01)00011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fructose-1,6-bisphosphatase is one of the key enzymes in the gluconeogenic pathway predominantly occurring in liver, kidney and muscle. In the brain, fructose-1,6-bisphosphatase has been suggested to be an astrocyte-specific enzyme but the functional importance of glyconeogenesis in the brain is still unclear. To further elucidate the cellular source of fructose-1,6-bisphosphatase in the brain, non-radioactive in situ hybridizations were performed using digoxigenin-labeled RNA probes based on the sequence of recently cloned rat liver and muscle fructose-1,6-bisphosphatase cDNAs. In situ hybridization using a riboprobe for the liver isoform revealed a location of the hybridization signal mainly in neurons, while rat muscle fructose-1,6-bisphosphatase mRNA was detected in both neurons and astrocytes in the hippocampal formation and in layer I of the cerebral cortex.RT-PCR using RNA preparations of rat astrocytes, neurons, and adult whole brain demonstrated a localization of liver fructose-1,6-bisphosphatase mRNA isoform in neurons but not in astrocytes. The muscle fructose-1,6-bisphosphatase mRNA isoform could be detected by RT-PCR in total rat brain, astrocytic, and neuronal mRNA preparations. The isoforms of fructose-1,6-bisphosphatase mRNA seemingly demonstrate a distinct cellular expression pattern in rat brain suggesting a role of glyconeogenesis in both neurons and glial cells.
Collapse
Affiliation(s)
- T Löffler
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, Jahnallee 59, D-04109, Leipzig, Germany
| | | | | | | | | |
Collapse
|
10
|
Hélary-Bernard K, Ardourel MY, Cloix JF, Hevor T. The xenobiotic methionine sulfoximine modulates carbohydrate anabolism and related genes expression in rodent brain. Toxicology 2000; 153:179-87. [PMID: 11090956 DOI: 10.1016/s0300-483x(00)00313-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Methionine sulfoximine is a xenobiotic amino acid derived from methionine. One of its major properties is to display a glycogenic activity in the brain. After studying this property, we investigate here a possible action of this xenobiotic on the expression of genes related to carbohydrate anabolism in the brain. Glycogen was studied by the means of electron microscopy. Astrocytes were cultured and the influence of methionine sulfoximine on carbohydrate anabolism in these cells was investigated. In vivo, methionine sulfoximine induced a large increase in glycogen accumulation. It also enhanced the glycogen accumulation in cultured astrocytes principally, when the medium was enriched in glucose. The gluconeogenic enzyme fructose-1,6-bisphosphatase may account for glycogen accumulation. Plasmids were built using antisens cDNA to permanently block the expression of fructose-1,6-bisphosphatase. An eukaryotic vector was used and the expression of fructose-1,6-bisphosphatase gene was under the control of the promoter of the glial fibrillary acidic protein. In this case, the glycogen content in cultured astrocytes largely decreased. This work shows that methionine sulfoximine enhances energy carbohydrate synthesis in the brain. Since this xenobiotic also enhances the expression of some genes related to one of the key step of glucose synthesis, it is possible that genes may be one target of methionine sulfoximine. Next investigations will study the actual effect of methionine sulfoximine in the cells.
Collapse
Affiliation(s)
- K Hélary-Bernard
- Laboratoire de Métabolisme Cérébral et Neuropathologies-E.A. 2633, Université d'Orléans, B.P. 6759, F-45067 Cedex 2, Orléans, France.
| | | | | | | |
Collapse
|
11
|
Mbarek O, Vergé V, Hevor T. Direct cloning of astrocytes from primary culture without previous immortalization. In Vitro Cell Dev Biol Anim 1998; 34:401-11. [PMID: 9639103 DOI: 10.1007/s11626-998-0022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In primary cultures, much evidence shows the existence of different subtypes of astrocytes that are not all identified. One methodology for studying these subtypes can be their cloning. The present investigation shows a method for a direct cloning of astrocytes without previous immortalization. Astrocytes from the cerebral cortex of newborn rats were cultured, purified by shaking, and harvested by trypsinization. One single astrocyte was plated in a small volume of a homemade cloning medium. After getting a colony, successive platings were made using larger and larger vessels, up to 60-mm-diameter petri dishes. Then, subcultures were made. The yield of the cloning was similar to that of common eukaryotic cell clonings. All along the cloning procedure, the cells were positively immunostained with anti-glial fibrillary acidic protein antibodies. Cloned cells from some batches were spindle-shaped, looking like fibroblasts. Nevertheless, they were immunostained with anti-glial fibrillary acidic protein antibodies, unlike true fibroblasts. These spindle-shaped astrocytes were compared to cells from an astrocytoma cell line that had the same shape. The growth pattern of the astrocytoma cells was different from that of the astrocytes cloned from the primary cultures. All the types of studied cells contained glycogen. On the basis of the criteria of morphology, of glial fibrillary acidic protein immunolabeling, and of glycogen synthesis, the cloned cells kept the characteristics of astrocytes. This study shows that it is perfectly possible to get clones of astrocytes from one astrocyte without previous immortalization, giving thus a convenient material for the study of astrocyte biology.
Collapse
Affiliation(s)
- O Mbarek
- Laboratoire de Physiologie, Université d'Orléans, France
| | | | | |
Collapse
|
12
|
Cloix JF, Beaulieu E, Hevor T. Various fructose-1,6-bisphosphatase mRNAs in mouse brain, liver, kidney and heart. Neuroreport 1997; 8:617-22. [PMID: 9106734 DOI: 10.1097/00001756-199702100-00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mouse fructose-1,6-bisphosphatase (FBPase) cDNA was previously cloned from testicular teratocarcinoma cultured cells (F9 cells). Using this published nucleotide sequence four primer sets were defined and used to amplify FBPase transcript from cerebral cortex, heart, kidney, liver and testis of male C57B1/6 mice. Only one primer set was efficient in all total RNA prepared from the various tissues. The restriction maps of these RNA amplification products suggested the existence of three different FBPase transcripts; this was confirmed by the nucleotide sequences of the FBPase transcripts and by the deduced amino acid sequences. These data are consistent with the existence of three different FBPase genes. This may be relevant in neurological disease in which abnormalities of brain glucose metabolism are involved.
Collapse
Affiliation(s)
- J F Cloix
- UPR CNRS 9074, Institut de Transgénose CNRS, Orléans, France
| | | | | |
Collapse
|
13
|
Abstract
Astrocytes are the principal sites of glycogen synthesis in the nervous tissue. Growing evidence shows that there are many types of astrocytes. The aim of the present investigation was to isolate different types of astrocytes that display different carbohydrate anabolism. Astrocytes from newborn rat brain were directly cloned from primary cultures without a previous transformation. Many clones were obtained, and they were termed CP clones. Another series of clones, termed SV clones, were obtained after the transfection of the primary cultures by the SV40 T antigen. The effectiveness of the transfection was verified by the rate of DNA synthesis using flow cytometry and by the presence of plasmid DNA in the genomic DNA of the astrocytes using the Southern blot method. After the transfection, the growth velocity increased greatly. The size and shape of the astrocytes were the same for each cell in a given clone, regardless of the cloning method utilized. However, these sizes and shapes could be different from one clone to another in CP clones, whereas all the astrocytes of all the SV clones looked like each other. All the clones obtained stained positively with anti-glial fibrillary acidic protein antibodies. Glycogen stained in the clones using concanavalin A-horseradish peroxidase. The glycogen content was also measured using biochemical analysis. Concordant results obtained using two methods showed that some clones contained an important quantity of glycogen while other clones contained a small amount, in the CP series as well as in the SV series. This property was the same for the intracellular glucose concentrations. The activity of the gluconeogenic enzyme fructose-1, 6-bisphosphatase was measured in each clone using spectrophotometry. This activity was also significantly different from one clone to another. The clones containing large amounts of glycogen had important fructose-1,6-bisphosphatase activity. The present results show that it is possible to clone astrocytes either directly from primary cultures without immortalization or after their transformation. When analyzing these clones, it appears that carbohydrate anabolism can be significantly different from one astrocyte to another. This difference may also exist in vivo.
Collapse
Affiliation(s)
- V Vergé
- Laboratoire de Physiologie, CNRS-UMR 1294, Université d'Orléans, France
| | | | | |
Collapse
|