1
|
Bloancă V, Ceauşu AR, Jitariu AA, Barmayoun A, Moş R, Crăiniceanu Z, Bratu T. Adipose Tissue Graft Improves Early but not Late Stages of Nerve Regeneration. ACTA ACUST UNITED AC 2018; 31:649-655. [PMID: 28652433 DOI: 10.21873/invivo.11107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023]
Abstract
AIM The aim of the study was to assess the effect of autologous fat graft on nerve regeneration by means of immunohistochemistry. MATERIALS AND METHODS The rat sciatic nerve was used; complete transection followed by primary neurorrhaphy was performed on both hind legs, on the left side a processed fat graft was applied, surrounding the nerve. Nerve biopsies were collected and immunohistochemical procedures were performed for glial fibrillary acidic protein (GFAP) and for neurofilament-associated protein(NFAP). RESULTS At 4 weeks, GFAP-positive cells were observed in the connective tissue formed between the two nerve endings on the left side only. At 10 weeks, GFAP-positive structures were present and exhibited a tendency to become linear on both sides, with an increased density on the left. NFAP-positive expression was present in the left treated limb with a disorganized pattern. CONCLUSION Adipose tissue led to the stimulation of GFAP-positive Schwann cells, which could have a positive impact on nerve regeneration in the clinical setting.
Collapse
Affiliation(s)
- Vlad Bloancă
- Department of Plastic Surgery, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Amalia Raluca Ceauşu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Andreea Adriana Jitariu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Ariana Barmayoun
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Moş
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Zorin Crăiniceanu
- Department of Plastic Surgery, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Tiberiu Bratu
- Department of Plastic Surgery, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
2
|
Parrilla M, León-Lobera F, Lillo C, Arévalo R, Aijón J, Lara JM, Velasco A. Sox10 Expression in Goldfish Retina and Optic Nerve Head in Controls and after the Application of Two Different Lesion Paradigms. PLoS One 2016; 11:e0154703. [PMID: 27149509 PMCID: PMC4858161 DOI: 10.1371/journal.pone.0154703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
The mammalian central nervous system (CNS) is unable to regenerate. In contrast, the CNS of fish, including the visual system, is able to regenerate after damage. Moreover, the fish visual system grows continuously throughout the life of the animal, and it is therefore an excellent model to analyze processes of myelination and re-myelination after an injury. Here we analyze Sox10+ oligodendrocytes in the goldfish retina and optic nerve in controls and after two kinds of injuries: cryolesion of the peripheral growing zone and crushing of the optic nerve. We also analyze changes in a major component of myelin, myelin basic protein (MBP), as a marker for myelinated axons. Our results show that Sox10+ oligodendrocytes are located in the retinal nerve fiber layer and along the whole length of the optic nerve. MBP was found to occupy a similar location, although its loose appearance in the retina differed from the highly organized MBP+ axon bundles in the optic nerve. After optic nerve crushing, the number of Sox10+ cells decreased in the crushed area and in the optic nerve head. Consistent with this, myelination was highly reduced in both areas. In contrast, after cryolesion we did not find changes in the Sox10+ population, although we did detect some MBP- degenerating areas. We show that these modifications in Sox10+ oligodendrocytes are consistent with their role in oligodendrocyte identity, maintenance and survival, and we propose the optic nerve head as an excellent area for research aimed at better understanding of de- and remyelination processes.
Collapse
Affiliation(s)
- Marta Parrilla
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Fernando León-Lobera
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Salamanca, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Salamanca, Spain
| | - Rosario Arévalo
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Salamanca, Spain
| | - José Aijón
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Salamanca, Spain
| | - Juan Manuel Lara
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Salamanca, Spain
| | - Almudena Velasco
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Salamanca, Spain
- * E-mail:
| |
Collapse
|
3
|
Pushchina EV, Varaksin AA, Obukhov DK. Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Münzel EJ, Becker CG, Becker T, Williams A. Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age. Acta Neuropathol Commun 2014; 2:77. [PMID: 25022486 PMCID: PMC4164766 DOI: 10.1186/s40478-014-0077-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In the human demyelinating central nervous system (CNS) disease multiple sclerosis, remyelination promotes recovery and limits neurodegeneration, but this is inefficient and always ultimately fails. Furthermore, these regenerated myelin sheaths are thinner and shorter than the original, leaving the underlying axons potentially vulnerable. In rodent models, CNS remyelination is more efficient, so that in young animals (but not old) the number of myelinated axons is efficiently restored to normal, but in both young and old rodents, regenerated myelin sheaths are still short and thin. The reasons for these differences in remyelination efficiency, the thinner remyelinated myelin sheaths compared to developmental myelin and the subsequent effect on the underlying axon are unclear. We studied CNS remyelination in the highly regenerative adult zebrafish (Danio rerio), to better understand mechanisms of what we hypothesised would be highly efficient remyelination, and to identify differences to mammalian CNS remyelination, as larval zebrafish are increasingly used for high throughput screens to identify potential drug targets to improve myelination and remyelination. RESULTS We developed a novel method to induce a focal demyelinating lesion in adult zebrafish optic nerve with no discernible axonal damage, and describe the cellular changes over time. Remyelination is indeed efficient in both young and old adult zebrafish optic nerves, and at 4 weeks after demyelination, the number of myelinated axons is restored to normal, but internode lengths are short. However, unlike in rodents or in humans, in young zebrafish these regenerated myelin sheaths were of normal thickness, whereas in aged zebrafish, they were thin, and remained so even 3 months later. This inability to restore normal myelin thickness in remyelination with age was associated with a reduced macrophage/microglial response. CONCLUSION Zebrafish are able to efficiently restore normal thickness myelin around optic nerve axons after demyelination, unlike in mammals. However, this fails with age, when only thin myelin is achieved. This gives us a novel model to try and dissect the mechanism for restoring myelin thickness in CNS remyelination.
Collapse
Affiliation(s)
- Eva Jolanda Münzel
- />MRC Centre for Regenerative Medicine, SCRM, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU UK
- />Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | | | - Thomas Becker
- />Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- />MRC Centre for Regenerative Medicine, SCRM, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU UK
| |
Collapse
|
5
|
Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE. Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 2013; 520:4184-203. [PMID: 22592645 DOI: 10.1002/cne.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.
Collapse
Affiliation(s)
- Alex C Moore
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
6
|
Münzel EJ, Schaefer K, Obirei B, Kremmer E, Burton EA, Kuscha V, Becker CG, Brösamle C, Williams A, Becker T. Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia 2011; 60:253-70. [PMID: 22020875 DOI: 10.1002/glia.21260] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/05/2011] [Indexed: 01/07/2023]
Abstract
The zebrafish has become an important model organism to study myelination during development and after a lesion of the adult central nervous system (CNS). Here, we identify Claudin k as a myelin-associated protein in zebrafish and determine its localization during development and adult optic nerve regeneration. We find Claudin k in subcellular compartments consistent with location in autotypic tight junctions of oligodendrocytes and myelinating Schwann cells. Expression starts in the hindbrain at 2 days (mRNA) and 3 days (protein) postfertilization and is maintained in adults. A newly generated claudin k:green fluorescent protein (GFP) reporter line allowed us to characterize oligodendrocytes in the adult retina that express Claudin k and olig2, but not P0 and uniquely only form loose wraps of membrane around axons. After a crush of the adult optic nerve, Claudin k protein levels were first reduced and then recovered within 4 weeks postlesion, concomitant with optic nerve myelin de- and regeneration. During optic nerve regeneration, oligodendrocytes, many of which were newly generated, repopulated the lesion site and exhibited increasing morphological complexity over time. Thus, Claudin k is a novel myelin-associated protein expressed by oligodendrocytes and Schwann cells from early stages of wrapping and myelin formation in zebrafish development and adult regeneration, suggesting important functions of the gene for myelin formation and maintenance. Our Claudin k antibodies and claudin k:GFP reporter line represent excellent ways to visualize oligodendrocyte and Schwann cell differentiation in vivo.
Collapse
Affiliation(s)
- Eva Jolanda Münzel
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Buckley CE, Marguerie A, Alderton WK, Franklin RJM. Temporal dynamics of myelination in the zebrafish spinal cord. Glia 2010; 58:802-12. [PMID: 20140960 DOI: 10.1002/glia.20964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Knowledge of the precise timing of myelination is critical to the success of zebrafish-based in vivo screening strategies for potential remyelination therapies. This study provides a systematic review of the timing of myelination in the zebrafish spinal cord and a critique of techniques by which it may be accurately assessed. The onset of myelination was found to be 3 days postfertilization (d.p.f.); earlier than previously reported. This coincided with the dorsal migration and differentiation of oligodendrocytes and the expression of myelin basic protein (Mbp) transcripts and protein. Our data suggests that immunohistochemistry with zebrafish-specific anti-Mbp from 3 d.p.f. is the optimal histological method for myelin visualization, while quantification of myelination is more reliably achieved by quantitative polymerase chain reaction (qPCR) for mbp from 5 d.p.f.. Transgenic fluorescent lines such as olig2:EGFP can be used to assess oligodendrocyte cell number at 3 d.p.f. and the development of new, more specific lines may enable real time visualization of myelin itself. Quantitative ultrastructural analysis revealed that the myelination of zebrafish axons is regulated according to axonal growth and not absolute axonal size. This study confirms the use of the zebrafish larvae as a versatile and efficient in vivo model of myelination and provides a platform on which future myelination screening studies can be based.
Collapse
Affiliation(s)
- Clare E Buckley
- MRC Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
8
|
García DM, Koke JR. Astrocytes as gate-keepers in optic nerve regeneration — A mini-review. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:135-8. [DOI: 10.1016/j.cbpa.2008.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/22/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
|
9
|
Schweitzer J, Gimnopoulos D, Lieberoth BC, Pogoda HM, Feldner J, Ebert A, Schachner M, Becker T, Becker CG. Contactin1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish. Mol Cell Neurosci 2007; 35:194-207. [PMID: 17425960 DOI: 10.1016/j.mcn.2007.02.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/10/2007] [Accepted: 02/15/2007] [Indexed: 11/22/2022] Open
Abstract
Contactin1a (Cntn1a) is a zebrafish homolog of contactin1 (F3/F11/contactin) in mammals, an immunoglobulin superfamily recognition molecule of neurons and oligodendrocytes. We describe conspicuous Cntn1a mRNA expression in oligodendrocytes in the developing optic pathway of zebrafish. In adults, this expression is only retained in glial cells in the intraretinal optic fiber layer, which contains 'loose' myelin. After optic nerve lesion, oligodendrocytes re-express Cntn1a mRNA independently of the presence of regenerating axons and retinal ganglion cells upregulate Cntn1a expression to levels that are significantly higher than those during development. After spinal cord lesion, expression of Cntn1a mRNA is similarly increased in axotomized brainstem neurons and white matter glial cells in the spinal cord. In addition, reduced mRNA expression in the trigeminal/anterior lateral line ganglion in erbb3-deficient mutant larvae implies Cntn1a in Schwann cell differentiation. These complex regulation patterns suggest roles for Cntn1a in myelinating cells and neurons particularly in successful CNS regeneration.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Animals, Newborn
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Differentiation/physiology
- Central Nervous System/pathology
- Central Nervous System/physiopathology
- Contactin 1
- Contactins
- Embryo, Nonmammalian
- Eye Enucleation/methods
- Gene Expression Regulation, Developmental/physiology
- In Situ Hybridization/methods
- Microscopy, Electron, Transmission/methods
- Myelin P0 Protein/metabolism
- Myelin-Associated Glycoprotein/metabolism
- Nerve Regeneration/physiology
- Neurons/physiology
- Neurons/ultrastructure
- Oligodendroglia/physiology
- Oligodendroglia/ultrastructure
- Optic Nerve Injuries/pathology
- Optic Nerve Injuries/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, ErbB-3/genetics
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Zebrafish
- Zebrafish Proteins
Collapse
Affiliation(s)
- Jörn Schweitzer
- Institut für die Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 2005; 118:5691-8. [PMID: 16303850 DOI: 10.1242/jcs.02680] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aquaporin-4, the major water-selective channel in astroglia throughout the central nervous system, facilitates water movement into and out of the brain. Here, we identify a novel role for aquaporin-4 in astroglial cell migration, as occurs during glial scar formation. Astroglia cultured from the neocortex of aquaporin-4-null mice had similar morphology, proliferation and adhesion, but markedly impaired migration determined by Transwell migration efficiency (18+/-2 vs 58+/-4% of cells migrated towards 10% serum in 8 hours; P<0.001) and wound healing rate (4.6 vs 7.0 microm/hour speed of wound edge; P<0.001) compared with wild-type mice. Transwell migration was similarly impaired (25+/-4% migrated cells) in wild-type astroglia after approximately 90% reduction in aquaporin-4 protein expression by RNA inhibition. Aquaporin-4 was polarized to the leading edge of the plasma membrane in migrating wild-type astroglia, where rapid shape changes were seen by video microscopy. Astroglial cell migration was enhanced by a small extracellular osmotic gradient, suggesting that aquaporin-4 facilitates water influx across the leading edge of a migrating cell. In an in vivo model of reactive gliosis and astroglial cell migration produced by cortical stab injury, glial scar formation was remarkably impaired in aquaporin-4-null mice, with reduced migration of reactive astroglia towards the site of injury. Our findings provide evidence for the involvement of aquaporin-4 in astroglial cell migration, which occurs during glial scar formation in brain injury, stroke, tumor and focal abscess.
Collapse
Affiliation(s)
- Samira Saadoun
- Department of Medicine, Cardiovascular Research Institute, University of California, 505 Parnassus Avenue, San Francisco, CA 94143-0521, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dunlop SA. Axonal sprouting in the optic nerve is not a prerequisite for successful regeneration. J Comp Neurol 2003; 465:319-34. [PMID: 12966558 DOI: 10.1002/cne.10782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Axonal sprouting, the production of axons additional to the parent one, occurs during optic nerve regeneration in goldfish and the frog Rana pipiens, with numbers of regenerate axons exceeding normal values four- to sixfold (Murray [1982] J. Comp. Neurol. 209:352-362; Stelzner and Strauss [1986] J. Comp. Neurol. 245:83-103). To determine whether axonal sprouting is a prerequisite for regeneration, the frog Litoria moorei was examined, a species that undergoes successful optic nerve regeneration but with a different time course compared with R. pipiens. Sprouting was assessed, as in goldfish and R. pipiens, from electron microscopic counts between the lesion and chiasm. However, disconnected axons that persist after axotomy would have falsely elevated the counts. The suspected overlap of these two axon populations was confirmed by labeling regenerate axons anterogradely with DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) and disconnected ones retrogradely with DiA (4-4-dihexadecylaminostyrl 1-N methylpyridinium iodide). Numbers of disconnected axons were estimated after preventing regeneration and subtracted from numbers in regenerate nerves. Throughout, the total number of regenerate axons was approximately one third lower than normal (P < 0.05) supporting a previous finding of minimal axonal sprouting in L. moorei (Dunlop et al. [2002] J. Comp. Neurol. 446:276-287). The validity of the subtractive electron microscopic method was confirmed by retrograde labeling to estimate numbers of retinal ganglion cells whose axons had crossed the lesion; values were approximately one third lower than normal. The data suggest that sprouting is not essential for either axon outgrowth or topographic map refinement.
Collapse
Affiliation(s)
- Sarah A Dunlop
- Neurobiology Laboratory, School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
12
|
Lillo C, Velasco A, Jimeno D, Cid E, Lara JM, Aijón J. The glial design of a teleost optic nerve head supporting continuous growth. J Histochem Cytochem 2002; 50:1289-302. [PMID: 12364562 DOI: 10.1177/002215540205001002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study demonstrates the peculiarities of the glial organization of the optic nerve head (ONH) of a fish, the tench (Tinca tinca), by using immunohistochemistry and electron microscopy. We employed antibodies specific for the macroglial cells: glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), and S100. We also used the N518 antibody to label the new ganglion cells' axons, which are continuously added to the fish retina, and the anti-proliferating cell nuclear antigen (PCNA) antibody to specifically locate dividing cells. We demonstrate a specific regional adaptation of the GS-S100-positive Müller cells' vitreal processes around the optic disc, strongly labeled with the anti-GFAP antibody. In direct contact with these Müller cells' vitreal processes, there are S100-positive astrocytes and S100-negative cells ultrastructurally identified as microglial cells. Moreover, a population of PCNA-positive cells, characterized as glioblasts, forms the limit between the retina and the optic nerve in a region homologous to the Kuhnt intermediary tissue of mammals. Finally, in the intraocular portion of the optic nerve there are differentiating oligodendrocytes arranged in rows. Both the glioblasts and the rows of developing cells could serve as a pool of glial elements for the continuous growth of the visual system.
Collapse
|
13
|
Clemente D, Porteros A, Alonso JR, Weruaga E, Aijón J, Arévalo R. Effects of axotomy on the expression of NADPH-diaphorase in the visual pathway of the tench. Brain Res 2002; 925:183-94. [PMID: 11792367 DOI: 10.1016/s0006-8993(01)03279-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The distribution of NADPH-diaphorase (ND) positive elements was analyzed throughout the visual pathway of the tench in normal conditions and after optic nerve transection. In the control retina, ND-labeled elements were observed in the photoreceptor, inner nuclear, outer nuclear and ganglion cell layers. In the optic nerve of control animals, small and numerous ND-positive glial cells that were identified as presumably astrocyte-like cells were observed. In the optic tracts and optic tectum, a different type of ND-positive glial cell was detected. Axotomy induced severe changes in the ND staining pattern in the visual pathway. A decrease in the number of ND-stained cells was detected in the retina. In the optic nerve of lesioned animals, the number of small cells gradually decreased, whereas the number of large cells did not change. Two new ND-positive cell populations were observed after the lesion: microglial-like cells appeared close to the lesioned area from 24 h to 7 days after transection, and astrocyte-like cells were found throughout the optic nerve from 14 days up to at least 120 days. The total number of ND-stained glial cells increased at 30 and 60 days and returned to control parameters at 120 days. In addition, the number of ND-positive cells increased at the same survival times in the optic tracts and in the retinorecipient strata of the optic tectum with respect to control animals. Thus, degenerative/regenerative processes in the fish visual pathway are accompanied by an increase in the number of ND-positive cells. Synthesis of nitric oxide is elicited in microglial-like cells as a response to axon injury, whereas the expression in astrocyte-like cells seems to be associated with both normal processes under physiological conditions and with the regenerative phase after the lesion.
Collapse
Affiliation(s)
- D Clemente
- Dpto. de Biología Celular y Patología, Facultad de Medicina, Campus Miguel de Unamuno, Universidad de Salamanca, c/Alfonso X el Sabio 1, E-37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Velasco A, Briñón JG, Caminos E, Lara JM, Aijón J. S-100-positive glial cells are involved in the regeneration of the visual pathway of teleosts. Brain Res Bull 1997; 43:327-36. [PMID: 9227844 DOI: 10.1016/s0361-9230(97)00014-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glial cells in the normal and regenerating visual pathways of Tinca tinca (Cyprinid, Teleost) were studied by labelling with anti-S-100 antibody. In normal fish, S-100-positive bipolar cells were found in the optic nerve, optic tract, and in the diencephalic visual pathways. After crushing the left optic nerve, the distribution and the number of S-100-immunoreactive cells were modified. In the injured nerve, 7 to 15 days after crushing no immunoreactive cell bodies were found in the crushed area, but a greater number of S-100-positive cells were found on both sides of the injured area. Sixty days after crushing, positive cells penetrating the crushed area were observed; the normal pattern was almost restored 200 days after crushing. In the diencephalon, 25 days after crushing, the number of S-100-positive cells increased remarkably and the most intense immunostaining of glial processes was observed 60 days after crushing. The density of S-100-labelled cells decreased after 4 months postcrushing. However, in the optic tectum no changes were observed. The increase of glial cells in the lesioned visual pathway suggests that they could play an important role in axonal regeneration after crushing.
Collapse
Affiliation(s)
- A Velasco
- Departamento de Biología Celular y Patología, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
16
|
Vecino E, Velasco A, Caminos E, Aijón J. Distribution of S100 immunoreactivity in the retina and optic nerve head of the teleost Tinca tinca L. Microsc Res Tech 1997; 36:17-25. [PMID: 9031258 DOI: 10.1002/(sici)1097-0029(19970101)36:1<17::aid-jemt2>3.0.co;2-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of S100 immunoreactivity within the normal and regenerating retina and optic nerve head of the teleost Tinca tinca L. has been investigated using the avidin-biotin complex (ABC) method and a polyclonal antibody against S100. Astrocytes and Müller cells were labeled with this antibody. This represents the first description of astrocytes localized in the optic nerve head and in the nerve fiber layer of the fish retina displaying a typical bipolar morphology. Horizontal cells in the inner nuclear layer were immunolabeled; we also observed species-specific S100 labeling of horizontal cells of the H1 subtype. No significant changes were seen in the S100 immunoreactive Müller cells, astrocytes, or horizontal cells in the tench retina after optic nerve crushing and during regeneration. These results might help to understand the function of glial cells in the normal and experimentally induced regenerating fish visual system.
Collapse
Affiliation(s)
- E Vecino
- Dpto. Biología Celular y Ciencias Morfológicas, Facultad de Medicina, Universidad del País Vasco, Vizcaya, Spain
| | | | | | | |
Collapse
|
17
|
Nona SN, Stafford CA. Glial repair at the lesion site in regenerating goldfish spinal cord: an immunohistochemical study using species-specific antibodies. J Neurosci Res 1995; 42:350-6. [PMID: 8583503 DOI: 10.1002/jnr.490420309] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have used fish-specific antibodies to show that repair in regenerating goldfish spinal cord is accompanied by the recovery of the astrocytic environment and restoration of the central canal. Astrocyte processes trailed the regenerated axons bridging the new cord, suggesting that they are not needed for axonal regrowth.
Collapse
Affiliation(s)
- S N Nona
- Department of Optometry and Vision Sciences, University of Manchester Institute of Science and Technology, UK
| | | |
Collapse
|
18
|
Strobel G, Stuermer CA. Growth cones of regenerating retinal axons contact a variety of cellular profiles in the transected goldfish optic nerve. J Comp Neurol 1994; 346:435-48. [PMID: 7527807 DOI: 10.1002/cne.903460307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following optic nerve transection in goldfish, retinal axons regenerate. To determine what the growth cones use as a substrate for their growth, regenerating growth cones were labeled by horseradish peroxidase (HRP) application to the retina 5-6 days after intraorbital optic nerve section (ONS) and identified at 10-11 days after ONS in the brain sided (distal) portion of the optic nerve in thick and serial ultrathin sections. Leading growth cones (n = 5) were found in intimate contact with a variety of elements: with myelin fragments alone, with myelin fragments and glial cells, and with the basal lamina of the glia limitans and the surface of a fibroblast outside the boundary of previous fascicles. In ultrathin sections of conventionally treated regenerating optic nerves, (unlabeled) axon profiles--in addition to myelin fragments--were seen to be in contact with an astrocyte and an oligodendrocyte, suggesting that the growth cones of these axons may have been associated with those cells. The data suggest that leading growth cones of regenerating axons may be capable of growing along myelin fragments and on a wide variety of cellular surfaces in the goldfish optic nerve.
Collapse
Affiliation(s)
- G Strobel
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
19
|
Nona SN, Stafford CA, Duncan A, Cronly-Dillon JR, Scholes J. Myelin repair by Schwann cells in the regenerating goldfish visual pathway: regional patterns revealed by X-irradiation. JOURNAL OF NEUROCYTOLOGY 1994; 23:400-9. [PMID: 7964909 DOI: 10.1007/bf01207112] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the regenerating goldfish optic nerves, Schwann cells of unknown origin reliably infiltrate the lesion site forming a band of peripheral-type myelinating tissue by 1-2 months, sharply demarcated from the adjacent new CNS myelin. To investigate this effect, we have interfered with cell proliferation by locally X-irradiating the fish visual pathway 24h after the lesion. As assayed by immunohistochemistry and EM, irradiation retards until 6 months formation of new myelin by Schwann cells at the lesion site, and virtually abolishes oligodendrocyte myelination distally, but has little or no effect on nerve fibre regrowth. Optic nerve astrocyte processes normally fail to re-infiltrate the lesion, but re-occupy it after irradiation, suggesting that they are normally excluded by early cell proliferation at this site. Moreover, scattered myelinating Schwann cells also appear in the oligodendrocyte-depleted distal optic nerve after irradiation, although only as far as the optic tract. Optic nerve reticular astrocytes differ in various ways from radial glia elsewhere in the fish CNS, and our observations suggest that they may be more permissive to Schwann cell invasion of CNS tissue.
Collapse
Affiliation(s)
- S N Nona
- Department of Optometry and Vision Sciences, UMIST, Manchester, UK
| | | | | | | | | |
Collapse
|
20
|
Sivron T, Schwab ME, Schwartz M. Presence of growth inhibitors in fish optic nerve myelin: postinjury changes. J Comp Neurol 1994; 343:237-46. [PMID: 8027441 DOI: 10.1002/cne.903430205] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study shows that the fish optic nerve, which is able to regenerate after injury, contains myelin-associated growth inhibitors similar to the growth inhibitors present in mammalian central nervous system (CNS) myelin. The ability of nerves to regenerate was previously correlated with the ability of sections from these nerves to support neuronal attachment and axonal growth in vitro. Thus neuroblastoma cells or embryonic neurons became attached to and grew axons on sections of rat sciatic nerve or fish optic nerve, which are spontaneously regenerating systems, but not on sections of rat optic nerve, a nonregenerating system. Failure of the latter to support axonal growth has been attributed, at least in part, to growth inhibitors. Recently it was shown that adult neurons, which differ in their growth requirement from embryonic neurons, are unable to extend neurites on sections of normal sciatic nerve but are able to extend neurites on sections of sciatic nerve that was injured prior to its excision. We found a similar situation in the fish optic nerve, i.e., that the nerve is normally not permissive to growth of adult retinal axons but becomes growth permissive after injury. The nonpermissiveness of the normal fish optic nerve was found to correlate with the presence of myelin-associated growth-inhibitory molecules. This inhibitory activity of fish myelin was neutralized by IN-1 antibodies, known to neutralize rat myelin growth inhibitors. The results thus demonstrate that fish optic nerve myelin contains inhibitors apparently similar or even identical to those of rat, but possibly present in lower amounts than in the rat. Results are discussed with respect to the possibility that fish optic nerve, like the rat sciatic nerve and unlike the rat optic nerve, undergoes certain changes after injury that support regeneration of adult neurons. Such changes might include elimination or neutralization of growth inhibitors.
Collapse
Affiliation(s)
- T Sivron
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
21
|
Cohen I, Sivron T, Lavie V, Blaugrund E, Schwartz M. Vimentin immunoreactive glial cells in the fish optic nerve: implications for regeneration. Glia 1994; 10:16-29. [PMID: 8300190 DOI: 10.1002/glia.440100104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The poor regenerative ability of neurons of the central nervous system in mammals, as compared with their counterpart in fish or amphibians, is thought to stem from differences in their immediate nonneuronal environment and its response to axonal injury. We describe one aspect of the environmental response to axonal injury in a spontaneously regenerating system--the fish optic nerve. The aspect under investigation was the reaction of glial cells at the injury site. This was examined by the use of antibodies that specifically recognize vimentin in fish glial cells. In the present study, affinity-purified vimentin antibodies were raised against a nonconserved N-terminal 14-amino acid peptide, which was predicted from the nucleotide sequence of vimentin. These antibodies were found to react specifically with glial cells in vitro. Moreover, the antivimentin antibodies stained both the optic nerve and the optic tract, but with different patterns. Specificity of the antibodies was verified by protein immunoblotting, tissue distribution, and labeling patterns. After injury, vimentin immunoreactivity initially disappeared from the site of the lesion due to cell death. Early signs of glial cell migration toward the injury site were evident a few days later. It is suggested that the reappearance of vimentin-positive glial cells at the site of injury is associated with axonal elongation across it, and that they contribute to the regenerative ability of the fish optic nerve.
Collapse
Affiliation(s)
- I Cohen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
22
|
Abstract
Schwann cells are able to migrate into the CNS and myelinate CNS axons in a number of developmental and pathological situations. Morphological studies based on normal, mutant and experimentally-lesioned tissue have indicated that Schwann cells are only able to enter the CNS when the integrity of the astrocytic glia limitans is disrupted. The significance and subtlety of the interactions between Schwann cells and astrocytes have been further explored by glial cell transplantation studies. These studies support in vitro observations on Schwann cell behaviour in highlighting the importance of extracellular matrix for both migration and myelin sheath formation. The failure of Schwann cells to intermix with astrocytes is an important aspect of glial cell biology which will have a bearing on efforts to remyelinate demyelinated axons by Schwann cell-transplantation.
Collapse
Affiliation(s)
- R J Franklin
- MRC Cambridge Centre for Brain Repair, Department of Clinical Veterinary Medicine, University of Cambridge, U.K
| | | |
Collapse
|
23
|
Abstract
During optic fiber regeneration in the goldfish, astrocytes in the visual system undergo a number of changes. These include hypertrophy of cell processes, increased reactivity with anti-intermediate filament antisera, and expression of cytoskeletal antigens not usually seen in these cells. In the present study, I have asked how much of this response might be due to interactions of glial cells with regenerating optic axons. Animals with and without a retina (regenerating and nonregenerating animals, respectively) had their optic nerve crushed and were then examined at various postoperative times with immunohistochemical methods. Three major differences between these two groups of animals were observed. First, in nonregenerating animals the crush lesion is not repopulated by immunoreactive glial cells while in regenerating animals it is. Second, the nature of the glial hypertrophy in the optic nerve is different in regenerating and nonregenerating animals. Finally, there is marked submeningeal swelling in regenerating nerves that is absent from nonregenerating nerves. Thus, these three aspects of the cellular response to optic nerve crush in the goldfish--wound healing, optic nerve gliosis, and non-neural cellular responses--appear to depend on interactions between regenerating optic axons and astrocytes or other non-neuronal cells of the visual paths for their expression.
Collapse
Affiliation(s)
- R L Levine
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|