1
|
Dhanapalaratnam R, Issar T, Wang LL, Tran D, Poynten AM, Milner KL, Kwai NC, Krishnan AV. Effect of Metformin on Peripheral Nerve Morphology in Type 2 Diabetes: A Cross-Sectional Observational Study. Diabetes 2024; 73:1875-1882. [PMID: 39167630 PMCID: PMC11493759 DOI: 10.2337/db24-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) affects ∼50% of the 500 million people with type 2 diabetes worldwide and is considered disabling and irreversible. The current study was undertaken to assess the effect of metformin on peripheral neuropathy outcomes in type 2 diabetes. Participants with type 2 diabetes (n = 69) receiving metformin were recruited and underwent clinical assessment, peripheral nerve ultrasonography, nerve conduction studies, and axonal excitability studies. Also concurrently screened were 318 participants who were not on metformin, and 69 were selected as disease control subjects and matched to the metformin participants for age, sex, diabetes duration, BMI, HbA1c, and use of other diabetes therapies. Medical record data over the previous 20 years were analyzed for previous metformin use. Mean tibial nerve cross-sectional area was lower in the metformin group (metformin 14.1 ± 0.7 mm2, nonmetformin 16.2 ± 0.9 mm2, P = 0.038), accompanied by reduction in neuropathy symptom severity (P = 0.021). Axonal excitability studies demonstrated superior axonal function in the metformin group, and mathematical modeling demonstrated that these improvements were mediated by changes in nodal Na+and K+conductances. Metformin treatment is associated with superior nerve structure and clinical and neurophysiological measures. Treatment with metformin may be neuroprotective in DPN. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Tushar Issar
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Leiao Leon Wang
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Darren Tran
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ann M. Poynten
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Kerry-Lee Milner
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Natalie C.G. Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Arun V. Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Ishibashi T, Baba H. Paranodal Axoglial Junctions, an Essential Component in Axonal Homeostasis. Front Cell Dev Biol 2022; 10:951809. [PMID: 35874818 PMCID: PMC9299063 DOI: 10.3389/fcell.2022.951809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
In vertebrates, a high density of voltage-gated Na+ channel at nodes of Ranvier and of voltage-gated K+ channel at juxtaparanodes is necessary for rapid propagation of action potential, that is, for saltatory conduction in myelinated axons. Myelin loops attach to the axonal membrane and form paranodal axoglial junctions (PNJs) at paranodes adjacent to nodes of Ranvier. There is growing evidence that the PNJs contribute to axonal homeostasis in addition to their roles as lateral fences that restrict the location of nodal axolemmal proteins for effective saltatory conduction. Perturbations of PNJs, as in specific PNJ protein knockouts as well as in myelin lipid deficient mice, result in internodal axonal alterations, even if their internodal myelin is preserved. Here we review studies showing that PNJs play crucial roles in the myelinated axonal homeostasis. The present evidence points to two functions in particular: 1) PNJs facilitate axonal transport of membranous organelles as well as cytoskeletal proteins; and 2) they regulate the axonal distribution of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) in cerebellar Purkinje axons. Myelinated axonal homeostasis depends among others on the state of PNJs, and consequently, a better understanding of this dependency may contribute to the clarification of CNS disease mechanisms and the development of novel therapies.
Collapse
Affiliation(s)
- Tomoko Ishibashi
- Department of Functional Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiroko Baba
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
4
|
Abstract
Freeze-fracture analysis of myelinated nerve fibers has shown that the axolemma has a highly differentiated structure. The node is characterized by a high concentration of intramembranous particles, primarily in the E fracture face, which may represent the sodium channels known to be concentrated there, and the paranodal axolemma is characterized by a distinctive paracrystalline pattern that corresponds to the intercellular junction formed with the terminal “loops” of myelin lamellae. Studies of myelin formation in normal animals and of myelin-deficient mutant animals indicate that the development of these axolemmal specializations is profoundly influenced by the associated myelinforming cells. The present study considers whether or not nodal or paranodal specializations that have already formed persist after demyelination.In order to investigate this question, specimens of peripheral nerves were examined following exposure to an antiserum to galactocerebroside (GC), which is known to cause a predictable series of changes leading to demyelination. Freeze-fracture replicas of rat spinal roots exposed to anti-GC serum in situ for six hours showed marked changes in the paranodal axolemma.
Collapse
|
5
|
Accumulation of Neurofascin at Nodes of Ranvier Is Regulated by a Paranodal Switch. J Neurosci 2020; 40:5709-5723. [PMID: 32554548 DOI: 10.1523/jneurosci.0830-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
The paranodal junctions flank mature nodes of Ranvier and provide a barrier between ion channels at the nodes and juxtaparanodes. These junctions also promote node assembly and maintenance by mechanisms that are poorly understood. Here, we examine their role in the accumulation of NF186, a key adhesion molecule of PNS and CNS nodes. We previously showed that NF186 is initially targeted/accumulates via its ectodomain to forming PNS (hemi)nodes by diffusion trapping, whereas it is later targeted to mature nodes by a transport-dependent mechanism mediated by its cytoplasmic segment. To address the role of the paranodes in this switch, we compared accumulation of NF186 ectodomain and cytoplasmic domain constructs in WT versus paranode defective (i.e., Caspr-null) mice. Both pathways are affected in the paranodal mutants. In the PNS of Caspr-null mice, diffusion trapping mediated by the NF186 ectodomain aberrantly persists into adulthood, whereas the cytoplasmic domain/transport-dependent targeting is impaired. In contrast, accumulation of NF186 at CNS nodes does not undergo a switch; it is predominantly targeted to both forming and mature CNS nodes via its cytoplasmic domain and requires intact paranodes. Fluorescence recovery after photobleaching analysis indicates that the paranodes provide a membrane diffusion barrier that normally precludes diffusion of NF186 to nodes. Linkage of paranodal proteins to the underlying cytoskeleton likely contributes to this diffusion barrier based on 4.1B and βII spectrin expression in Caspr-null mice. Together, these results implicate the paranodes as membrane diffusion barriers that regulate targeting to nodes and highlight differences in the assembly of PNS and CNS nodes.SIGNIFICANCE STATEMENT Nodes of Ranvier are essential for effective saltatory conduction along myelinated axons. A major question is how the various axonal proteins that comprise the multimeric nodal complex accumulate at this site. Here we examine how targeting of NF186, a key nodal adhesion molecule, is regulated by the flanking paranodal junctions. We show that the transition from diffusion-trapping to transport-dependent accumulation of NF186 requires the paranodal junctions. We also demonstrate that these junctions are a barrier to diffusion of axonal proteins into the node and highlight differences in PNS and CNS node assembly. These results provide new insights into the mechanism of node assembly and the pathophysiology of neurologic disorders in which impaired paranodal function contributes to clinical disability.
Collapse
|
6
|
Abstract
Axons functionally link the somato-dendritic compartment to synaptic terminals. Structurally and functionally diverse, they accomplish a central role in determining the delays and reliability with which neuronal ensembles communicate. By combining their active and passive biophysical properties, they ensure a plethora of physiological computations. In this review, we revisit the biophysics of generation and propagation of electrical signals in the axon and their dynamics. We further place the computational abilities of axons in the context of intracellular and intercellular coupling. We discuss how, by means of sophisticated biophysical mechanisms, axons expand the repertoire of axonal computation, and thereby, of neural computation.
Collapse
Affiliation(s)
- Pepe Alcami
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet Muenchen, Martinsried, Germany
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Ahmed El Hady
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
7
|
Roth AD, Núñez MT. Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:167-181. [PMID: 27714689 DOI: 10.1007/978-3-319-40764-7_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877-885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65-82, 1991; Wilson in Can J Physiol Pharmacol. 75:1149-1163, 1997), oligodendrocytes can be easily damaged and are particularly sensitive to both hypoxia and oxidative stress, especially during their terminal differentiation phase and while generating myelin sheaths. In the present review, we will focus in the metabolic complexity of oligodendrocytes, particularly during the processes of differentiation and myelin deposition, and with a specific emphasis in the context of oxidative stress and the intricacies of the iron metabolism of the most iron-loaded cells of the central nervous system (CNS).
Collapse
Affiliation(s)
- Alejandro D Roth
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile.
| | - Marco T Núñez
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 2016; 115:1836-59. [PMID: 26763782 PMCID: PMC4869480 DOI: 10.1152/jn.01077.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jordan Hickman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan T Beatty
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Freeman SA, Desmazières A, Fricker D, Lubetzki C, Sol-Foulon N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell Mol Life Sci 2016; 73:723-35. [PMID: 26514731 PMCID: PMC4735253 DOI: 10.1007/s00018-015-2081-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Sean A Freeman
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Anne Desmazières
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Desdemona Fricker
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Catherine Lubetzki
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Nathalie Sol-Foulon
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| |
Collapse
|
10
|
Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, Keegan S, Lin X, Arcos T, Feng-Xia-Liang, Korchev YE, Gorelik J, Fenyö D, Rothenberg E, Rothenberg E, Delmar M. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun 2016; 7:10342. [PMID: 26787348 PMCID: PMC4735805 DOI: 10.1038/ncomms10342] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Intercellular adhesion and electrical excitability are considered separate cellular properties. Studies of myelinated fibres, however, show that voltage-gated sodium channels (VGSCs) aggregate with cell adhesion molecules at discrete subcellular locations, such as the nodes of Ranvier. Demonstration of similar macromolecular organization in cardiac muscle is missing. Here we combine nanoscale-imaging (single-molecule localization microscopy; electron microscopy; and ‘angle view' scanning patch clamp) with mathematical simulations to demonstrate distinct hubs at the cardiac intercalated disc, populated by clusters of the adhesion molecule N-cadherin and the VGSC NaV1.5. We show that the N-cadherin-NaV1.5 association is not random, that NaV1.5 molecules in these clusters are major contributors to cardiac sodium current, and that loss of NaV1.5 expression reduces intercellular adhesion strength. We speculate that adhesion/excitability nodes are key sites for crosstalk of the contractile and electrical molecular apparatus and may represent the structural substrate of cardiomyopathies in patients with mutations in molecules of the VGSC complex. In myelinated fibres conduction and adhesion proteins aggregate at discrete foci, but it is unclear if this organization is present in other excitable cells. Using nanoscale visualization and in silico techniques, the authors show that adhesion/excitability nodes exist at the intercalated discs of adult cardiac muscle.
Collapse
Affiliation(s)
- Alejandra Leo-Macias
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Jose L Sanchez-Alonso
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, NYU-SoM, Translational Research Building, 227 East 30th Street, New York, New York 10016, USA
| | - Xianming Lin
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Tatiana Arcos
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Feng-Xia-Liang
- Microscopy Core, NYU-SoM, 522 First Avenue, Skirball Institute, 2nd Floor, New York, New York 10016, USA
| | - Yuri E Korchev
- Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London, London W12 0NN, UK
| | - Julia Gorelik
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, NYU-SoM, Translational Research Building, 227 East 30th Street, New York, New York 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU-SoM, 522 First Avenue, MSB 3rd Floor, New York, New York 10016, USA
| | | | - Mario Delmar
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| |
Collapse
|
11
|
Amor V, Feinberg K, Eshed-Eisenbach Y, Vainshtein A, Frechter S, Grumet M, Rosenbluth J, Peles E. Long-term maintenance of Na+ channels at nodes of Ranvier depends on glial contact mediated by gliomedin and NrCAM. J Neurosci 2014; 34:5089-98. [PMID: 24719088 PMCID: PMC3983794 DOI: 10.1523/jneurosci.4752-13.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear whether continued axon-glial contact at nodes of Ranvier is required to maintain these channels at the nodal axolemma. Here, we report that, in contrast to mice that lack either gliomedin or NrCAM, absence of both molecules (and hence the glial clustering signal) resulted in a gradual loss of Na(+) channels and other axonal components from the nodes, the formation of binary nodes, and dysregulation of nodal gap length. Therefore, these mice exhibit neurological abnormalities and slower nerve conduction. Disintegration of the nodes occurred in an orderly manner, starting with the disappearance of neurofascin 186, followed by the loss of Na(+) channels and ankyrin G, and then βIV spectrin, a sequence that reflects the assembly of nodes during development. Finally, the absence of gliomedin and NrCAM led to the invasion of the outermost layer of the Schwann cell membrane beyond the nodal area and the formation of paranodal-like junctions at the nodal gap. Our results reveal that axon-glial contact mediated by gliomedin, NrCAM, and NF186 not only plays a role in Na(+) channel clustering during development, but also contributes to the long-term maintenance of Na(+) channels at nodes of Ranvier.
Collapse
Affiliation(s)
- Veronique Amor
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Konstantin Feinberg
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Yael Eshed-Eisenbach
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Anya Vainshtein
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Shahar Frechter
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Martin Grumet
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854; and
| | - Jack Rosenbluth
- 3Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016
| | - Elior Peles
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
12
|
Rosenbluth J, Bobrowski-Khoury N. Paranodal dysmyelination in peripheral nerves of Trembler mice. J Neurosci Res 2014; 92:476-85. [PMID: 24446165 DOI: 10.1002/jnr.23326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 11/08/2022]
Abstract
Subtle defects in paranodes of myelinated nerve fibers can cause significant physiological malfunction. We have investigated myelinated fibers in the peripheral nervous system (PNS) of the Trembler mouse, a model of CMT-1A neuropathy, for evidence of such defects. Ultrastructural analysis shows that the "transverse bands," which attach the myelin sheath to the axon at the paranodal axoglial junction, are grossly diminished in number in Trembler nerve fibers. Although paranodes often appear to be greatly elongated, it is only a short region immediately adjacent to the node of Ranvier that displays transverse bands. Where transverse bands are missing, the junctional gap widens, thus reducing resistance to short circuiting of nodal action currents during saltatory conduction and increasing the likelihood that axonal K(+) channels under the myelin sheath will be activated. In addition, we find evidence that structural domains in Trembler axons are incompletely differentiated, consistent with diminution in nodal Na channel density, which could further compromise conduction. Deficiency of transverse bands may also increase susceptibility to disruption of the paranodal junction and retraction of the myelin sheath. We conclude that Trembler PNS myelinated fibers display subtle defects in paranodal and nodal regions that could contribute significantly to conduction defects and increased risk of myelin detachment.
Collapse
Affiliation(s)
- Jack Rosenbluth
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York
| | | |
Collapse
|
13
|
Hildebrand C, Waxman SG. Regional node-like membrane specializations in non-myelinated axons of rat retinal nerve fiber layer. Brain Res 2013; 258:23-32. [PMID: 24010160 DOI: 10.1016/0006-8993(83)91222-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The axons in the nerve fiber layer (NFL) of the adult rat retina were examined by transmission electron microscopy. NFL axons range in size from 0.12 to about 2.0 microm, with a peak at 0.3-0.4 microm. In addition to conventional small mitochondria in the NFL axons contain some large ones, which are similar to astrocytic gliosomes. Two types of regional axon membrane specialization are found in the NFL. One of these represents portions of the initial axon segments of retinal ganglion cells. Apart from features typical for initial axon segments in general, a corona of lamelliform, villous or blunt glial processes is always present. The glial processes originate from MUller cells. The other regional axon membrane specialization consists of patches of an electron-dense subaxolemmal undercoating with associated tufts of Miller cell processes. These patches cover a varying but always limited proportion of the axon circumference and their longitudinal extent varies between 0.5 and 5.0 microm. They are clearly distinct from the initial axon segment and from the initial heminode in the optic nerve. Similar undercoated patches in the optic disc axons are apposed by astrocytic processes. It is concluded that rat NFL axons represent an example of central non-myelinated axons with distinct regional membrane specializations, which have some structural characteristics in common with nodes of Ranvier.
Collapse
Affiliation(s)
- C Hildebrand
- Department of Anatomy, Karolinska Institutet, 104 01 Stockholm, Sweden
| | | |
Collapse
|
14
|
Rosenbluth J, Mierzwa A, Shroff S. Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination. Neuroscientist 2013; 19:629-41. [PMID: 24122820 DOI: 10.1177/1073858413504627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelinated nerve fibers have evolved to optimize signal propagation. Each myelin segment is attached to the axon by the unique paranodal axoglial junction (PNJ), a highly complex structure that serves to define axonal ion channel domains and to direct nodal action currents through adjacent nodes. Surprisingly, this junction does not entirely seal the paranodal myelin sheath to the axon and thus does not entirely isolate the perinodal space from the internodal periaxonal space. Rather the paranode is penetrated by extracellular pathways between the myelin sheath and the axolemma for movement of molecules and the flow of current to and from the internodal axon. This review summarizes past and current studies demonstrating these pathways and considers what functional roles they subserve. In addition, modern genetic engineering methods permit modification of individual PNJ constituents, which provides an opportunity to define their specific functions. One component in particular, the transverse bands, plays a key role in maintaining the structure and function of the PNJ. Loss of transverse bands results not in frank demyelination but rather in subtle dysmyelination, which causes significant functional impairment. The consequences of such subtle defects in the PNJ are considered along with the relevance of these studies to human diseases of myelin.
Collapse
Affiliation(s)
- Jack Rosenbluth
- 1Departments of Physiology and Neuroscience, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
15
|
Buttermore ED, Thaxton CL, Bhat MA. Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res 2013; 91:603-22. [PMID: 23404451 DOI: 10.1002/jnr.23197] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 01/17/2023]
Abstract
Over a century ago, Ramon y Cajal first proposed the idea of a directionality involved in nerve conduction and neuronal communication. Decades later, it was discovered that myelin, produced by glial cells, insulated axons with periodic breaks where nodes of Ranvier (nodes) form to allow for saltatory conduction. In the peripheral nervous system (PNS), Schwann cells are the glia that can either individually myelinate the axon from one neuron or ensheath axons of many neurons. In the central nervous system (CNS), oligodendrocytes are the glia that myelinate axons from different neurons. Review of more recent studies revealed that this myelination created polarized domains adjacent to the nodes. However, the molecular mechanisms responsible for the organization of axonal domains are only now beginning to be elucidated. The molecular domains in myelinated axons include the axon initial segment (AIS), where various ion channels are clustered and action potentials are initiated; the node, where sodium channels are clustered and action potentials are propagated; the paranode, where myelin loops contact with the axolemma; the juxtaparanode (JXP), where delayed-rectifier potassium channels are clustered; and the internode, where myelin is compactly wrapped. Each domain contains a unique subset of proteins critical for the domain's function. However, the roles of these proteins in axonal domain organization are not fully understood. In this review, we highlight recent advances on the molecular nature and functions of some of the components of each axonal domain and their roles in axonal domain organization and maintenance for proper neuronal communication.
Collapse
Affiliation(s)
- Elizabeth D Buttermore
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
16
|
Abstract
A peripheral nerve trunk is composed of nerve fascicles supported in a fibrous collagenous sheath and defined by concentric layers of cells (the perineurium) that separate the contents (the endoneurium) from its fibrous collagen support (the epineurium). In the endoneurium are myelinated and unmyelinated fibers that are axons combined with their supporting Schwann cells to provide physical and electrical connections with end-organs such as muscle fibers and sensory endings. Axons are tubular neuronal extensions with a cytoskeleton of neurotubules and tubulin along which organelles and proteins can travel between the neuronal cell body and the axon terminal. During development some axons enlarge and are covered by a chain of Schwann cells each associated with just one axon. As the axons grow in diameter, the Schwann cells wrap round them to produce a myelin sheath. This consists of many layers of compacted Schwann cell membrane plus some additional proteins. Adjacent myelin segments connect at highly specialized structures, the nodes of Ranvier. Myelin insulates the axon so that the nerve impulse can jump from one node to the next. The region adjacent to the node, the paranodal segment, is the site of myelin terminations on the axolemma. There are connections here between the Schwann cell and the axon via a complex chain of proteins. The Schwann cell cytoplasm in the adjacent segment, the juxtaparanode, contains most of the Schwann cell mitochondria. In addition to the node, continuity of myelin lamellae is broken at intervals along the internode by helical regions of decompaction known as Schmidt-Lanterman incisures; these are seen as paler conical segments in suitably stained microscopical preparations and provide a pathway between the adaxonal and abaxonal cytoplasm. Smaller axons without a myelin sheath conduct very much more slowly and have a more complex relationship with their supporting Schwann cells that has important implications for repair.
Collapse
Affiliation(s)
- Rosalind King
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
17
|
Farrar MA, Park SB, Lin CSY, Kiernan MC. Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability. J Physiol 2013; 591:273-86. [PMID: 23006483 PMCID: PMC3630785 DOI: 10.1113/jphysiol.2012.240820] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/19/2012] [Indexed: 11/08/2022] Open
Abstract
While substantial alterations in myelination and axonal growth have been described during maturation, their interactions with the configuration and activity of axonal membrane ion channels to achieve impulse conduction have not been fully elucidated. The present study utilized axonal excitability techniques to compare the changes in nerve function across healthy infants, children, adolescents and adults. Multiple excitability indices (stimulus-response curve, strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle) combined with conventional neurophysiological measures were investigated in 57 subjects (22 males, 35 females; age range 0.46-24 years), stimulating the median motor nerve at the wrist. Maturational changes in conduction velocity were paralleled by significant alterations in multiple excitability parameters, similarly reaching steady values in adolescence. Maturation was accompanied by reductions in threshold (P < 0.005) and rheobase (P = 0.001); depolarizing and hyperpolarizing electrotonus progressively reduced (P < 0.001), or 'fanned-in'; resting current-threshold slope increased (P < 0.0001); accommodation to depolarizing currents prolonged (P < 0.0001); while greater threshold changes in refractoriness (P = 0.001) and subexcitability (P < 0.01) emerged. Taken together, the present findings suggest that passive membrane conductances and the activity of K(+) conductances decrease with formation of the axo-glial junction and myelination. In turn, these functional alterations serve to enhance the efficiency and speed of impulse conduction concurrent with the acquisition of motor skills during childhood, and provide unique insight into the evolution of postnatal human peripheral nerve function. Significantly, these findings bring the dynamics of axonal development to the clinical domain and serve to further illuminate pathophysiological mechanisms that occur during development.
Collapse
Affiliation(s)
- Michelle A Farrar
- Neuroscience Research Australia, Barker St, Randwick, Sydney, NSW 2031, Australia
| | | | | | | |
Collapse
|
18
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
19
|
Chang KJ, Rasband MN. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. CURRENT TOPICS IN MEMBRANES 2013; 72:159-92. [PMID: 24210430 DOI: 10.1016/b978-0-12-417027-8.00005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells. They can be subdivided into at least two structurally and functionally distinct domains: somatodendritic and axonal domains. The somatodendritic domain receives and integrates upstream input signals, and the axonal domain generates and relays outputs in the form of action potentials to the downstream target. Demand for quick response to the harsh surroundings prompted evolution to equip vertebrates' neurons with a remarkable glia-derived structure called myelin. Not only Insulating the axon, myelinating glia also rearrange the axonal components and elaborate functional subdomains along the axon. Proper functioning of all theses domains and subdomains is vital for a normal, efficient nervous system.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
20
|
Rosenbluth J, Bobrowski-Khoury N. Structural bases for central nervous system malfunction in the quaking mouse: dysmyelination in a potential model of schizophrenia. J Neurosci Res 2012; 91:374-81. [PMID: 23224912 DOI: 10.1002/jnr.23167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/20/2012] [Accepted: 10/08/2012] [Indexed: 11/07/2022]
Abstract
The dysmyelinating mouse mutant quaking (qk) is thought to be a model of schizophrenia based on diminution of CNS myelin (Andreone et al., 2007) and downregulation of the Qk gene (Haroutunian et al., 2006) in the brains of schizophrenic patients. The purpose of this study was to identify specific structural defects in the qk mouse CNS that could compromise physiologic function and that in humans might account for some of the cognitive defects characteristic of schizophrenia. Ultrastructural analysis of qk mouse CNS myelinated fibers shows abnormalities in nodal, internodal, and paranodal regions, including marked variation in myelin thickness among neighboring fibers, spotty disruption of paranodal junctions, abnormal distribution of nodal and paranodal ion channel complexes, generalized thinning and incompactness of myelin, and on many axonal profiles complete absence of myelin. These structural defects are likely to cause abnormalities in conduction velocity, synchrony of activation, temporal ordering of signals, and other physiological parameters. We conclude that the structural abnormalities described are likely to be responsible for significant functional impairment both in the qk mouse CNS and in the human CNS with comparable myelin pathology.
Collapse
Affiliation(s)
- J Rosenbluth
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
21
|
Shroff S, Mierzwa A, Scherer SS, Peles E, Arevalo JC, Chao MV, Rosenbluth J. Paranodal permeability in "myelin mutants". Glia 2011; 59:1447-57. [PMID: 21618613 DOI: 10.1002/glia.21188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/20/2011] [Indexed: 11/12/2022]
Abstract
Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three "myelin mutant" mice, Caspr-null, cst-null, and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3 kDa and 10 kDa), which penetrate most fibers, and to larger tracers (40 kDa and 70 kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands (TBs) in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of TBs in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of TBs. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of TBs but does depend on the length of the paranode and, in turn, on the length of "pathway 3," the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath.
Collapse
Affiliation(s)
- Seema Shroff
- Department Physiology & Neuroscience, NYU School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Nans A, Einheber S, Salzer JL, Stokes DL. Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J Neurosci Res 2010; 89:310-9. [PMID: 21259318 DOI: 10.1002/jnr.22561] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/08/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022]
Abstract
The polarized domains of myelinated axons are specifically organized to maximize the efficiency of saltatory conduction. The paranodal region is directly adjacent to the node of Ranvier and contains specialized septate-like junctions that provide adhesion between axons and glial cells and that constitute a lateral diffusion barrier for nodal components. To complement and extend earlier studies on the peripheral nervous system, electron tomography was used to image paranodal regions from the central nervous system (CNS). Our three-dimensional reconstructions revealed short filamentous linkers running directly from the septate-like junctions to neurofilaments, microfilaments, and organelles within the axon. The intercellular spacing between axons and glia was measured to be 7.4 ± 0.6 nm, over twice the value previously reported in the literature (2.5-3.0 nm). Averaging of individual junctions revealed a bifurcated structure in the intercellular space that is consistent with a dimeric complex of cell adhesion molecules composing the septate-like junction. Taken together, these findings provide new insight into the structural organization of CNS paranodes and suggest that, in addition to providing axo-glial adhesion, cytoskeletal linkage to the septate-like junctions may be required to maintain axonal domains and to regulate organelle transport in myelinated axons.
Collapse
Affiliation(s)
- Andrea Nans
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
23
|
Leterrier C, Brachet A, Fache MP, Dargent B. Voltage-gated sodium channel organization in neurons: Protein interactions and trafficking pathways. Neurosci Lett 2010; 486:92-100. [DOI: 10.1016/j.neulet.2010.08.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
24
|
Leterrier C, Brachet A, Dargent B, Vacher H. Determinants of voltage-gated sodium channel clustering in neurons. Semin Cell Dev Biol 2010; 22:171-7. [PMID: 20934527 DOI: 10.1016/j.semcdb.2010.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022]
Abstract
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes. Here, we review the mechanisms establishing the clustering of Nav channels at the AIS and in the node and discuss how the alterations of Nav channel clustering can lead to certain pathophysiologies.
Collapse
|
25
|
Wimmer VC, Reid CA, So EYW, Berkovic SF, Petrou S. Axon initial segment dysfunction in epilepsy. J Physiol 2010; 588:1829-40. [PMID: 20375142 DOI: 10.1113/jphysiol.2010.188417] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The axon initial segment (AIS) contains the site of action potential initiation and plays a major role in neuronal excitability. AIS function relies on high concentrations of different ion channels and complex regulatory mechanisms that orchestrate molecular microarchitecture. We review recent evidence that a large number of ion channels associated with epilepsy are enriched at the AIS, making it a 'hotspot' for epileptogenesis. Furthermore, we present novel data on the clustering of GABRgamma2 receptors in the AIS of cortical and hippocampal neurons in a knock in mouse model of a human genetic epilepsy. This article highlights the molecular coincidence of epilepsy mutations at the AIS and reviews pathogenic mechanisms converging at the AIS.
Collapse
Affiliation(s)
- Verena C Wimmer
- Florey Neuroscience Institutes, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | |
Collapse
|
26
|
Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D, Sabanay H, Dupree JL, Grumet M, Brophy PJ, Shrager P, Peles E. A glial signal consisting of gliomedin and NrCAM clusters axonal Na+ channels during the formation of nodes of Ranvier. Neuron 2010; 65:490-502. [PMID: 20188654 DOI: 10.1016/j.neuron.2010.02.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
Abstract
Saltatory conduction requires high-density accumulation of Na(+) channels at the nodes of Ranvier. Nodal Na(+) channel clustering in the peripheral nervous system is regulated by myelinating Schwann cells through unknown mechanisms. During development, Na(+) channels are first clustered at heminodes that border each myelin segment, and later in the mature nodes that are formed by the fusion of two heminodes. Here, we show that initial clustering of Na(+) channels at heminodes requires glial NrCAM and gliomedin, as well as their axonal receptor neurofascin 186 (NF186). We further demonstrate that heminodal clustering coincides with a second, paranodal junction (PNJ)-dependent mechanism that allows Na(+) channels to accumulate at mature nodes by restricting their distribution between two growing myelin internodes. We propose that Schwann cells assemble the nodes of Ranvier by capturing Na(+) channels at heminodes and by constraining their distribution to the nodal gap. Together, these two cooperating mechanisms ensure fast and efficient conduction in myelinated nerves.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pedraza L, Huang JK, Colman D. Disposition of axonal caspr with respect to glial cell membranes: Implications for the process of myelination. J Neurosci Res 2010; 87:3480-91. [PMID: 19170162 DOI: 10.1002/jnr.22004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neurofascin-155 (NF155) and caspr are transmembrane proteins found at discrete locations early during development of the nervous system. NF155 is present in the oligodendrocyte cell body and processes, whereas caspr is on the axonal surface. In mature nerves, these proteins are clustered at paranodes, flanking the node of Ranvier. To understand how NF155 and caspr become localized to the paranodal regions of myelinated nerves, we have studied their distribution over time in myelinating cultures. Our observations indicate that these two proteins are recruited to the cell surface at the contact zone between axons and oligodendrocytes, where they trans-interact. This association explains the early pattern of caspr distribution, a helical coil that winds around the axon, resembling the turns of the myelin sheath. Caspr, an axonal membrane protein, therefore seems to move in register with the overlying myelinating cell via its interactions with myelin proteins. We suggest that NF155 is the glial cell membrane protein responsible for caspr distribution. The pair act as interacting partners on either side of the axoglial contact area. Most likely, there are other proteins on the axonal surface whose distribution is equally influenced by interaction with the nascent myelin sheath. The fact that caspr follows the movement of the spiraling membrane has a direct affect on the interpretation of the way in which myelin is formed.
Collapse
Affiliation(s)
- Liliana Pedraza
- Montreal Neurological Institute, Program in Neuroengineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
28
|
Rosenbluth J. Multiple functions of the paranodal junction of myelinated nerve fibers. J Neurosci Res 2009; 87:3250-8. [DOI: 10.1002/jnr.22013] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Krishnan AV, Lin CSY, Park SB, Kiernan MC. Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog Neurobiol 2009; 89:288-313. [PMID: 19699774 DOI: 10.1016/j.pneurobio.2009.08.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/13/2022]
Abstract
Over recent decades, the development of specialised techniques such as patch clamping and site-directed mutagenesis have established the contribution of neuronal ion channel dysfunction to the pathophysiology of common neurological conditions including epilepsy, multiple sclerosis, spinal cord injury, peripheral neuropathy, episodic ataxia, amyotrophic lateral sclerosis and neuropathic pain. Recently, these insights from in vitro studies have been translated into the clinical realm. In keeping with this progress, novel clinical axonal excitability techniques have been developed to provide information related to the activity of a variety of ion channels, energy-dependent pumps and ion exchange processes activated during impulse conduction in peripheral axons. These non-invasive techniques have been extensively applied to the study of the biophysical properties of human peripheral nerves in vivo and have provided important insights into axonal ion channel function in health and disease. This review will provide a translational perspective, focusing on an overview of the investigational method, the clinical utility in assessing the biophysical basis of ectopic symptom generation in peripheral nerve disease and a review of the major findings of excitability studies in acquired and inherited neurological disease states.
Collapse
Affiliation(s)
- Arun V Krishnan
- Translational Neuroscience Facility, University of New South Wales, Randwick, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
30
|
Martin PM, Cifuentes-Diaz C, Garcia M, Goutebroze L, Girault JA. [Axon and Schwann cells... so far away, so close]. Rev Neurol (Paris) 2008; 164:1057-62. [PMID: 19041107 DOI: 10.1016/j.neurol.2008.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myelination was a major step in the evolution of the nervous system. Appearing first in jaw fish, myelination allows the fast and secure propagation of action potentials at a low energetic cost, and without exaggerated increase in axonal diameter. In the peripheral nervous system of mammals, myelination results from the tight interactions between Schwann cells and axons, leading to the formation of highly differentiated domains along the axon. The molecular determinants of these interactions are starting to be well identified. Their understanding provides a precise framework to interpret the defects, which occur in pathological circumstances. This review summarizes the present state of knowledge concerning axoglial interactions in peripheral nerves.
Collapse
Affiliation(s)
- P-M Martin
- Inserm UMR-S 839, institut du Fer-à-Moulin, 17, rue du Fer-à-Moulin, 75005 Paris, France
| | | | | | | | | |
Collapse
|
31
|
Susuki K, Rasband MN. Molecular mechanisms of node of Ranvier formation. Curr Opin Cell Biol 2008; 20:616-23. [PMID: 18929652 DOI: 10.1016/j.ceb.2008.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Action potential propagation along myelinated nerve fibers requires high-density protein complexes that include voltage-gated Na(+) channels at the nodes of Ranvier. Several complementary mechanisms may be involved in node assembly including: (1) interaction of nodal cell adhesion molecules with the extracellular matrix; (2) restriction of membrane protein mobility by paranodal junctions; and (3) stabilization of ion channel clusters by axonal cytoskeletal scaffolds. In the peripheral nervous system, a secreted glial protein at the nodal extracellular matrix interacts with axonal cell adhesion molecules to initiate node formation. In the central nervous system, both glial soluble factors and paranodal axoglial junctions may function in a complementary manner to contribute to node formation.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | | |
Collapse
|
32
|
Zhang CL, Wilson JA, Williams J, Chiu SY. Action Potentials Induce Uniform Calcium Influx in Mammalian Myelinated Optic Nerves. J Neurophysiol 2006; 96:695-709. [PMID: 16835363 DOI: 10.1152/jn.00083.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the node. Recent studies have revealed that action potentials also induce calcium influx into myelinated axons of mammalian optic nerves. Does calcium influx in myelinated axons show spatial heterogeneity during nerve excitation? To address this, we analyzed spatial profiles of axonal calcium transients during action potentials by selectively staining axons with calcium indicators and subjected the data to theoretical analysis with parameters for axial calcium diffusion empirically determined using photolysis of caged compounds. The results show surprisingly that during action potentials, calcium influx occurs uniformly along an axon of a fully myelinated mouse optic nerve.
Collapse
Affiliation(s)
- Chuan-Li Zhang
- Dept. of Physiology, University of Wisconsin School of Medicine, 1300 University Ave., 277 Medical Science Bldg., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
33
|
Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 2006; 53:372-81. [PMID: 16288467 DOI: 10.1002/glia.20292] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Galactocerebroside (GalC) and sulfatide are abundant myelin lipids. In mice incapable of synthesizing these lipids, myelin is thin and regionally unstable and exhibits several subtle structural abnormalities. Although galactolipid-null mice have been beneficial in the analysis of galactolipid function, it has not been possible to differentiate between the functions of GalC and sulfatide with these mice alone. In the present work, we have analyzed a murine model that forms normal levels of GalC but is incapable of synthesizing sulfatide. By comparing a plethora of morphological features between the galactolipid-null and the sulfatide-null mice, we have begun to differentiate between the specific functions of these closely related lipids. The most striking difference between these two mutants is the reduction of myelin developmental abnormalities (e.g., redundant and uncompacted myelin sheaths) in young adult sulfatide-null mice as compared with the galactolipid-null animals. Although sulfatide appears to play a limited role in myelin development, this lipid is essential for myelin maintenance, as the prevalence of redundant, uncompacted, and degenerating myelin sheaths as well as deteriorating nodal/paranodal structure is increased significantly in aged sulfatide-null mice as compared with littermate wildtype mice. Finally, we show that the role played by sulfatide in CNS maintenance is not limited to the myelin sheath, as axonal caliber and circularity are normal in young adult mutant mice but are significantly altered in aged sulfatide-null animals.
Collapse
Affiliation(s)
- J Marcus
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, 23298-0709, USA
| | | | | | | | | | | |
Collapse
|
34
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
35
|
Sosinsky GE, Deerinck TJ, Greco R, Buitenhuys CH, Bartol TM, Ellisman MH. Development of a model for microphysiological simulations: small nodes of ranvier from peripheral nerves of mice reconstructed by electron tomography. Neuroinformatics 2005; 3:133-62. [PMID: 15988042 DOI: 10.1385/ni:3:2:133] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The node of Ranvier is a complex structure found along myelinated nerves of vertebrate animals. Specific membrane, cytoskeletal, junctional, extracellular matrix proteins and organelles interact to maintain and regulate associated ion movements between spaces in the nodal complex, potentially influencing response variation during repetitive activations or metabolic stress. Understanding and building high resolution three dimensional (3D) structures of the node of Ranvier, including localization of specific macromolecules, is crucial to a better understanding of the relationship between its structure and function and the macromolecular basis for impaired conduction in disease. Using serial section electron tomographic methods, we have constructed accurate 3D models of the nodal complex from mouse spinal roots with resolution better than 7.5 nm. These reconstructed volumes contain 75-80% of the thickness of the nodal region. We also directly imaged the glial axonal junctions that serve to anchor the terminal loops of the myelin lamellae to the axolemma. We created a model of an intact node of Ranvier by truncating the volume at its midpoint in Z, duplicating the remaining volume and then merging the new half volume with mirror symmetry about the Z-axis. We added to this model the distribution and number of Na+ channels on this reconstruction using tools associated with the MCell simulation program environment. The model created provides accurate structural descriptions of the membrane compartments, external spaces, and formed structures enabling more realistic simulations of the role of the node in modulation of impulse propagation than have been conducted on myelinated nerve previously.
Collapse
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Department of Neurosciences and the Center for Research on Biological Systems, University of California, San Diego, CA, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, Furuse M, Tsukita S. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. ACTA ACUST UNITED AC 2005; 169:527-38. [PMID: 15883201 PMCID: PMC2171943 DOI: 10.1083/jcb.200501154] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tight junction (TJ)-like structures have been reported in Schwann cells, but their molecular composition and physiological function remain elusive. We found that claudin-19, a novel member of the claudin family (TJ adhesion molecules in epithelia), constituted these structures. Claudin-19-deficient mice were generated, and they exhibited behavioral abnormalities that could be attributed to peripheral nervous system deficits. Electrophysiological analyses showed that the claudin-19 deficiency affected the nerve conduction of peripheral myelinated fibers. Interestingly, the overall morphology of Schwann cells lacking claudin-19 expression appeared to be normal not only in the internodal region but also at the node of Ranvier, except that TJs completely disappeared, at least from the outer/inner mesaxons. These findings have indicated that, similar to epithelial cells, Schwann cells also bear claudin-based TJs, and they have also suggested that these TJs are not involved in the polarized morphogenesis but are involved in the electrophysiological "sealing" function of Schwann cells.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chouchkov C, Surchev L. Specificity of membrane specializations in mechanoreceptors of birds--A freeze-etching study. Somatosens Mot Res 2004; 21:75-85. [PMID: 15370089 DOI: 10.1080/08990220410001721248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The detailed knowledge of the molecular process of mechanotransduction is still an unsolved question. The investigation of the intramembranous structure of the cutaneous mechanoreceptors may play an important role in elucidating this problem. In this relation, Herbst sensory corpuscles in ducks were studied for the first time using the freeze-etching and thin sectioning techniques. Herbst corpuscles have the basic structural components valid for most of the encapsulated mechanoreceptors in mammals: a capsule made of perineural cells, a lamellar complex of modified Schwann cells, surrounding the non-myelinated part of the receptor nerve fiber and its ending. Freeze-etching replicas reveal that the plasmalemmae of the capsule cells, modified Schwann cells and axolemmae of parts of the nerve fiber differ in both density and pattern of distribution of intramembranous particles (IMPs) as well as IMP size. On all the plasmalemmae the IMP density is higher on the P-face (2000-3300 microm(-2)) than the respective E-face (800-1500 microm(-2)). The axolemma of the ending of the receptor nerve fiber expresses higher density of IMPs than its shaft. The mean IMP size for all the plasmalemmae varies between 5.5 and 7.5 nm. Many tight junctions occur between the capsule cells. These results indicate that the non-myelinated axolemma as well as the plasmalemmae of other components of Herbst corpuscles are specialized in terms of content and distribution of IMPs. The IMPs may represent various kinds of mechanosensitive channel proteins or related membrane-bound proteins participating in the process of mechanotransduction.
Collapse
Affiliation(s)
- C Chouchkov
- Department of Anatomy, Medical Faculty, Thracian University, Armejska 11, 6003 Stara Zagora, Bulgaria.
| | | |
Collapse
|
38
|
Schafer DP, Bansal R, Hedstrom KL, Pfeiffer SE, Rasband MN. Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J Neurosci 2004; 24:3176-85. [PMID: 15056697 PMCID: PMC6730037 DOI: 10.1523/jneurosci.5427-03.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Paranodal axoglial junctions in myelinated nerve fibers are essential for efficient action potential conduction and ion channel clustering. We show here that, in the mature CNS, a fraction of the oligodendroglial 155 kDa isoform of neurofascin (NF-155), a major constituent of paranodal junctions, has key biochemical characteristics of a lipid raft-associated protein. However, despite its robust expression, NF-155 is detergent soluble before paranodes form and in purified oligodendrocyte cell cultures. Only during its progressive localization to paranodes is NF-155 (1) associated with detergent-insoluble complexes that float at increasingly lower densities of sucrose and (2) retained in situ after detergent treatment. Finally, mutant animals with disrupted paranodal junctions, including those lacking specific myelin lipids, have significantly reduced levels of raft-associated NF-155. Together, these results suggest that trans interactions between oligodendroglial NF-155 and axonal ligands result in cross-linking, stabilization, and formation of paranodal lipid raft assemblies.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | |
Collapse
|
39
|
Ishibashi T, Ding L, Ikenaka K, Inoue Y, Miyado K, Mekada E, Baba H. Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. J Neurosci 2004; 24:96-102. [PMID: 14715942 PMCID: PMC6729565 DOI: 10.1523/jneurosci.1484-03.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axoglial paranodal junction is essential for the proper localization of ion channels around the node of Ranvier. The integrity of this junction is important for nerve conduction. Although recent studies have made significant progress in understanding the molecular composition of the paranodal junction, it is not known how these membrane components are distributed to the appropriate sites and interact with each other. Here we show that CD9, a member of the tetraspanin family, is present at the paranode. CD9 is concentrated in the paranode as myelination proceeds, but CD9 clusters become diffuse, associated with disruption of the paranode, in cerebroside sulfotransferase-deficient mice. Immunohistochemical and Western blot analysis showed that CD9 is distributed predominantly in the PNS. Ablation of CD9 in mutant mice disrupts junctional attachment at the paranode and alters the paranodal components contactin-associated protein (also known as Paranodin) and neurofascin 155, although the frequency of such abnormalities varies among individuals and individual axons even in the same mouse. Electron micrographs demonstrated that compact myelin sheaths were also affected in the PNS. Therefore, CD9 is a myelin protein important for the formation of paranodal junctions. CD9 also plays a role in the formation of compact myelin in the PNS.
Collapse
Affiliation(s)
- Tomoko Ishibashi
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, Baba H. Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 2004; 46:274-83. [PMID: 15048850 DOI: 10.1002/glia.20008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In myelinated axons, voltage-gated sodium channels specifically cluster at the nodes of Ranvier, while voltage-gated potassium channels are located at the juxtaparanodes. These characteristic localizations are influenced by myelination. During development, Nav1.2 first appears in the predicted nodes during myelination, and Nav1.6 replaces it in the mature nodes. Such replacements may be important physiologically. We examined the influence of the paranodal junction on switching of sodium channel subunits using the sulfatide-deficient mouse. This mutant displayed disruption of paranodal axoglial junctions and altered nodal lengths and channel distributions. The initial switching of Nav1.2 to Nav1.6 occurred in the mutant optic nerves; however, the number of Nav1.2-positive clusters was significantly higher than in wild-type mice. Although no signs of demyelination were observed at least up to 36 weeks of age, sodium channel clusters decreased markedly with age. Interestingly, Nav1.2 stayed in some of the nodal regions, especially where the nodal lengths were elongated, while Nav1.6 tended to remain in the normal-length nodes. The results in the mutant optic nerves suggested that paranodal junction formation may be necessary for complete replacement of nodal Nav1.2 to Nav1.6 during development as well as maintenance of Nav1.6 clusters at the nodes. Such subtype abnormality was not observed in the sciatic nerve, where paranodal disruption was observed. Thus, the paranodal junction significantly influences the retention of Nav1.6 in the node, which is followed by disorganization of nodal structures. However, its importance may differ between the central and peripheral nervous system.
Collapse
Affiliation(s)
- Ayaka Suzuki
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Efficient and rapid propagation of action potentials in myelinated axons depends on the molecular specialization of the nodes of Ranvier. The nodal region is organized into several distinct domains, each of which contains a unique set of ion channels, cell-adhesion molecules and cytoplasmic adaptor proteins. Voltage-gated Na+ channels - which are concentrated at the nodes - are separated from K+ channels - which are clustered at the juxtaparanodal region - by a specialized axoglial contact that is formed between the axon and the myelinating cell at the paranodes. This local differentiation of myelinated axons is tightly regulated by oligodendrocytes and myelinating Schwann cells, and is achieved through complex mechanisms that are used by another specialized cell-cell contact - the synapse.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
42
|
Abstract
The entire length of myelinated axons is organized into a series of polarized domains that center around nodes of Ranvier. These domains, which are crucial for normal saltatory conduction, consist of distinct multiprotein complexes of cell adhesion molecules, ion channels, and scaffolding molecules; they also differ in their diameter, organelle content, and rates of axonal transport. Juxtacrine signals from myelinating glia direct their sequential assembly. The composition, mechanisms of assembly, and function of these molecular domains will be reviewed. I also discuss similarities of this domain organization to that of polarized epithelia and present emerging evidence that disorders of domain organization and function contribute to the axonopathies of myelin and other neurologic disorders.
Collapse
Affiliation(s)
- James L Salzer
- Department of Cell Biology and Neurology, Program in Molecular Neurobiology, Skirball Institute of Biomedical Research, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
43
|
Poliak S, Salomon D, Elhanany H, Sabanay H, Kiernan B, Pevny L, Stewart CL, Xu X, Chiu SY, Shrager P, Furley AJW, Peles E. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 2003; 162:1149-60. [PMID: 12963709 PMCID: PMC2172860 DOI: 10.1083/jcb.200305018] [Citation(s) in RCA: 404] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon-glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci 2003. [PMID: 12904461 DOI: 10.1523/jneurosci.23-18-07001.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The node of Ranvier is a distinct domain of myelinated axons that is highly enriched in sodium channels and is critical for impulse propagation. During development, the channel subtypes expressed at the node undergo a transition from Nav1.2 to Nav1.6. Specialized junctions that form between the paranodal glial membranes and axon flank the nodes and are candidates to regulate their maturation and delineate their boundaries. To investigate these roles, we characterized node development in mice deficient in contactin-associated protein (Caspr), an integral junctional component. Paranodes in these mice lack transverse bands, a hallmark of the mature junction, and exhibit progressive disruption of axon-paranodal loop interactions in the CNS. Caspr mutant mice display significant abnormalities at central nodes; components of the nodes progressively disperse along axons, and many nodes fail to mature properly, persistently expressing Nav1.2 rather than Nav1.6. In contrast, PNS nodes are only modestly longer and, although maturation is delayed, eventually all express Nav1.6. Potassium channels are aberrantly clustered in the paranodes; these clusters are lost over time in the CNS, whereas they persist in the PNS. These findings indicate that interactions of the paranodal loops with the axon promote the transition in sodium channel subtypes at CNS nodes and provide a lateral diffusion barrier that, even in the absence of transverse bands, maintains a high concentration of components at the node and the integrity of voltage-gated channel domains.
Collapse
|
45
|
Rosenbluth J, Dupree JL, Popko B. Nodal sodium channel domain integrity depends on the conformation of the paranodal junction, not on the presence of transverse bands. Glia 2003; 41:318-25. [PMID: 12528185 DOI: 10.1002/glia.10179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the role that axoglial interactions play in node of Ranvier formation and maintenance remains incomplete. Previous studies of CNS myelinated fibers of CGT-null mice showed abnormalities in the arrangement of paranodal myelin loops and absence of a conspicuous component of the paranodal junction, the ridge-like intercellular transverse bands. Axolemmal sodium channel domains were largely preserved at nodes of Ranvier but displayed some abnormalities in form. Using a combination of freeze-fracture and immunocytochemical methods, we have found additional evidence documenting abnormalities in the size, shape, and location of axolemmal sodium channel clusters in CGT-null mice as well as evidence that these nodal abnormalities are complementary to the organization of paranodal myelin loops, despite the absence of transverse bands. We conclude that the differentiated form of the nodal axolemma and the distribution of axolemmal sodium channels depend on the conformation of paranodal axoglial contacts but not on the presence of transverse bands at the sites of contact.
Collapse
Affiliation(s)
- Jack Rosenbluth
- Department Physiology and Neuroscience and Rusk Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | | | |
Collapse
|
46
|
Rasband MN, Park EW, Zhen D, Arbuckle MI, Poliak S, Peles E, Grant SGN, Trimmer JS. Clustering of neuronal potassium channels is independent of their interaction with PSD-95. J Cell Biol 2002; 159:663-72. [PMID: 12438413 PMCID: PMC2173099 DOI: 10.1083/jcb.200206024] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent potassium channels regulate membrane excitability and cell-cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain-containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons. Here, we show that PSD-95 colocalizes precisely with Kv1 potassium channels and Caspr2 at juxtaparanodes, and that a macromolecular complex of Kv1 channels and PSD-95 can be immunopurified from mammalian brain and spinal cord. Surprisingly, we find that the high density clustering of Kv1 channels and Caspr2 at juxtaparanodes is normal in a mutant mouse lacking juxtaparanodal PSD-95, and that the indirect interaction between Kv1 channels and Caspr2 is maintained in these mutant mice. These data suggest that the primary function of PSD-95 at juxtaparanodes lies outside of its accepted role in mediating the high density clustering of Kv1 potassium channels at these sites.
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The interaction between neurons and glial cells that results in myelin formation represents one of the most remarkable intercellular events in development. This is especially evident at the primary functional site within this structure, the node of Ranvier. Recent experiments have revealed a surprising level of complexity within this zone, with several components, including ion channels, sequestered with a very high degree of precision and sharply demarcated borders. We discuss the current state of knowledge of the cellular and molecular mechanisms responsible for the formation and maintenance of the node. In normal axons, Na+ channels are present at high density within the nodal gap, and voltage-dependent K+ channels are sequestered on the internodal side of the paranode--a region known as the juxtaparanode. Modifying the expression of certain surface adhesion molecules that have been recently identified, markedly alters this pattern. There is a special emphasis on contactin, a protein with multiple roles in the nervous system. In central nervous system (CNS) myelinated fibers, contactin is localized within both the nodal gap and paranodes, and appears to have unique functions in each zone. New experiments on contactin-null mutant mice help to define these mechanisms.
Collapse
Affiliation(s)
- Katie Kazarinova-Noyes
- Department of Neurobiology/Anatomy, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
48
|
Abstract
The structure of myelinated axons was well described 100 years ago by Ramón y Cajal, and now their molecular organization is being revealed. The basal lamina of myelinating Schwann cells contains laminin-2, and their abaxonal/outer membrane contains two laminin-2 receptors, alpha6beta4 integrin and dystroglycan. Dystroglycan binds utrophin, a short dystrophin isoform (Dp116), and dystroglycan-related protein 2 (DRP2), all of which are part of a macromolecular complex. Utrophin is linked to the actin cytoskeleton, and DRP2 binds to periaxin, a PDZ domain protein associated with the cell membrane. Non-compact myelin--found at incisures and paranodes--contains adherens junctions, tight junctions, and gap junctions. Nodal microvilli contain F-actin, ERM proteins, and cell adhesion molecules that may govern the clustering of voltage-gated Na+ channels in the nodal axolemma. Na(v)1.6 is the predominant voltage-gated Na+ channel in mature nerves, and is linked to the spectrin cytoskeleton by ankyrinG. The paranodal glial loops contain neurofascin 155, which likely interacts with heterodimers composed of contactin and Caspr/paranodin to form septate-like junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated beta2 subunit, as well as Caspr2. Kv1.1, Kv1.2, and Caspr2 all have PDZ binding sites and likely interact with the same PDZ binding protein. Like Caspr, Caspr2 has a band 4.1 binding domain, and both Caspr and Caspr2 probably bind to the band 4.1 B isoform that is specifically found associated with the paranodal and juxtaparanodal axolemma. When the paranode is disrupted by mutations (in cgt-, contactin-, and Caspr-null mice), the localization of these paranodal and juxtaparanodal proteins is altered: Kv1.1, Kv1.2, and Caspr2 are juxtaposed to the nodal axolemma, and this reorganization is associated with altered conduction of myelinated fibers. Understanding how axon-Schwann interactions create the molecular architecture of myelinated axons is fundamental and almost certainly involved in the pathogenesis of peripheral neuropathies.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia 19104, USA.
| | | |
Collapse
|
49
|
Abstract
The node of Ranvier is a complex macromolecular assembly of ion channels and other proteins that is specialized for the rapid propagation of the action potential. A full understanding of the processes responsible for the assembly and maintenance of the node requires first the identification and characterization of the proteins found there. Here we show that NG2, a structurally unique chondroitin sulfate proteoglycan, is a molecular component of the node of Ranvier in the peripheral nervous system. In adult sciatic nerve, NG2 is (1) associated with thin, elongated fibroblast-like cells, (2) on some but not all basal laminae, and (3) at nodes of Ranvier. At the nodes, NG2 is restricted to the nodal gap and is absent from the paranodal or juxtaparanodal region. In dissociated cell cultures of adult sciatic nerve, perineurial fibroblasts but not Schwann cells express NG2 on their surfaces. Approximately 45% of the total NG2 in peripheral nerves is in a soluble, rather than particulate, subcellular compartment. NG2 is also present in membrane fractions that also contain high levels of voltage-dependent sodium channels, caspr, and neuron-glia related cell adhesion molecule. These medium-density membranes likely correspond to the nodal and paranodal region of the axon-Schwann cell unit. These results suggest a model in which perineurial fibroblasts secrete or shed NG2, which subsequently associates with nodes of Ranvier. The growth-inhibitory and anti-adhesive properties of NG2 may limit the lateral extension of myelinating Schwann cells as nodes mature. NG2 may also participate in the barrier functions of the perineurial linings of the nerve.
Collapse
|
50
|
Abstract
On axonal surfaces that flank the node of Ranvier and in overlying glial paranodal loops, proteins are arranged within circumscribed microdomains that defy explanation by conventional biosynthetic mechanisms. We postulate that the constraint of proteins to these loci is accomplished in part by discriminative membrane-embedded molecular sieves and diffusion barriers, which serve to organize and redistribute proteins after delivery by vesicular transport to neural cell plasma membranes. One sieve likely comprises a moveable, macromolecular scaffold of axonal and glial cell-derived transmembrane adhesion molecules and their associated cytoplasmic binding partners, located at the ends of each elongating myelin internode; this sieve contributes to restricting the sodium channel complexes to the node. We also anticipate the existence of a passive paranodal diffusion barrier at the myelin/noncompact membrane border, which prohibits protein diffusion out of contiguous paranodal membranes.
Collapse
Affiliation(s)
- L Pedraza
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|