1
|
Chakravarthi BVSK, Chandrashekar DS, Agarwal S, Balasubramanya SAH, Pathi SS, Goswami MT, Jing X, Wang R, Mehra R, Asangani IA, Chinnaiyan AM, Manne U, Sonpavde G, Netto GJ, Gordetsky J, Varambally S. miR-34a Regulates Expression of the Stathmin-1 Oncoprotein and Prostate Cancer Progression. Mol Cancer Res 2017; 16:1125-1137. [PMID: 29025958 DOI: 10.1158/1541-7786.mcr-17-0230] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/24/2017] [Accepted: 10/09/2017] [Indexed: 12/27/2022]
Abstract
In aggressive prostate cancers, the oncoprotein STMN1 (also known as stathmin 1 and oncoprotein 18) is often overexpressed. STMN1 is involved in various cellular processes, including cell proliferation, motility, and tumor metastasis. Here, it was found that the expression of STMN1 RNA and protein is elevated in metastatic prostate cancers. Knockdown of STMN1 resulted in reduced proliferation and invasion of cells and tumor growth and metastasis in vivo Furthermore, miR-34a downregulated STMN1 by directly binding to its 3'-UTR. Overexpression of miR-34a in prostate cancer cells reduced proliferation and colony formation, suggesting that it is a tumor suppressor. The transcriptional corepressor C-terminal binding protein 1 (CtBP1) negatively regulated expression of miR-34a. Furthermore, gene expression profiling of STMN1-modulated prostate cancer cells revealed molecular alterations, including elevated expression of growth differentiation factor 15 (GDF15), which is involved in cancer progression and potentially in STMN1-mediated oncogenesis. Thus, in prostate cancer, CtBP1-regulated miR-34a modulates STMN1 expression and is involved in cancer progression through the CtBP1\miR-34a\STMN1\GDF15 axis.Implications: The CtBP1\miR-34a\STMN1\GDF15 axis is a potential therapeutic target for treatment of aggressive prostate cancer. Mol Cancer Res; 16(7); 1125-37. ©2017 AACR.
Collapse
Affiliation(s)
- Balabhadrapatruni V S K Chakravarthi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Satya S Pathi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Moloy T Goswami
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Xiaojun Jing
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Irfan A Asangani
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Urology, University of Michigan, Ann Arbor, Michigan.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Guru Sonpavde
- Department of Medical Oncology, GU section, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer Gordetsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Chand D, Song L, deLannoy L, Barsyte-Lovejoy D, Ackloo S, Boutros PC, Evans K, Belsham DD, Lovejoy DA. C-Terminal region of teneurin-1 co-localizes with dystroglycan and modulates cytoskeletal organization through an extracellular signal-regulated kinase-dependent stathmin- and filamin A-mediated mechanism in hippocampal cells. Neuroscience 2012; 219:255-70. [PMID: 22698694 DOI: 10.1016/j.neuroscience.2012.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/07/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
The pyramidal neurons in the hippocampus are extremely neuroplastic, and the complexity of dendritic branches can be dynamically altered in response to a variety of stimuli, including learning and stress. Recently, the teneurin family of proteins has emerged as an interneuronal and extracellular matrix signaling system that plays a significant role in brain development and neuronal communication. Encoded on the last exon of the teneurin genes is a new family of bioactive peptides termed the teneurin C-terminal-associated peptides (TCAPs). Previous studies indicate that TCAP-1 regulates axon fasciculation and dendritic morphology in the hippocampus. This study was aimed at understanding the molecular mechanisms by which TCAP-1 regulates these changes in the mouse hippocampus. Fluoresceinisothiocyanate (FITC)-labeled TCAP-1 binds to the pyramidal neurons of the CA2 and CA3, and dentate gyrus in the hippocampus of the mouse brain. Moreover, FITC-TCAP-1 co-localizes with β-dystroglycan upon binding to the plasma membrane of cultured immortalized mouse E14 hippocampal cells. In culture, TCAP-1 stimulates ERK1/2-dependent phosphorylation of the cytoskeletal regulatory proteins, stathmin at serine-25 and filamin A at serine-2152. In addition, TCAP-1 induces actin polymerization, increases immunoreactivity of tubulin-based cytoskeletal elements and causes a corresponding increase in filopodia formation and mean filopodia length in cultured hippocampal cells. We postulate that the TCAP-1 region of teneurin-1 has a direct action on the cytoskeletal reorganization that precedes neurite and process development in hippocampal neurons. Our data provides novel evidence that functionally links the teneurin and dystroglycan systems and provides new insight into the molecular mechanisms by which TCAP-1 regulates cytoskeletal dynamics in hippocampal neurons. The TCAP-dystroglycan system may represent a novel mechanism associated with the regulation of hippocampal-function.
Collapse
Affiliation(s)
- D Chand
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Devaux S, Poulain FE, Devignot V, Lachkar S, Irinopoulou T, Sobel A. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons. J Biol Chem 2012; 287:22341-53. [PMID: 22577147 DOI: 10.1074/jbc.m112.344044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.
Collapse
|
4
|
Filbert EL, Le Borgne M, Lin J, Heuser JE, Shaw AS. Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5421-7. [PMID: 22529300 DOI: 10.4049/jimmunol.1200242] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polarization of T cells involves reorientation of the microtubule organizing center (MTOC). Because activated ERK is localized at the immunological synapse, we investigated its role by showing that ERK activation is important for MTOC polarization. Suspecting that ERK phosphorylates a regulator of microtubules, we next focused on stathmin, a known ERK substrate. Our work indicates that during T cell activation, ERK is recruited to the synapse, allowing it to phosphorylate stathmin molecules near the immunological synapse. Supporting an important role of stathmin phosphorylation in T cell activation, we showed that T cell activation results in increased microtubule growth rate dependent on the presence of stathmin. The significance of this finding was demonstrated by results showing that CTLs from stathmin(-/-) mice displayed defective MTOC polarization and defective target cell cytolysis. These data implicate stathmin as a regulator of the microtubule network during T cell activation.
Collapse
Affiliation(s)
- Erin L Filbert
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
5
|
Belletti B, Baldassarre G. Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 2011; 15:1249-66. [PMID: 21978024 DOI: 10.1517/14728222.2011.620951] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Stathmin is a microtubule-destabilizing phosphoprotein, firstly identified as the downstream target of many signal transduction pathways. Several studies then indicated that stathmin is overexpressed in many types of human malignancies, thus deserving the name of Oncoprotein 18 (Op18). At molecular level, stathmin depolymerizes microtubules by either sequestering free tubulin dimers or directly inducing microtubule-catastrophe. A crucial role for stathmin in the control of mitosis has been proposed, since both its overexpression and its downregulation induce failure in the correct completion of cell division. Accordingly, stathmin is an important target of the main regulator of M phase, cyclin-dependent kinase 1. AREAS COVERED Recent evidences support a role for stathmin in the regulation of cell growth and motility, both in vitro and in vivo, and indicate its involvement in advanced, invasive and metastatic cancer more than in primary tumors. EXPERT OPINION Many studies suggest that high stathmin expression levels in cancer negatively influence the response to microtubule-targeting drugs. These notions together with the fact that stathmin is expressed at very low levels in most adult tissues strongly support the use of stathmin as marker of prognosis and as target for novel anti-tumoral and anti-metastatic therapies.
Collapse
Affiliation(s)
- Barbara Belletti
- National Cancer Institute, Centro di Riferimento Oncologico, Division of Experimental Oncology 2, Via Franco Gallini, 2, 33081 Aviano, Italy
| | | |
Collapse
|
6
|
Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci 2010; 30:7804-16. [PMID: 20534829 DOI: 10.1523/jneurosci.0372-10.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) (comprising JNK1-3 isoforms) are members of the MAPK (mitogen-activated protein kinase) family, activated in response to various stimuli including growth factors and inflammatory cytokines. Their activation is facilitated by scaffold proteins, notably JNK-interacting protein-1 (JIP1). Originally considered to be mediators of neuronal degeneration in response to stress and injury, recent studies support a role of JNKs in early stages of neurite outgrowth, including adult axonal regeneration. However, the function of individual JNK isoforms, and their potential effector molecules, remained unknown. Here, we analyzed the role of JNK signaling during axonal regeneration from adult mouse dorsal root ganglion (DRG) neurons, combining pharmacological JNK inhibition and mice deficient for each JNK isoform and for JIP1. We demonstrate that neuritogenesis is delayed by lack of JNK2 and JNK3, but not JNK1. JNK signaling is further required for sustained neurite elongation, as pharmacological JNK inhibition resulted in massive neurite retraction. This function relies on JNK1 and JNK2. Neurite regeneration of jip1(-/-) DRG neurons is affected at both initiation and extension stages. Interestingly, activated JNKs (phospho-JNKs), as well as JIP1, are also present in the cytoplasm of sprouting or regenerating axons, suggesting a local action on cytoskeleton proteins. Indeed, we have shown that JNK1 and JNK2 regulate the phosphorylation state of microtubule-associated protein MAP1B, whose role in axonal regeneration was previously characterized. Moreover, lack of MAP1B prevents neurite retraction induced by JNK inhibition. Thus, signaling by individual JNKs is differentially implicated in the reorganization of the cytoskeleton, and neurite regeneration.
Collapse
|
7
|
Ng DCH, Zhao TT, Yeap YYC, Ngoei KR, Bogoyevitch MA. c-Jun N-terminal kinase phosphorylation of stathmin confers protection against cellular stress. J Biol Chem 2010; 285:29001-13. [PMID: 20630875 DOI: 10.1074/jbc.m110.128454] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell stress response encompasses the range of intracellular events required for adaptation to stimuli detrimental to cell survival. Although the c-Jun N-terminal kinase (JNK) is a stress-activated kinase that can promote either cell survival or death in response to detrimental stimuli, the JNK-regulated mechanisms involved in survival are not fully characterized. Here we show that in response to hyperosmotic stress, JNK phosphorylates a key cytoplasmic microtubule regulatory protein, stathmin (STMN), on conserved Ser-25 and Ser-38 residues. In in vitro biochemical studies, we identified STMN Ser-38 as the critical residue required for efficient phosphorylation by JNK and identified a novel kinase interaction domain in STMN required for recognition by JNK. We revealed that JNK was required for microtubule stabilization in response to hyperosmotic stress. Importantly, we also demonstrated a novel cytoprotective function for STMN, as the knockdown of STMN levels by siRNA was sufficient to augment viability in response to hyperosmotic stress. Our findings show that JNK targeting of STMN represents a novel stress-activated cytoprotective mechanism involving microtubule network changes.
Collapse
Affiliation(s)
- Dominic C H Ng
- Department of Biochemistry, Bio21 Institute, University of Melbourne, Parkville, 3010 Victoria, Australia
| | | | | | | | | |
Collapse
|
8
|
Dejda A, Chan P, Seaborn T, Coquet L, Jouenne T, Fournier A, Vaudry H, Vaudry D. Involvement of stathmin 1 in the neurotrophic effects of PACAP in PC12 cells. J Neurochem 2010; 114:1498-510. [PMID: 20569302 DOI: 10.1111/j.1471-4159.2010.06873.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rat pheochromocytoma PC12 cells have been widely used to investigate the neurotrophic activities of pituitary adenylate cyclase-activating polypeptide (PACAP). In particular, PACAP has been shown to promote differentiation and to inhibit apoptosis of PC12 cells. In order to identify the mechanisms mediating these effects, we sought for proteins that are phosphorylated upon PACAP treatment. High-performance liquid chromatography and 2D gel electrophoresis analysis, coupled with mass spectrometry, revealed that stathmin 1 is strongly phosphorylated within only 5 min of exposure to PACAP. Western blot experiments confirmed that PACAP induced a robust phosphorylation of stathmin 1 in a time-dependent manner. On the other hand, PACAP decreased stathmin 1 gene expression. Investigations of the signaling mechanisms known to be activated by PACAP revealed that phosphorylation of stathmin 1 was mainly mediated through the protein kinase A and mitogen-activated protein kinase pathways. Blockage of stathmin 1 expression with small interfering RNA did not affect PC12 cell differentiation induced by PACAP but reduced the ability of the peptide to inhibit caspase 3 activity and significantly decreased its neuroprotective action. Taken together, these data demonstrate that stathmin 1 is involved in the neurotrophic effect of PACAP in PC12 cells.
Collapse
Affiliation(s)
- Agnieszka Dejda
- INSERM U982, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides (IFRMP 23), Université de Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee WY, Lee PPF, Yan YK, Lau M. Cytotoxic copper(ii) salicylaldehyde semicarbazone complexes: Mode of action and proteomic analysis. Metallomics 2010; 2:694-705. [DOI: 10.1039/c0mt00016g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Gorin MA, Pan Q. Protein kinase C epsilon: an oncogene and emerging tumor biomarker. Mol Cancer 2009; 8:9. [PMID: 19228372 PMCID: PMC2647895 DOI: 10.1186/1476-4598-8-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/19/2009] [Indexed: 12/30/2022] Open
Abstract
Members of the protein kinase C (PKC) family have long been studied for their contributions to oncogenesis. Among the ten different isoforms of this family of serine/threonine kinases, protein kinase Cε (PKCε) is one of the best understood for its role as a transforming oncogene. In vitro, overexpression of PKCε has been demonstrated to increase proliferation, motility, and invasion of fibroblasts or immortalized epithelial cells. In addition, xenograft and transgenic animal models have clearly shown that overexpression of PKCε is tumorigenic resulting in metastatic disease. Perhaps most important in implicating the epsilon isoform in oncogenesis, PKCε has been found to be overexpressed in tumor-derived cell lines and histopathological tumor specimens from various organ sites. Combined, this body of work provides substantial evidence implicating PKCε as a transforming oncogene that plays a crucial role in establishing an aggressive metastatic phenotype. Reviewed here is the literature that has led to the current understanding of PKCε as an oncogene. Moreover, this review focuses on the PKCε-mediated signaling network for cell motility and explores the interaction of PKCε with three major PKCε signaling nodes: RhoA/C, Stat3 and Akt. Lastly, the emerging role of PKCε as a tumor biomarker is discussed.
Collapse
Affiliation(s)
- Michael A Gorin
- University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
11
|
Zada AAP, Geletu MH, Pulikkan JA, Müller-Tidow C, Reddy VA, Christopeit M, Hiddemann WD, Behre HM, Tenen DG, Behre G. Proteomic analysis of acute promyelocytic leukemia: PML-RARalpha leads to decreased phosphorylation of OP18 at serine 63. Proteomics 2007; 6:5705-19. [PMID: 17001604 DOI: 10.1002/pmic.200600307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, we employed 2-DE to characterize the effect of the acute promyelocytic leukemia (APL)-specific PML-RARalpha fusion protein on the proteome. Differentially expressed proteins, a number of which are related to the cell cycle function, including oncoprotein18 (OP18), heat shock protein70, glucose-regulated protein75, and peptidyl-prolyl isomerase, were identified by MS. Subsequent bioinformatic pathway discovery revealed an integrated network constituting SMARCB1, MYC, and TP53-regulated pathways. The data from the DNA microarray and proteomic experiments demonstrated the correlation between the translocation and higher expression of OP18 at mRNA and protein levels. Transient cotransfection assay revealed that PML-RARalpha is a potent activator of OP18 promoter and this transcriptional activation is retinoic acid sensitive. PML-RARalpha induction also leads to decreased phosphorylation on Ser63 residue of OP18, which is okadaic acid sensitive suggesting the involvement of a phosphatase pathway. Overexpression of a constitutively phosphorylated Ser63 mutant of OP18 in PML-RARalpha expressing APL patient, PR9, and NB4 cells led to a G2/M-phase arrest in contrast to a phosphorylation-deficient Ser63 mutant and untransfected control. Taken together, our results demonstrate the significance of decreased Ser63 phosphorylation of OP18 in PML-RARalpha-mediated effects on cell cycle.
Collapse
MESH Headings
- Cell Line
- Clone Cells
- Computational Biology/methods
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Profiling
- Genes, Reporter
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Luciferases/metabolism
- Mass Spectrometry
- Mutation
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Mapping
- Phosphorylation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Structure, Secondary
- Proteome/analysis
- Proteomics/methods
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Serine/metabolism
- Stathmin/chemistry
- Stathmin/genetics
- Stathmin/metabolism
- Transfection
- U937 Cells
- Zinc Sulfate
Collapse
|
12
|
Hayashi K, Pan Y, Shu H, Ohshima T, Kansy JW, White CL, Tamminga CA, Sobel A, Curmi PA, Mikoshiba K, Bibb JA. Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain. J Neurochem 2006; 99:237-50. [PMID: 16925597 DOI: 10.1111/j.1471-4159.2006.04113.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Regulation of cytoskeletal dynamics is essential to neuronal plasticity during development and adulthood. Dysregulation of these mechanisms may contribute to neuropsychiatric and neurodegenerative diseases. The neuronal protein kinase, cyclin-dependent kinase 5 (Cdk5), is involved in multiple aspects of neuronal function, including regulation of cytoskeleton. A neuroproteomic search identified the tubulin-binding protein, stathmin, as a novel Cdk5 substrate. Stathmin was phosphorylated by Cdk5 in vitro at Ser25 and Ser38, previously identified as mitogen-activated protein kinase (MAPK) and p38 MAPKdelta sites. Cdk5 predominantly phosphorylated Ser38, while MAPK and p38 MAPKdelta predominantly phosphorylated Ser25. Stathmin was phosphorylated at both sites in mouse brain, with higher levels in cortex and striatum. Cdk5 knockout mice exhibited decreased phospho-Ser38 levels. During development, phospho-Ser25 and -Ser38 levels peaked at post-natal day 7, followed by reduction in total stathmin. Inhibition of protein phosphatases in striatal slices caused an increase in phospho-Ser25 and a decrease in total stathmin. Interestingly, the prefrontal cortex of schizophrenic patients had increased phospho-Ser25 levels. In contrast, total and phospho-Ser25 stoichiometries were decreased in the hippocampus of Alzheimer's patients. Thus, microtubule regulatory mechanisms involving the phosphorylation of stathmin may contribute to developmental synaptic pruning and structural plasticity, and may be involved in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kanehiro Hayashi
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wyttenbach A, Tolkovsky AM. Differential phosphoprotein labeling (DIPPL), a method for comparing live cell phosphoproteomes using simultaneous analysis of (33)P- and (32)P-labeled proteins. Mol Cell Proteomics 2005; 5:553-9. [PMID: 16301211 DOI: 10.1074/mcp.t500028-mcp200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We developed a differential method to reveal kinase-specific phosphorylation events in live cells. In this method, cells in which the specified kinase is inactive are labeled with (32)Pi, whereas cells in which the kinase is active are labeled with (33)Pi. The two cell extracts are then mixed, and proteins are separated on a single two-dimensional gel. The dried gel is exposed twice. The first exposure reveals both (32)P- and (33)P-labeled proteins; the kinase-specific spots are revealed because of (33)P labeling. The second exposure is conducted with two acetate sheets intervening between the gel and the detection plate. This maneuver screens out the less energetic (33)P-labeled proteins while allowing the more energetic (32)P-labeled proteins to be detected, thus leaving only those spots that were phosphorylated independently of the specified kinase. We demonstrate the utility of this method for detecting kinase substrates in rare tissue by focusing on extracellular signal-regulated kinase-specific phosphorylation of stathmin/OP18 in primary rat sympathetic neurons.
Collapse
Affiliation(s)
- Andreas Wyttenbach
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| | | |
Collapse
|
14
|
Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V, Siavoshian S, Maucuer A, Sobel A. Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 2004; 24:345-57. [PMID: 15216892 DOI: 10.1247/csf.24.345] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stathmin, also referred to as Op18, is a ubiquitous cytosolic phosphoprotein, proposed to be a small regulatory protein and a relay integrating diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation and activities. It interacts with several putative downstream target and/or partner proteins. One major action of stathmin is to interfere with microtubule dynamics, by inhibiting the formation of microtubules and/or favoring their depolymerization. Stathmin (S) interacts directly with soluble tubulin (T), which results in the formation of a T2S complex which sequesters free tubulin and therefore impedes microtubule formation. However, it has been also proposed that stathmin's action on microtubules might result from the direct promotion of catastrophes, which is still controversial. Phosphorylation of stathmin regulates its biological actions: it reduces its affinity for tubulin and hence its action on microtubule dynamics, which allows for example progression of cells through mitosis. Stathmin is also the generic element of a protein family including the neural proteins SCG10, SCLIP and RB3/RB3'/RB3". Interestingly, the stathmin-like domains of these proteins also possess a tubulin binding activity in vitro. In vivo, the transient expression of neural phosphoproteins of the stathmin family leads to their localization at Golgi membranes and, as previously described for stathmin and SCG10, to the depolymerization of interphasic microtubules. Altogether, the same mechanism for microtubule destabilization, that implies tubulin sequestration, is a common feature likely involved in the specific biological roles of each member of the stathmin family.
Collapse
Affiliation(s)
- P A Curmi
- INSERM U440, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Niethammer P, Bastiaens P, Karsenti E. Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 2004; 303:1862-6. [PMID: 15031504 DOI: 10.1126/science.1094108] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spatial organization of the microtubule cytoskeleton is thought to be directed by steady-state activity gradients of diffusible regulatory molecules. We visualized such intracellular gradients by monitoring the interaction between tubulin and a regulator of microtubule dynamics, stathmin, using a fluorescence resonance energy transfer (FRET) biosensor. These gradients were observed both during interphase in motile membrane protrusions and during mitosis around chromosomes, which suggests that a similar mechanism may contribute to the creation of polarized microtubule structures. These interaction patterns are likely to reflect phosphorylation of stathmin in these areas.
Collapse
Affiliation(s)
- Philipp Niethammer
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Nakamura H, Hirata A, Tsuji T, Yamamoto T. Role of osteoclast extracellular signal-regulated kinase (ERK) in cell survival and maintenance of cell polarity. J Bone Miner Res 2003; 18:1198-205. [PMID: 12854829 DOI: 10.1359/jbmr.2003.18.7.1198] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Morphological changes of osteoclasts by a MEK1 inhibitor, PD98059, were investigated to clarify a role of ERK. PD98059 promoted apoptosis of osteoclasts and the loss of ruffled borders. This study supports the importance of ERK in survival and polarity of osteoclasts. INTRODUCTION Extracellular signal-regulated kinase (ERK) is a mitogen activated protein kinase (MAPK) that has been reported to play a role in the survival and apoptosis of osteoclasts. However, the precise signal transduction mechanism is not fully understood. The aim of this study was to clarify the role of ERK in osteoclasts by histological analysis. MATERIALS AND METHODS Using a rat calvarial organ culture system, the inhibition of ERK phosphorylation by PD98059, a MAPK/ERK kinase 1 (MEK1) inhibitor, was assayed by immunoblotting. Morphological changes in osteoclasts induced by PD98059 were elucidated by light and electron microscopy. The cellular localization of ERK was also determined by immunoelectron microscopy. RESULTS PD98059 inhibited phosphorylated ERK after a 1-h incubation. Ultrastructural study demonstrated that PD98059 induced the accumulation of vesicles and vacuoles in osteoclasts and the loss of ruffled border at 1 h. At 3 h, some osteoclasts showed apoptosis with nuclear condensation, and at 6 h after PD98059 treatment, many osteoclasts were detached from the bone surface and had lost their cell polarity. Electron microscopic immunohistochemistry revealed that ERK was mainly localized in the cytoplasm of clear zones in control osteoclasts, but apoptotic osteoclasts also showed immunoreactivity in clear zone-like structures in contact with osteoblast-lineage cells. CONCLUSION These findings indicate that ERK in osteoclasts is involved in their survival and may be involved in the formation of a ruffled border and the maintenance of cell polarity.
Collapse
Affiliation(s)
- Hiroaki Nakamura
- Department of Oral Morphology, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | |
Collapse
|
17
|
Nagasaka Y, Fijimoto M, Arai H, Nakamura K. Inhibition of heat-induced phosphorylation of stathmin by the bioflavonoid quercetin. Electrophoresis 2002; 23:670-3. [PMID: 11870780 DOI: 10.1002/1522-2683(200202)23:4<670::aid-elps670>3.0.co;2-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Effects of quercetin on heat-induced phosphorylation of stathmin in JURKAT cells were examined. Two-dimensional electrophoresis of stathmin showed that heat shock increases mono- and diphosphorylation of stathmin. Monophosphorylation induced by heat shock was inhibited by the presence of 0.1 mM quercetin, but not by the presence of 0.1 microM staurosporine. Immunoblot analysis of phosphorylated stathmin showed that heat-induced phosphorylation at Ser-38 was inhibited by quercetin but not by staurosporine. Quercetin enhanced heat-induced tyrosine phosphorylation of MAP kinase. These observations indicate that quercetin inhibits heat-induced phosphorylation at Ser-38 of stathmin but mitogen-activated protein (MAP) kinase is not involved in its phosphorylation.
Collapse
Affiliation(s)
- Yuji Nagasaka
- Department of Human Nutrition, Yamaguchi Prefectural University, Yamaguchi, Japan
| | | | | | | |
Collapse
|
18
|
Bräuer AU, Savaskan NE, Plaschke M, Ninnemann O, Nitsch R. Perforant path lesion induces up-regulation of stathmin messenger RNA, but not SCG10 messenger RNA, in the adult rat hippocampus. Neuroscience 2001; 102:515-26. [PMID: 11226690 DOI: 10.1016/s0306-4522(00)00471-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we performed in situ hybridization analysis of the expression pattern of two growth-associated proteins, stathmin and SCG10, in the hippocampus after unilateral lesion of the perforant pathway, the main excitatory input from the entorhinal cortex to the hippocampus. Stathmin is one of the major neural-enriched cytosolic phosphoproteins and a potential target of cyclic-AMP-dependent kinases [Jin L. W. et al. (1996) Neurobiol. Aging 17, 331-341; Leighton I. A. et al. (1993) Molec. Cell Biochem. 127/128, 151-156]. Three days after the lesion, stathmin messenger RNA was up-regulated ipsilaterally in the hilus, in the granule cell layer of the dentate gyrus and in the pyramidal cell layer of the CA1 region. Simultaneously, the hilar region of the contralateral dentate gyrus showed an increased stathmin messenger RNA expression. This altered expression pattern was observed until 15 days after lesion. Stathmin messenger RNA expression returned to a normal level until 21 days after lesion in all regions analysed. SCG10, a membrane-bound neuronal growth-associated protein belonging to the SCG10/stathmin gene family, did not show any alteration of messenger RNA expression after perforant path lesion. The temporal changes of stathmin messenger RNA expression in the ipsilateral hippocampus correspond well to the process of reactive synaptogenesis. The enhanced messenger RNA expression in the hilar region of the contralateral dentate gyrus might suggest a role in neurite elongation, since this region is the origin of commissural fibres involved in the sprouting response in the deafferented hippocampus. The present study provides evidence that the induction of specific growth-associated proteins is differentially regulated in the hippocampus.
Collapse
Affiliation(s)
- A U Bräuer
- Department of Cell Biology and Neurobiology, Humboldt University Medical School (Charité), Institute of Anatomy, Philippstr. 12, 10115, Berlin, Germany.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Stathmin/Op18 is a highly conserved 19 kDa cytosolic phosphoprotein. Human and chicken stathmin share 93% identity with only 11 amino acid substitutions. One of the substituted amino acids is serine 25, which is a glycine in chicken stathmin. In human stathmin, serine 25 is the main phosphorylation site for MAP kinase. In this study, we have compared the phosphorylation of human and chicken stathmin. The proteins were expressed in Sf9 cells using the baculovirus expression system and purified for in vitro phosphorylation assays. Phosphorylation with MAP kinase showed that chicken stathmin was phosphorylated 10 times less than human stathmin. To identify the phosphorylation sites we used liquid chromatography/mass spectrometry (LC/MS/MS). The only amino acid found phosphorylated was serine 38, which corresponds to the minor phosphorylation site in human stathmin. Phosphorylation with p34(cdc2)- and cGMP-dependent protein kinases gave almost identical phosphorylation levels in the two stathmins.
Collapse
Affiliation(s)
- B Antonsson
- Geneva Biomedical Research Institute, Glaxo Wellcome R&D S.A., 14 ch des Aulx, CH-1288 Plan-les-Ouates, Geneva, Switzerland.
| | | | | | | |
Collapse
|
20
|
Pellier-Monnin V, Astic L, Bichet S, Riederer BM, Grenningloh G. Expression of SCG10 and stathmin proteins in the rat olfactory system during development and axonal regeneration. J Comp Neurol 2001; 433:239-54. [PMID: 11283962 DOI: 10.1002/cne.1138] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.
Collapse
Affiliation(s)
- V Pellier-Monnin
- Laboratoire de Neurosciences et Systèmes sensoriels, Université Claude Bernard/Lyon I, 69622 Villeurbanne Cedex, France.
| | | | | | | | | |
Collapse
|
21
|
Brattsand G. Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer 2000; 83:311-8. [PMID: 10917544 PMCID: PMC2374559 DOI: 10.1054/bjoc.2000.1264] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oncoprotein 18/stathmin (Op18) is a conserved cytosolic phosphoprotein that regulates microtubule dynamics. The microtubule destabilizing activity is regulated by phosphorylation, mediated by both growth factor stimulated- and cell-cycle regulating kinases. The protein is highly expressed in a variety of human malignancies. In human breast carcinoma, Op18 has previously been shown to be up-regulated in a subset of the tumours, however, no correlation with clinicopathologic characteristics has been reported so far. In the present study we have examined Op18 protein expression by quantitative Western blot analysis in a panel of 151 semi-consecutive breast carcinoma samples. Op18 levels were negatively correlated with oestrogen receptor (OR) expression and positively correlated with a high fraction of aneuploid cells, proliferation measured by proliferating cell nuclear antigen (PCNA) expression, tumour size and histopathologic grade. Taken together, and in contrast to what has been previously reported, the present study shows that high Op18 expression correlates with general predictive factors and is not restricted to a specific sub-group of breast carcinoma.
Collapse
Affiliation(s)
- G Brattsand
- Department of Clinical Chemistry, Umeå University Hospital, Sweden
| |
Collapse
|
22
|
Redeker V, Lachkar S, Siavoshian S, Charbaut E, Rossier J, Sobel A, Curmi PA. Probing the native structure of stathmin and its interaction domains with tubulin. Combined use of limited proteolysis, size exclusion chromatography, and mass spectrometry. J Biol Chem 2000; 275:6841-9. [PMID: 10702243 DOI: 10.1074/jbc.275.10.6841] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stathmin is a cytosoluble phosphoprotein proposed to be a regulatory relay integrating diverse intracellular signaling pathway. Its interaction with tubulin modulates microtubule dynamics by destabilization of assembled microtubules or inhibition of their polymerization from free tubulin. The aim of this study was to probe the native structure of stathmin and to delineate its minimal region able to interact with tubulin. Limited proteolysis of stathmin revealed four structured domains within the native protein, corresponding to amino acid sequences 22-81 (I), 95-113 (II), 113-128 (III), and 128-149 (IV), which allows us to propose stathmin folding hypotheses. Furthermore, stathmin proteolytic fragments were mixed to interact with tubulin, and those that retained affinity for tubulin were isolated by size exclusion chromatography and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results indicate that, to interact with tubulin, a stathmin fragment must span a minimal core region from residues 42 to 126, which interestingly corresponds to the predicted alpha-helical "interaction region" of stathmin. In addition, an interacting stathmin fragment must include a short N- or C-terminal extension. The functional significance of these interaction constrains is further validated by tubulin polymerization inhibition assays with fragments designed on the basis of the tubulin binding results. The present results will help to optimize further stathmin structural studies and to develop molecular tools to target its interaction with tubulin.
Collapse
Affiliation(s)
- V Redeker
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Neurobiologie et Diversité Cellulaire, CNRS UMR 7637, 10 Rue Vauquelin, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Sun Z, Pan J, Hope WX, Cohen SN, Balk SP. Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300. Cancer 1999; 86:689-96. [PMID: 10440698 DOI: 10.1002/(sici)1097-0142(19990815)86:4<689::aid-cncr19>3.0.co;2-p] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Functional inactivation of the tsg101 gene in mouse fibroblasts leads to cell transformation and the ability to form metastatic tumors in nude mice. Abnormal TSG101 transcripts with highly-specific deletions in the protein-coding region have been identified in human tumor samples and cancer cell lines, including prostate and breast carcinomas, and have been attributed to alternative splicing of TSG101 mRNA. The function of the TSG101 protein is not known, although its predicted sequence has suggested that it may function as a transcription factor. METHODS Human TSG101 N-terminal (encoding amino acids 10-240) and C-terminal (encoding amino acids 230-391) fragments were cloned and used in both transient transfection and protein binding experiments. The transient transfections were carried in CV-1 cells. Protein-protein interactions were determined by both glutathione-S-transferase fusion protein binding and co-immunoprecipitation. RESULTS The N-terminal region of TSG101, when fused to the GAL4 DNA binding domain, can activate transcription; whereas the C-terminal region mediates transcriptional repression. Full-length TSG101 or its separated regions repressed ligand-dependent transcriptional activation by nuclear receptors, including androgen receptor and estrogen receptor, which play central roles in prostate carcinoma and breast carcinoma, respectively. In addition, a direct association between TSG101 and the transcriptional co-factor p300 was demonstrated in vitro and in vivo. CONCLUSIONS These results indicate that TSG101 can function as a transcription modulator to affect nuclear receptor-mediated transcriptional activation, which raises the possibility that the tumor suppression by TSG101 observed previously may be mediated at least in part by its effects on nuclear receptor function.
Collapse
Affiliation(s)
- Z Sun
- Liem Sioe Liong Molecular Biology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
24
|
Koppel J, Rehák P, Baran V, Veselá J, Hlinka D, Manceau V, Sobel A. Cellular and subcellular localization of stathmin during oocyte and preimplantation embryo development. Mol Reprod Dev 1999; 53:306-17. [PMID: 10369391 DOI: 10.1002/(sici)1098-2795(199907)53:3<306::aid-mrd6>3.0.co;2-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stathmin is a 19 kDa cytosolic phosphoprotein, proposed to act as a relay integrating diverse intracellular signaling pathways involved in regulation of cell proliferation, differentiation, and function. To gain further information about its significance during early development, we analyzed stathmin expression and subcellular localization in mouse oocytes and preimplantation embryos. RT-PCR analysis revealed a low expression of stathmin mRNA in unfertilized oocytes and a higher expression at the blastocyst stage. A fine cytoplasmic punctuate fluorescent immunoreactive stathmin pattern was detected in the oocyte, while it evolved toward an increasingly speckled pattern in the two-cell and later four- to eight-cell embryo, with even larger speckles at the morula stage. In blastocysts, stathmin immunoreactivity was fine and intense in inner cell mass cells, whereas it was low and variable in trophectodermal cells. Electron microscopic analysis allowed visualization with more detail of two types of stathmin immunolocalization: small clusters in the cytoplasm of oocytes and blastocyst cells, together with loosely arranged clusters around the outer membrane of cytoplasmic vesicles, corresponding to the immunofluorescent speckles in embryos until the morula stage. In conclusion, it appears from our results that maternal stathmin is accumulated in the oocyte and is relocalized within the oocyte and early preimplantation embryonic cell cytoplasm to interact with specific cytoplasmic membrane formations. Probably newly synthesized, embryonic stathmin is expressed in the blastocyst, where it is localized more uniformly in the cytoplasm mostly of inner cell mass (ICM) cells. These expression and localization patterns are probably related to the particular roles of stathmin at the successive steps of oocyte maturation and early embryonic development. They further support the proposed physiologic importance of stathmin in essential biologic regulation.
Collapse
Affiliation(s)
- J Koppel
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Stathmin is a ubiquitous cytosolic phosphoprotein participating in the relay and integration of diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation, and activities. It is phosphorylated in response to diverse extracellular signals including hormones and growth factors, and it is highly expressed during development and in diverse tumoral cells and tissues. Stathmin interacts with tubulin and other potential protein partners such as BiP, KIS, CC1 and CC2/tsg101. In our present search for further functional partners of stathmin, we identified proteins in the Hsp70 family, and in particular Hsc70, as interacting with stathmin in vitro. Hsc70 is among the proteins coimmunoprecipitated with stathmin, and it is the main protein retained specifically on stathmin-Sepharose beads identified by one- and two-dimensional electrophoresis and immunoblots. Bovine serum albumin (BSA)-Sepharose did not bind Hsc70, and anti-stathmin antisera specifically inhibited the interaction of Hsc70 with stathmin-Sepharose. The binding of Hsc70 to stathmin is dependent on the phosphorylation status of stathmin, as it did not occur with a "pseudophosphorylated" mutant form of stathmin. This interaction is further dependent on the ATP status of Hsc70. It was inhibited in the presence of ATP-Mg++ but not in the presence of ATP-Mg++ and ethylenediaminetetraacetic acid (EDTA) or of ADP. Our results suggest that the interaction of stathmin with Hsc70 is specific in both proteins and most likely biologically relevant in the context of their functional implication in the control of numerous intracellular signaling and regulatory pathways, and hence of normal cell growth and differentiation.
Collapse
|
26
|
Gavet O, Ozon S, Manceau V, Lawler S, Curmi P, Sobel A. The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network. J Cell Sci 1998; 111 ( Pt 22):3333-46. [PMID: 9788875 DOI: 10.1242/jcs.111.22.3333] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stathmin is a small regulatory phosphoprotein integrating diverse intracellular signaling pathways. It is also the generic element of a protein family including the neural proteins SCG10, SCLIP, RB3 and its two splice variants RB3′ and RB3″. Stathmin itself was shown to interact in vitro with tubulin in a phosphorylation-dependent manner, sequestering free tubulin and hence promoting microtubule depolymerization. We investigated the intracellular distribution and tubulin depolymerizing activity in vivo of all known members of the stathmin family. Whereas stathmin is not associated with interphase microtubules in HeLa cells, a fraction of it is concentrated at the mitotic spindle. We generated antisera specific for stathmin phosphoforms, which allowed us to visualize the regulation of phosphorylation-dephosphorylation during the successive stages of mitosis, and the partial localization of stathmin phosphorylated on serine 16 at the mitotic spindle. Results from overexpression experiments of wild-type and novel phosphorylation site mutants of stathmin further suggest that it induces depolymerization of interphase and mitotic microtubules in its unphosphorylated state but is inactivated by phosphorylation in mitosis. Phosphorylation of mutants 16A25A and 38A63A on sites 38 and 63 or 16 and 25, respectively, was sufficient for the formation of a functional spindle, whereas mutant 16A25A38A63E retained a microtubule depolymerizing activity. Transient expression of each of the neural phosphoproteins of the stathmin family showed that they are at least partially associated to the Golgi apparatus and not to other major membrane compartments, probably through their different NH2-terminal domains, as described for SCG10. Most importantly, like stathmin and SCG10, overexpressed SCLIP, RB3 and RB3″ were able to depolymerize interphase microtubules. Altogether, our results demonstrate in vivo the functional conservation of the stathmin domain within each protein of the stathmin family, with a microtubule destabilizing activity most likely essential for their specific biological function(s).
Collapse
Affiliation(s)
- O Gavet
- INSERM U440, IFM, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Bièche I, Lachkar S, Becette V, Cifuentes-Diaz C, Sobel A, Lidereau R, Curmi PA. Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer 1998; 78:701-9. [PMID: 9743287 PMCID: PMC2062973 DOI: 10.1038/bjc.1998.565] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stathmin is a highly conserved cytosolic phosphoprotein that destabilizes microtubules. Stathmin, which has been proposed as a relay protein integrating diverse cell signalling pathways, acts in vitro as a tubulin-sequestering protein, and its activity is dramatically reduced by phosphorylation. Interestingly, stathmin expression and phosphorylation are regulated during the control of cell growth and differentiation, and there is much evidence suggesting that in vivo stathmin plays a role in the control of microtubule dynamics during mitosis. Stathmin may thus be considered as one of the key regulators of cell division. We examined 50 human primary breast tumours for stathmin mRNA and protein expression and screened for abnormalities in the chromosome region harbouring the stathmin gene. Overexpression of stathmin was found in 15 tumours (30%). At the present stage, no clear correlation emerged between stathmin expression and several prognosis markers. Interestingly, perfect matching was observed between stathmin mRNA overexpression, protein overexpression and strong staining for stathmin on paraffin-embedded tumour sections when specimens were available. Furthermore, a tentative link between loss of heterozygosity (LOH) in the 1p32-1pter region and stathmin overexpression was observed. Our results suggest that stathmin might play a role in breast carcinogenesis and that stathmin-overexpressing tumours may represent a new subtype of breast cancer.
Collapse
Affiliation(s)
- I Bièche
- Laboratoire d'Oncologénétique, Centre René Huguenin, St-Cloud, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Parker CG, Hunt J, Diener K, McGinley M, Soriano B, Keesler GA, Bray J, Yao Z, Wang XS, Kohno T, Lichenstein HS. Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun 1998; 249:791-6. [PMID: 9731215 DOI: 10.1006/bbrc.1998.9250] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38 mitogen-activated protein kinases (MAPK) are a family of kinases that are activated by cellular stresses and inflammatory cytokines. Although there are many similarities shared by the isoforms of p38 (alpha, beta, gamma, and delta), p38 delta differs from the others in some respects such as inhibitor sensitivity and substrate specificity. Utilizing in a solution kinase assay, we identified a novel p38 delta substrate as stathmin. Stathmin is a cytoplasmic protein that was previously reported to be a substrate of several intracellular signaling kinases and has recently been linked to regulation of microtubule dynamics. p38 delta has significantly higher in vitro phosphorylating activity against stathmin than other p38 isoforms or related MAPKs. In transient expression studies, we found that in addition to different stimuli osmotic stress activates p38 delta to phosphorylate stathmin. The sites of phosphorylation were mapped to Ser-25 and Ser-38, both in vitro and in cells.
Collapse
|
29
|
Scheele JS. cAMP-dependent phosphorylation and hexamethylene-bis-acetamide induced dephosphorylation of p19 in murine erythroleukemia cells. Mol Cell Biochem 1998; 185:55-63. [PMID: 9746212 DOI: 10.1023/a:1016563720515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to investigate cyclic-adenosinemonophosphate (cAMP)-dependent phosphorylation in murine erythroleukemia (MEL) cells and to identify either direct substrates of cAMP-dependent kinase or downstream effectors of cAMP dependent phosphorylation with a potential function in growth and differentiation. MEL-cells rendered deficient in cAMP-dependent protein kinase (A-kinase) activity by stable transfection with DNA encoding for either a mutant regulatory subunit or a specific peptide inhibitor of A-Kinase (PKI) are unable to differentiate normally in response to chemical inducers. We have identified by 2-D Western blotting 2 phosphorylated forms of p19, a highly conserved 18-19 kDa cytosolic protein that is frequently upregulated in transformed cells and undergoes phosphorylation in mammalian cells upon activation of several signal transduction pathways. The phosphorylation of the more acidic phosphorylated form is increased in a cAMP-dependent fashion and impaired in cells deficient in cAMP-dependent kinase (A-kinase). Treatment of MEL-cells with the chemical inducer of differentiation hexamethylene-bisacetamide (HMBA) led to dephosphoryation of this phosphoform. Our data are compatible with previous observations which imply that phosphorylation of Ser 38 in p19 by p34cdc2-kinase leads to a more basic phosphoform and simultaneous phosphorylation by mitogen-activated kinase of Ser 25 in response to protein kinase C and the cAMP-dependent kinase creates the more acidic species.
Collapse
Affiliation(s)
- J S Scheele
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla 92093-0612, USA
| |
Collapse
|
30
|
le Gouvello S, Manceau V, Sobel A. Serine 16 of Stathmin as a Cytosolic Target for Ca2+/Calmodulin-Dependent Kinase II After CD2 Triggering of Human T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.3.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
We investigated specific signaling events initiated after T cell triggering through the costimulatory surface receptors CD2 and CD28 as compared with activation via the Ag receptor (TCR/CD3). We therefore followed the phosphorylation of stathmin, a ubiquitous cytoplasmic phosphoprotein proposed as a general relay integrating diverse intracellular signaling pathways through the combinatorial phosphorylation of serines 16, 25, 38, and 63, the likely physiologic substrates for Ca2+/calmodulin (CaM)-dependent kinases, mitogen-activated protein (MAP) kinase, cyclin-dependent kinases (cdks), and protein kinase A, respectively. We addressed the specific protein kinase systems involved in the CD2 pathway of T cell activation through the analysis of stathmin phosphorylation patterns in exponentially growing Jurkat T cells, as revealed by phosphopeptide mapping. Stimulation via CD2 activated multiple signal transduction pathways, resulting in phosphorylation of distinct sites of stathmin, the combination of which only partially overlaps the CD3- and CD28-induced patterns. The partial redundancy of the three T cell activation pathways was evidenced by the phosphorylation of Ser25 and Ser38, substrates of MAP kinases and of the cdk family kinase(s), respectively. Conversely, the phosphorylation of Ser16 of stathmin was observed in response to both CD2 and CD28 triggering, but not CD3 triggering, with a kinetics compatible with the lasting activation of CaM kinase II in response to CD2 triggering. In vitro, Ser16 of recombinant human stathmin was phosphorylated also by purified CaM kinase II, and in vivo, CaM kinase II activity was indeed stimulated in CD2-triggered Jurkat cells. Altogether, our results favor an association of CaM kinase II activity with costimulatory signals of T lymphocyte activation and phosphorylation of stathmin on Ser16.
Collapse
Affiliation(s)
- Sabine le Gouvello
- Institut National de la Santé et de la Recherche Médicale U440, Paris, France
| | - Valérie Manceau
- Institut National de la Santé et de la Recherche Médicale U440, Paris, France
| | - André Sobel
- Institut National de la Santé et de la Recherche Médicale U440, Paris, France
| |
Collapse
|
31
|
Lu Q, Paredes M, Zhang J, Kosik KS. Basal extracellular signal-regulated kinase activity modulates cell-cell and cell-matrix interactions. Mol Cell Biol 1998; 18:3257-65. [PMID: 9584166 PMCID: PMC108907 DOI: 10.1128/mcb.18.6.3257] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Suppression of the basal extracellular signal-regulated kinase (ERK) activity in PC12 cells markedly altered their phenotype. Wild-type cells grew in a dissociated pattern adherent to the substrate. The stable expression of an ERK inhibitory mutant resulted in the formation of calcium-dependent aggregates which were less adherent to the substrate. Concomitantly, the cells reorganized their actin cytoskeleton and increased their expression of several adherens junction proteins, particularly cadherin. Metabolic labeling demonstrated an increased synthesis of cadherin and beta-catenin in these cells. Nontransfected PC12 cells and a ras-transformed MDCK cell line also formed aggregates and increased their expression of adherens junction proteins following treatment with the selective MEK inhibitor PD98059. A peptide containing the HAV cadherin recognition sequence attenuated the aggregation. These studies suggest that in PC12 and epithelial cells, ERKs are pivotally positioned to enhance substrate interactions when active or to release homotypic interactions when suppressed.
Collapse
Affiliation(s)
- Q Lu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
32
|
Drouva SV, Poulin B, Manceau V, Sobel A. Luteinizing hormone-releasing hormone-signal transduction and stathmin phosphorylation in the gonadotrope alphaT3-1 cell line. Endocrinology 1998; 139:2235-9. [PMID: 9564828 DOI: 10.1210/endo.139.5.5995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have investigated the effects of GnRH (LHRH) and of the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate on stathmin phosphorylation in the gonadotrope alphaT3-1 cell line. Stathmin expression and its phosphorylation were maximal during the exponential phase of cell growth. LHRH stimulated stathmin phosphorylation through a specific receptor in a dose- and time-dependent manner, and TPA induced a similar extensive stathmin phosphorylation. Their effects were inhibited either in PKC-depleted alphaT3-1 cells, or by the PKC inhibitor staurosporine. In the context of the known implication of PKC in LHRH-induced signal transduction, our results show that stathmin phosphorylation is involved in LHRH transduction, either as a result of direct activation of specific PKC isoforms or through a pathway involving kinases downstream to PKC activation.
Collapse
Affiliation(s)
- S V Drouva
- CNRS UMR 6544, Université de la Méditerranée, Faculté de Médecine Nord, Bd Pierre Dramard, Marseille, France
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- T S Lewis
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
34
|
Antonsson B, Kassel DB, Di Paolo G, Lutjens R, Riederer BM, Grenningloh G. Identification of in vitro phosphorylation sites in the growth cone protein SCG10. Effect Of phosphorylation site mutants on microtubule-destabilizing activity. J Biol Chem 1998; 273:8439-46. [PMID: 9525956 DOI: 10.1074/jbc.273.14.8439] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCG10 is a neuron-specific, membrane-associated protein that is highly concentrated in growth cones of developing neurons. Previous studies have suggested that it is a regulator of microtubule dynamics and that it may influence microtubule polymerization in growth cones. Here, we demonstrate that in vivo, SCG10 exists in both phosphorylated and unphosphorylated forms. By two-dimensional gel electrophoresis, two phosphoisoforms were detected in neonatal rat brain. Using in vitro phosphorylated recombinant protein, four phosphorylation sites were identified in the SCG10 sequence. Ser-50 and Ser-97 were the target sites for protein kinase A, Ser-62 and Ser-73 for mitogen-activated protein kinase and Ser-73 for cyclin-dependent kinase. We also show that overexpression of SCG10 induces a disruption of the microtubule network in COS-7 cells. By expressing different phosphorylation site mutants, we have dissected the roles of the individual phosphorylation sites in regulating its microtubule-destabilizing activity. We show that nonphosphorylatable mutants have increased activity, whereas mutants in which phosphorylation is mimicked by serine-to-aspartate substitutions have decreased activity. These data suggest that the microtubule-destabilizing activity of SCG10 is regulated by phosphorylation, and that SCG10 may link signal transduction of growth or guidance cues involving serine/threonine protein kinases to alterations of microtubule dynamics in the growth cone.
Collapse
Affiliation(s)
- B Antonsson
- Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S.A., 1228 Plan-les-Ouates, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Lawler S, Gavet O, Rich T, Sobel A. Stathmin overexpression in 293 cells affects signal transduction and cell growth. FEBS Lett 1998; 421:55-60. [PMID: 9462839 DOI: 10.1016/s0014-5793(97)01519-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stathmin is a ubiquitous cytoplasmic protein whose phosphorylation state changes markedly in response to extracellular signals, and during the cell cycle. To clarify the function of stathmin, its four phosphorylation sites were mutated to either alanines (4A-stathmin) or glutamates (4E-stathmin). In transfected cells, 4A-stathmin caused a strong G2/M block and also inhibited the responsiveness of a co-transfected fos promoter/ luciferase reporter plasmid to serum stimulation, whereas wild type and 4E-stathmin had relatively minor effects. These results support the idea that stathmin plays a role in multiple cellular processes and indicate that the regulation of the phosphorylation state of stathmin is likely to determine its action.
Collapse
|
36
|
Cardinaux JR, Magistretti PJ, Martin JL. Brain-derived neurotrophic factor stimulates phosphorylation of stathmin in cortical neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 51:220-8. [PMID: 9427524 DOI: 10.1016/s0169-328x(97)00241-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified by two-dimensional polyacrylamide gel electrophoresis a protein known as stathmin which is phosphorylated in a time- and concentration-dependent manner in response to brain-derived neurotrophic factor (BDNF) in primary cultures of cortical neurons. We show that stathmin phosphorylation is preceded by the activation of mitogen-activated protein kinase (MAPK) isoforms p44 and p42. Moreover, the MAPK kinase inhibitor PD 098059, which inhibits MAPK activation, also markedly reduces BDNF-stimulated phosphorylation of stathmin, therefore suggesting that phosphorylation of stathmin is triggered by the activation of MAPK. Phosphorylation of stathmin is specific for BDNF since nerve growth factor does not stimulate MAPK and stathmin phosphorylation in cultured cortical neurons. Taken together, these results identify stathmin as a new target protein of BDNF, possibly involved in the development of cortical neurons.
Collapse
Affiliation(s)
- J R Cardinaux
- Institut de Physiologie et Service de Neurologie du CHUV, Faculté de Médecine, Université de Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Di Paolo G, Antonsson B, Kassel D, Riederer BM, Grenningloh G. Phosphorylation regulates the microtubule-destabilizing activity of stathmin and its interaction with tubulin. FEBS Lett 1997; 416:149-52. [PMID: 9369201 DOI: 10.1016/s0014-5793(97)01188-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stathmin is a regulator of microtubule dynamics which undergoes extensive phosphorylation during the cell cycle as well as in response to various extracellular factors. Four serine residues are targets for protein kinases: Ser-25 and Ser-38 for proline-directed kinases such as mitogen-activated protein kinase and cyclin-dependent protein kinase, and Ser-16 and Ser-63 for cAMP-dependent protein kinase. We studied the effect of phosphorylation on the microtubule-destabilizing activity of stathmin and on its interaction with tubulin in vitro. We show that triple phosphorylation on Ser-16, Ser-25, and Ser-38 efficiently inhibits its activity and prevents its binding to tubulin.
Collapse
Affiliation(s)
- G Di Paolo
- Institut de Biologie Cellulaire et de Morphologie, University of Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Ozon S, Maucuer A, Sobel A. The stathmin family -- molecular and biological characterization of novel mammalian proteins expressed in the nervous system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:794-806. [PMID: 9342231 DOI: 10.1111/j.1432-1033.1997.t01-2-00794.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stathmin is a ubiquitous phosphoprotein proposed to be a relay integrating various intracellular signaling pathways. Its high phylogenetic conservation and the identification of the related molecules, SCG10 in rat and XB3 in Xenopus, suggested the existence of a stathmin-related family. A systematic PCR-based approach allowed the identification of several novel mammalian sequences of which two coded for expressed members of the stathmin family; the translated RB3 sequence shares 88% amino-acid identity with that of XB3 and is thus its rat homologue, and RB3' corresponds to an alternatively spliced product of the same gene, encoding a truncated form. Within their stathmin-like domain, the alpha helix, probably responsible for coiled-coil protein-protein interactions, is conserved, as well as are two consensus phosphorylation sites; in their N-terminal extension domain, two cystein residues most likely responsible for membrane attachment through palmitoylation, are present in RB3/RB3' as in SCG10. The novel identification and characterization of the corresponding proteins showed that all three are associated with the particulate, membrane-containing fraction. They furthermore display several spots of decreasing pI on two-dimensional immunoblots, suggesting that they are phosphorylated in vivo. As for SCG10, RB3 mRNA is detectable only in the nervous system by in situ hybridization, but at similar levels in the newborn and the adult brain as revealed by Northern blots, whereas SCG10 expression decreases in the adult. Furthermore, RB3 mRNA is undetectable in PC12 cells, whereas SCG10 mRNA increases after treatment with nerve growth factor, inducing neuronal differentiation. In conclusion, we demonstrate here the existence of a highly conserved stathmin-related family in mammals, of which each member seems to play specific roles, related to the control of cell proliferation and activities for stathmin and to that of neuronal differentiation for SCG10, the novel RB3/RB3' proteins being rather related to the expression of differentiated neuronal functions.
Collapse
Affiliation(s)
- S Ozon
- INSERM U440, Paris, France
| | | | | |
Collapse
|
39
|
Maucuer A, Ozon S, Manceau V, Gavet O, Lawler S, Curmi P, Sobel A. KIS is a protein kinase with an RNA recognition motif. J Biol Chem 1997; 272:23151-6. [PMID: 9287318 DOI: 10.1074/jbc.272.37.23151] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein phosphorylation is involved at multiple steps of RNA processing and in the regulation of protein expression. We present here the first identification of a serine/threonine kinase that possesses an RNP-type RNA recognition motif: KIS. We originally isolated KIS in a two-hybrid screen through its interaction with stathmin, a small phosphoprotein proposed to play a general role in the relay and integration of diverse intracellular signaling pathways. Determination of the primary sequence of KIS shows that it is formed by the juxtaposition of a kinase core with little homology to known kinases and a C-terminal domain that contains a characteristic RNA recognition motif with an intriguing homology to the C-terminal motif of the splicing factor U2AF. KIS produced in bacteria has an autophosphorylating activity and phosphorylates stathmin on serine residues. It also phosphorylates in vitro other classical substrates such as myelin basic protein and synapsin but not histones that inhibit its autophosphorylating activity. Immunofluorescence and biochemical analyses indicate that KIS overexpressed in HEK293 fibroblastic cells is partly targetted to the nucleus. Altogether, these results suggest the implication of KIS in the control of trafficking and/or splicing of RNAs probably through phosphorylation of associated factors.
Collapse
Affiliation(s)
- A Maucuer
- INSERM, U440, 17 rue du Fer à Moulin, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Larsson N, Marklund U, Gradin HM, Brattsand G, Gullberg M. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 1997; 17:5530-9. [PMID: 9271428 PMCID: PMC232401 DOI: 10.1128/mcb.17.9.5530] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity.
Collapse
Affiliation(s)
- N Larsson
- Department for Cell and Molecular Biology, University of Umeå, Sweden
| | | | | | | | | |
Collapse
|
41
|
Bulliard C, Zurbriggen R, Tornare J, Faty M, Dastoor Z, Dreyer JL. Purification of a dichlorophenol-indophenol oxidoreductase from rat and bovine synaptic membranes: tight complex association of a glyceraldehyde-3-phosphate dehydrogenase isoform, TOAD64, enolase-gamma and aldolase C. Biochem J 1997; 324 ( Pt 2):555-63. [PMID: 9182718 PMCID: PMC1218466 DOI: 10.1042/bj3240555] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NADH-dichlorophenol-indophenol oxidoreductases (PMOs) were purified from synaptic plasma membranes or synaptic vesicles (small recycling vesicles) from both bovine and rat brains and from a neuroblastoma cell line, NB41A3. Several isoforms could be identified in purified plasma membranes and vesicles. Purification of the enzyme activity involved protein extraction with detergents, (NH4)2SO4 precipitation, chromatography under stringent conditions and native PAGE. PMO activity could be attributed to a very tight complex of several proteins that could not be separated except by SDS/PAGE. SDS/PAGE resolved the purified complex into at least five proteins, which could be micro-sequenced and identified unambiguously as hsc70, TOAD64 and glyceraldehyde-3-phosphate dehydrogenase tightly associated with the brain-specific proteins aldolase C and enolase-gamma. Enzyme activity could be purified from both synaptic plasma membranes and recycling vesicles, yields being much greater from the latter source. Highly purified plasma membranes (prepared from a neuroblastoma cell line NB41A3 by iminobiotinylation of intact cells and affinity purification with avidin and anti-avidin antibodies under very stringent conditions) also displayed PMO activity tightly associated with TOAD64. The association of PMO in a tight complex was confirmed by its immunoprecipitation from cellular and membrane extracts of NB41A3 using antibodies directed against any component protein of the complex followed by immunodetection with antibodies directed against the other members. Antibodies also inhibited the enzyme activity synergistically. In addition, induction of the different components of the complex during dichlorophenol-indophenol stress was demonstrated by the S1 RNase-protection assay in synchronized NB41A3 cells. The role of the complex in membrane fusion and cellular response to extracellular oxidative stress during growth and development is discussed.
Collapse
Affiliation(s)
- C Bulliard
- Department of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Antonsson B, Lütjens R, Di Paolo G, Kassel D, Allet B, Bernard A, Catsicas S, Grenningloh G. Purification, characterization, and in vitro phosphorylation of the neuron-specific membrane-associated protein SCG10. Protein Expr Purif 1997; 9:363-71. [PMID: 9126608 DOI: 10.1006/prep.1996.0710] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SCG10 is a neuron-specific, developmentally regulated protein which is highly enriched in growth cones. Sequence homology indicates that it is related to the phosphoprotein stathmin or Op18, an in vitro and in vivo substrate for several serine/threonine kinases which are involved in a variety of signaling pathways. As a first step to examine the biochemical properties of SCG10, the protein was expressed in Escherichia coli and purified to apparent homogeneity. The purified protein was used in in vitro phosphorylation assays. SCG10 was phosphorylated by MAP kinase, cAMP-dependent protein kinase, cGMP-dependent protein kinase, p34cdc2 kinase, DNA-dependent protein kinase, Ca2+/calmodulin kinase II, and casein kinase II. The protein was not a substrate for casein kinase I and protein kinase C. SCG10 was phosphorylated by src tyrosine kinase, which demonstrates that the protein can be phosphorylated in vitro on a tyrosine residue. Our data suggest that SCG10 is a phosphoprotein which might be involved in signal transduction in neurons.
Collapse
Affiliation(s)
- B Antonsson
- Geneva Biomedical Research Institute, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Horwitz SB, Shen HJ, He L, Dittmar P, Neef R, Chen J, Schubart UK. The microtubule-destabilizing activity of metablastin (p19) is controlled by phosphorylation. J Biol Chem 1997; 272:8129-32. [PMID: 9079624 DOI: 10.1074/jbc.272.13.8129] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Metablastin (also called p19, stathmin, prosolin, p18, Lap18, and oncoprotein 18) is a highly conserved, cytosolic 149-amino acid polypeptide that is expressed in immature vertebrate cells and undergoes extracellular factor- and cell cycle-regulated serine phosphorylation. The protein was shown recently to destabilize microtubules in vitro (Belmont, L., and Mitchison, T. J. (1996) Cell 84, 623-631). Here we demonstrate that microinjection of recombinant metablastin induces a loss of microtubules in COS-7 cells. This effect is enhanced by serine-to-alanine mutations at several phosphorylation sites and virtually abolished by aspartate substitution at a single site, Ser-63. We also show that stoichiometric amounts of metablastin prevent assembly and promote disassembly of microtubules in vitro. Interestingly, the phosphorylation site mutations of metablastin that have dramatic differential effects in intact cells do not alter the ability of metablastin to block tubulin assembly in vitro. The data suggest that phosphorylation of metablastin controls its microtubule-destabilizing activity in vivo but that this regulation may require additional cellular factors. This control mechanism is poised to play a critical role in the dynamic reorganization of the cellular microtubule network that occurs during morphogenesis and mitosis.
Collapse
Affiliation(s)
- S B Horwitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Di Paolo G, Pellier V, Catsicas M, Antonsson B, Catsicas S, Grenningloh G. The phosphoprotein stathmin is essential for nerve growth factor-stimulated differentiation. J Cell Biol 1996; 133:1383-90. [PMID: 8682872 PMCID: PMC2120896 DOI: 10.1083/jcb.133.6.1383] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stathmin is a ubiquitous cytosolic protein which undergoes extensive phosphorylation in response to a variety of external signals. It is highly abundant in developing neurons. The use of antisense oligonucleotides which selectively block stathmin expression has allowed us to study directly its role in rat PC12 cells. We show that stathmin depletion prevents nerve growth factor (NGF)-stimulated differentiation of PC12 cells into sympathetic-like neurons although the expression of several NGF-inducible genes was not affected. Furthermore, we found that stathmin phosphorylation in PC12 cells which is induced by NGF depends on mitogen-activated protein kinase (MAPK) activity. We conclude that stathmin is an essential component of the NGF-induced MAPK signaling pathway and performs a key role during differentiation of developing neurons.
Collapse
Affiliation(s)
- G Di Paolo
- Glaxo Institute for Molecular Biology, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Morishima-Kawashima M, Kosik KS. The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 1996; 7:893-905. [PMID: 8816996 PMCID: PMC275941 DOI: 10.1091/mbc.7.6.893] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated by many kinds of stimuli and plays an important role in integrating signal transduction cascades. MAPK is present abundantly in brain, where we have studied its association with microtubules. Immunofluorescence of primary hippocampal neurons revealed that MAPK staining co-localized with microtubules and biochemical analyses showed that MAPK co-purified with microtubules. Approximately 4% of MAPK in cytosolic extracts was associated with microtubules, where it was associated with both tubulin and microtubule-associated proteins (MAPs) fractions. Further fractionation of MAPs suggested that a portion of MAPK is associated with MAP2. An association with MAP2 was also demonstrated by co-immunoprecipitation and in vitro binding experiments. A similar association was shown for the juvenile MAP2 isoform, MAP2C. The pool of MAPK associated with microtubules had a higher activity relative to the nonassociated pool in both brain and proliferating PC12 cells. Although MAPK was activated by nerve growth factor in PC12 cells, the activity of microtubule-associated MAPK did not further increase. These results raise the possibility that microtubule-associated MAPK operates through constitutive phosphorylation activity to regulate microtubule function in neurons.
Collapse
|
46
|
Jin LW, Masliah E, Iimoto D, Deteresa R, Mallory M, Sundsmo M, Mori N, Sobel A, Saitoh T. Neurofibrillary tangle-associated alteration of stathmin in Alzheimer's disease. Neurobiol Aging 1996; 17:331-41. [PMID: 8725893 DOI: 10.1016/0197-4580(96)00021-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stathmin (p19), a 19-kDa cytosolic phosphorotein, plays a key role in converting extracellular signals into intracellular biochemical changes. Antibodies and cDNA specific for stathmin were used to study its levels and localization in normal and Alzheimer's disease (AD) brain tissue. The stathmin protein concentration was reduced in AD neocortex as assessed by Western blotting, whereas the concentration of its mRNA detected by both in situ hybridization and slot blot were increased in AD. The alteration of the stathmin protein concentration was negatively correlated with neurofibrillary tangle numbers but not with plaque numbers. Immunoreactivity was evenly localized to the cytoplasm of neurons in control cortical sections, whereas in AD it was preferentially localized to some of the neurofibrillary tangle-bearing neurons. Numbers of stathmin-positive neurons were inversely correlated with tangle numbers but not with plaque numbers in the frontal cortex of AD patients.
Collapse
Affiliation(s)
- L W Jin
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Duraj J, Kovacikova M, Sedlak J, Koppel J, Sobel A, Chorvath B. The protein kinase C inhibitor H7 blocks phosphorylation of stathmin during TPA-induced growth inhibition of human pre-B leukemia REH6 cells. Leuk Res 1995; 19:457-61. [PMID: 7637391 DOI: 10.1016/0145-2126(94)00154-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human pre-B acute lymphoblastic leukemia cell line REH6 was used to analyze the regulation of a ubiquitous intracellular phosphoprotein stathmin (Mr 19,000, pl = 5.6-6.2). We demonstrated by 32P-labeling that the short (1 h) treatment of the REH6 cells with the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), resulted in a rapid phosphorylation of at least three (P1, P2 and P3) stathmin isoforms without an alteration of stathmin isoform expression. Furthermore, Western blot analysis with specific antiserum showed that the prolonged period (48 h) of TPA treatment partially reduced protein levels particularly of two (N2 and P2) stathmin isoforms. The potent and relatively specific protein kinase C (PKC) inhibitor, 1,(5-isoquinolinesulphonyl)2methylpiperasine dihydrochloride (H7), partially inhibited these TPA effects, whereas the specific calmodulin inhibitor R24571 (calmidazolium) had no effect upon these events. Our findings suggest that stathmin phosphorylation in REH6 cells could be in part mediated by PKC activation.
Collapse
Affiliation(s)
- J Duraj
- Department of Molecular Immunology, Slovak Academy of Sciences, Bratislava
| | | | | | | | | | | |
Collapse
|
48
|
Yon M, White P, Groome N. Preparation of a novel monoclonal antibody specific for myelin basic protein phosphorylated on Thr98. J Neuroimmunol 1995; 58:121-9. [PMID: 7759601 DOI: 10.1016/0165-5728(94)00191-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation is one of a number of post-translational modifications resulting in charge microheterogeneity of myelin basic protein (MBP). This phosphorylation is claimed to destabilise the compact myelin sheath by decreasing the interaction of membrane bilayers, thereby creating or maintaining pockets of cytoplasm. To further investigate and localise MBP phosphorylation to discrete regions of the myelin sheath we raised a monoclonal antibody with specificity for a known phosphorylation site in MBP. A synthetic peptide was made by Fmoc peptide chemistry and phosphorylation of Thr98 was achieved on the resin by the global phosphorylation methodology, utilising dibenzyl-N,N-diethylphosphoramidite phosphitylation and t-butylhydroperoxide oxidation. The peptide coupled to tuberculin was used to immunise mice for monoclonal antibody production. The selected hybridoma (Clone P12) secreted an IgG2a antibody which reacted strongly with the phosphorylated immunogen and with phosphorylated fractions of bovine MBP obtained by ion exchange chromatography. The antibody had minimal reactivity with the unphosphorylated peptide; the same peptide phosphorylated at another site Ser102; a preparation of unphosphorylated MBP obtained by ion exchange chromatography; and with an irrelevant phosphorylated protein (histone). Similar phosphorylation state-specific monoclonal antibodies could be made to recognise other specific phosphorylation sites in MBP or other proteins. It is planned to use these antibodies to quantify and locate the extent of MBP phosphorylation in normal and multiple sclerosis myelin.
Collapse
Affiliation(s)
- M Yon
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, UK
| | | | | |
Collapse
|
49
|
Maucuer A, Camonis JH, Sobel A. Stathmin interaction with a putative kinase and coiled-coil-forming protein domains. Proc Natl Acad Sci U S A 1995; 92:3100-4. [PMID: 7724523 PMCID: PMC42112 DOI: 10.1073/pnas.92.8.3100] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stathmin is a ubiquitous, cytosolic 19-kDa protein, which is phosphorylated on up to four sites in response to many regulatory signals within cells. Its molecular characterization indicates a functional organization including an N-terminal regulatory domain that bears the phosphorylation sites, linked to a putative alpha-helical binding domain predicted to participate in coiled-coil, protein-protein interactions. We therefore proposed that stathmin may play the role of a relay integrating diverse intracellular regulatory pathways; its action on various target proteins would be a function of its combined phosphorylation state. To search for such target proteins, we used the two-hybrid screen in yeast, with stathmin as a "bait." We isolated and characterized four cDNAs encoding protein domains that interact with stathmin in vivo. One of the corresponding proteins was identified as BiP, a member of the hsp70 heat-shock protein family. Another is a previously unidentified, putative serine/threonine kinase, KIS, which might be regulated by stathmin or, more likely, be part of the kinases controlling its phosphorylation state. Finally, two clones code for subdomains of two proteins, CC1 and CC2, predicted to form alpha-helices participating in coiled-coil interacting structures. Their isolation by interaction screening further supports our model for the regulatory function of stathmin through coiled-coil interactions with diverse downstream targets via its presumed alpha-helical binding domain. The molecular and biological characterization of KIS, CC1, and CC2 proteins will give further insights into the molecular functions and mechanisms of action of stathmin as a relay of integrated intracellular regulatory pathways.
Collapse
Affiliation(s)
- A Maucuer
- Institut National de la Santé et de la Recherche Médicale, Unité 153, Paris, France
| | | | | |
Collapse
|
50
|
Denton RM, Tavaré JM. Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:597-611. [PMID: 7867619 DOI: 10.1111/j.1432-1033.1995.tb20179.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The discovery of the mitogen-activated protein (MAP) kinase family of protein kinases has sparked off an intensive effort to elucidate their role in the regulation of many cellular processes. These protein kinases were originally identified based on their rapid activation by insulin. In this review we concentrate on examining the evidence for and against a role for the MAP kinases Erk-1 and Erk-2 in mediating the effects of insulin. While there is good evidence in favour of a direct role for MAP kinase in the growth-promoting effects of insulin and the regulation of Glut-1 and c-fos expression, and AP-1 transcriptional complex activity, this is by no means conclusive. MAP kinase may also play a role in the control of mRNA translation by insulin. On the other hand, the evidence suggests that MAP kinase is not sufficient for the acute regulation of glucose transport (Glut-4 translocation), glycogen synthesis, acetyl-CoA carboxylase or pyruvate dehydrogenase activity. The findings suggest that insulin may utilise at least three distinct signalling pathways which do not involve MAP kinase.
Collapse
Affiliation(s)
- R M Denton
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| | | |
Collapse
|