1
|
Devaux J, Fykkolodziej B, Gow A. Claudin Proteins And Neuronal Function. CURRENT TOPICS IN MEMBRANES 2010; 65:229-253. [PMID: 25013353 DOI: 10.1016/s1063-5823(10)65010-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The identification and characterization of the claudin family of tight junction (TJ) proteins in the late 1990s ushered in a new era for research into the molecular and cellular biology of intercellular junctions. Since that time, TJs have been studied in the contexts of many diseases including deafness, male infertility, cancer, bacterial invasion and liver and kidney disorders. In this review, we consider the role of claudins in the nervous system focusing on the mechanisms by which TJs in glial cells are involved in neuronal function. Electrophysiological evidence suggests that claudins may operate in the central nervous system (CNS) in a manner similar to polarized epithelia. We also evaluate hypotheses that TJs are the gatekeepers of an immune-privileged myelin compartment and that TJs emerged during evolution to form major adhesive forces within the myelin sheath. Finally, we consider the implications of CNS myelin TJs in the contexts of behavioral disorders (schizophrenia) and demyelinating/hypomyelinating diseases (multiple sclerosis and the leukodystrophies), and explore evidence of a possible mechanism governing affective disorder symptoms in patients with white matter abnormalities.
Collapse
Affiliation(s)
- Jérôme Devaux
- Département Signalisation Neuronale, CRN2M, UMR 6231, CNRS, Université de la Méditerranée-Université Paul Cézanne, IFR Jean Roche, Marseille, France
| | - Bozena Fykkolodziej
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. ; Carman and Ann Adams Dept of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. ; Dept of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
2
|
Abstract
To analyze myelin structure and the composition of myelinated tissue in the African lungfish(Protopterus dolloi), we used a combination of ultrastructural and biochemical techniques. Electron microscopy showed typical multilamellar myelin: CNS sheaths abutted one another, and PNS sheaths were separated by endoneurial collagen. The radial component, prominent in CNS myelin of higher vertebrates, was suggested by the pattern of staining but was poorly organized. The lipid and myelin protein compositions of lungfish tissues more closely resembled those of teleost than those of higher vertebrates (frog, mouse). Of particular note, for example, lungfish glycolipids lacked hydroxy fatty acids. Native myelin periodicities from unfixed nerves were in the range of those for higher vertebrates rather than for teleost fish. Lungfish PNS myelin had wider inter-membrane spaces compared with other vertebrates, and lungfish CNS myelin had spaces that were closer in value to those in mammalian than to amphibian or teleost myelins. The membrane lipid bilayer was narrower in lungfish PNS myelin compared to other vertebrates, whereas in the CNS myelin the bilayer was in the typical range. Lungfish PNS myelin showed typical compaction and swelling responses to incubation in acidic or alkaline hypotonic saline. The CNS myelin, by contrast, did not compact in acidic saline but did swell in the alkaline solution. This lability was more similar to that for the higher vertebrates than for teleost.
Collapse
|
3
|
Alanne MH, Pummi K, Heape AM, Grènman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 2009; 57:523-9. [PMID: 19153196 PMCID: PMC2690405 DOI: 10.1369/jhc.2009.951681] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 01/07/2009] [Indexed: 01/25/2023] Open
Abstract
Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases.
Collapse
Affiliation(s)
- Maria H Alanne
- Department of Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
4
|
Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, Furuse M, Tsukita S. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. ACTA ACUST UNITED AC 2005; 169:527-38. [PMID: 15883201 PMCID: PMC2171943 DOI: 10.1083/jcb.200501154] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tight junction (TJ)-like structures have been reported in Schwann cells, but their molecular composition and physiological function remain elusive. We found that claudin-19, a novel member of the claudin family (TJ adhesion molecules in epithelia), constituted these structures. Claudin-19-deficient mice were generated, and they exhibited behavioral abnormalities that could be attributed to peripheral nervous system deficits. Electrophysiological analyses showed that the claudin-19 deficiency affected the nerve conduction of peripheral myelinated fibers. Interestingly, the overall morphology of Schwann cells lacking claudin-19 expression appeared to be normal not only in the internodal region but also at the node of Ranvier, except that TJs completely disappeared, at least from the outer/inner mesaxons. These findings have indicated that, similar to epithelial cells, Schwann cells also bear claudin-based TJs, and they have also suggested that these TJs are not involved in the polarized morphogenesis but are involved in the electrophysiological "sealing" function of Schwann cells.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
LI X, IONESCU AV, LYNN BD, LU S, KAMASAWA N, MORITA M, DAVIDSON KGV, YASUMURA T, RASH JE, NAGY JI. Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 2004; 126:611-30. [PMID: 15183511 PMCID: PMC1817902 DOI: 10.1016/j.neuroscience.2004.03.063] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2004] [Indexed: 10/26/2022]
Abstract
Gap junctions between glial cells in mammalian CNS are known to contain several connexins (Cx), including Cx26, Cx30 and Cx43 at astrocyte-to-astrocyte junctions, and Cx29 and Cx32 on the oligodendrocyte side of astrocyte-to-oligodendrocyte junctions. Recent reports indicating that oligodendrocytes also express Cx47 prompted the present studies of Cx47 localization and relationships to other glial connexins in mouse CNS. In view of the increasing number of connexins reported to interact directly with the scaffolding protein zonula occludens-1 (ZO-1), we investigated ZO-1 expression and Cx47/ZO-1 interaction capabilities in brain, spinal cord and Cx47-transfected HeLa cells. From counts of over 9000 oligodendrocytes labeled by immunofluorescence in various brain regions, virtually all of these cells were found to express Cx29, Cx32 and Cx47. Oligodendrocyte somata displayed robust Cx47-immunopositive puncta that were co-localized with punctate labeling for Cx32 and Cx43. By freeze-fracture replica immunogold labeling, Cx47 was abundant on the oligodendrocyte-side of oligodendrocyte/astrocyte gap junctions. By immunofluorescence, labeling for Cx47 along myelinated fibers was sparse in most brain regions, whereas Cx29 and Cx32 were previously found to be concentrated along these fibers. By immunogold labeling, Cx47 was found in numerous small gap junctions linking myelin to astrocytes, but not within deeper layers of myelin. Brain subcellular fractionation revealed a lack of Cx47 enrichment in myelin fractions, which nevertheless contained an enrichment of Cx32 and Cx29. Oligodendrocytes were immunopositive for ZO-1, and displayed almost total Cx47/ZO-1 co-localization. ZO-1 was found to co-immunoprecipitate with Cx47, and pull-down assays indicated binding of Cx47 to the second PDZ domain of ZO-1. Our results indicate widespread expression of Cx47 by oligodendrocytes, but with a distribution pattern in relative levels inverse to the abundance of Cx29 in myelin and paucity of Cx29 in oligodendrocyte somata. Further, our findings suggest a scaffolding and/or regulatory role of ZO-1 at the oligodendrocyte side of astrocyte-to-oligodendrocyte gap junctions.
Collapse
Affiliation(s)
- X. LI
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - A. V. IONESCU
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - B. D. LYNN
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - S. LU
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - N. KAMASAWA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - M. MORITA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - K. G. V. DAVIDSON
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - T. YASUMURA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. E. RASH
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. I. NAGY
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
- *Corresponding author. Tel: +1-204-789-3767; fax: +1-204-789-3934. E-mail address: (J. I. Nagy)
| |
Collapse
|
6
|
Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 2002; 159:361-72. [PMID: 12403818 PMCID: PMC2173042 DOI: 10.1083/jcb.200207050] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2000] [Revised: 09/09/2002] [Accepted: 09/09/2002] [Indexed: 12/18/2022] Open
Abstract
The apposed membranes of myelinating Schwann cells are joined by several types of junctional specializations known as autotypic or reflexive junctions. These include tight, gap, and adherens junctions, all of which are found in regions of noncompact myelin: the paranodal loops, incisures of Schmidt-Lanterman, and mesaxons. The molecular components of autotypic tight junctions have not been established. Here we report that two homologues of Discs Lost-multi PDZ domain protein (MUPP)1, and Pals-associated tight junction protein (PATJ), are differentially localized in myelinating Schwann cells and associated with different claudins. PATJ is mainly found at the paranodal loops, where it colocalized with claudin-1. MUPP1 and claudin-5 colocalized in the incisures, and the COOH-terminal region of claudin-5 interacts with MUPP1 in a PSD-95/Disc Large/zona occludens (ZO)-1 (PDZ)-dependent manner. In developing nerves, claudin-5 and MUPP1 appear together in incisures during the first postnatal week, suggesting that they coassemble during myelination. Finally, we show that the incisures also contain four other PDZ proteins that are found in epithelial tight junctions, including three membrane-associated guanylate-kinase proteins (membrane-associated guanylate-kinase inverted-2, ZO-1, and ZO-2) and the adaptor protein Par-3. The presence of these different tight junction proteins in regions of noncompact myelin may be required to maintain the intricate cytoarchitecture of myelinating Schwann cells.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
7
|
Notterpek L, Roux KJ, Amici SA, Yazdanpour A, Rahner C, Fletcher BS. Peripheral myelin protein 22 is a constituent of intercellular junctions in epithelia. Proc Natl Acad Sci U S A 2001; 98:14404-9. [PMID: 11717414 PMCID: PMC64694 DOI: 10.1073/pnas.251548398] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alterations in peripheral myelin protein 22 (PMP22) gene expression are associated with a host of heritable demyelinating peripheral neuropathies, yet the function of the protein remains unknown. PMP22 expression is highest in myelinating Schwann cells of peripheral nerves; however, significant levels of PMP22 mRNAs can be detected in a variety of non-neural tissue, including epithelia. To date, PMP22 protein expression and localization in non-neural tissues have not been studied in detail. In adult rat liver and intestine, and cultured epithelial cells, we detected PMP22-like immunoreactivity associated with markers of the tight junctional complex, including zonula occludens 1 (ZO-1) and occludin. Upon disruption of intercellular contacts, PMP22 was internalized into vesicles that were immunoreactive for both anti-occludin and anti-PMP22 antibodies. Nonionic detergent extraction of cultured epithelial cells did not solubilize PMP22, as the majority of the protein remained in the detergent insoluble fraction, as did ZO-1 and occludin. We also observed the targeting of exogenous myc-tagged PMP22 to apical cell junctions in polarized epithelia and to anti-ZO-1 antibody immunoreactive cell contacts of L fibroblasts. These studies support a role for PMP22 at intercellular junctions of epithelia and may indicate a similar function in myelinating Schwann cells. Furthermore, our findings could provide an explanation for certain phenotypes of PMP22 neuropathy mice that cannot be accounted for by dysmyelination.
Collapse
Affiliation(s)
- L Notterpek
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Yamamoto Y, Yoshikawa H, Nagano S, Kondoh G, Sadahiro S, Gotow T, Yanagihara T, Sakoda S. Myelin-associated oligodendrocytic basic protein is essential for normal arrangement of the radial component in central nervous system myelin. Eur J Neurosci 1999; 11:847-55. [PMID: 10103078 DOI: 10.1046/j.1460-9568.1999.00490.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We previously reported that myelin-associated oligodendrocytic basic protein (MOBP) was abundantly expressed in the central nervous system (CNS) myelin, and shared several characteristics with myelin basic protein (MBP). In particular, a cluster of positively charged amino acids was considered to facilitate compaction of the cytoplasmic face of the myelin sheath, as in the case of MBP. However, the contribution of MOBP in forming and maintaining the myelin sheath still remains unclear. Recent investigations showed that one isoform of MOBP was expressed in the embryo prior to myelination, and MOBP isoforms were colocalized with the microtubular network and nucleus in vitro. To explore the role of MOBP in vivo, we generated MOBP-deficient mice and analysed the CNS myelin. Surprisingly, the compact myelin was formed, however, the myelin from MOBP-deficient mice exposed to hexachlorophene, a known dysmyelinating agent, showed widening of the major dense lines. These results suggest that MOBP is not essential for myelin formation, but reinforces the apposition of the cytoplasmic faces of the myelin sheath. A striking phenotype of MOBP-deficient mice was the presence of the straight 'condensed' radial component. This component has been described as a tight junction-like complex running radially and zig-zag through the CNS myelin sheath between inner and outer mesaxons. These results suggest that MOBP is essential for normal arrangement of the radial component.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Neurology, Osaka University Medical School, 2-2 Yamada- oka, Suita, Osaka 5650-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998; 142:1095-104. [PMID: 9722620 PMCID: PMC2132877 DOI: 10.1083/jcb.142.4.1095] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/1998] [Revised: 06/18/1998] [Indexed: 02/08/2023] Open
Abstract
The Schwann cell myelin sheath is a multilamellar structure with distinct structural domains in which different proteins are localized. Intracellular dye injection and video microscopy were used to show that functional gap junctions are present within the myelin sheath that allow small molecules to diffuse between the adaxonal and perinuclear Schwann cell cytoplasm. Gap junctions are localized to periodic interruptions in the compact myelin called Schmidt-Lanterman incisures and to paranodes; these regions contain at least one gap junction protein, connexin32 (Cx32). The radial diffusion of low molecular weight dyes across the myelin sheath was not interrupted in myelinating Schwann cells from cx32-null mice, indicating that other connexins participate in forming gap junctions in these cells. Owing to the unique geometry of myelinating Schwann cells, a gap junction-mediated radial pathway may be essential for rapid diffusion between the adaxonal and perinuclear cytoplasm, since this radial pathway is approximately one million times faster than the circumferential pathway.
Collapse
Affiliation(s)
- R J Balice-Gordon
- Department of Neuroscience, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA.
| | | | | |
Collapse
|
10
|
Gould RM, Fannon AM, Moorman SJ. Neural cells from dogfish embryos express the same subtype-specific antigens as mammalian neural cells in vivo and in vitro. Glia 1995; 15:401-18. [PMID: 8926035 DOI: 10.1002/glia.440150405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neural cells are classically identified in vivo and in vitro by a combination of morphological and immunocytochemical criteria. Here, we demonstrate that antibodies used to identify mammalian oligodendrocytes, neurons, and astrocytes recognize these cell types in the developing spiny dogfish central nervous system and in cultures prepared from this tissue. Oligodendrocyte-lineage-specific antibodies O1, O4, and R-mAb labeled cells in the 9 cm dogfish brain stem's medial longitudinal fascicle (MLF) and in areas lateral to it. Process-bearing cells, cultured from the dogfish brain stem, were also labeled with these antibodies. An anti-lamprey neurofilament antibody (LCM), which recognized 60 and 150 kDa proteins in dogfish brain stem homogenates, labeled axons and neurons in the brain stem and axons in the cerebellum of the dogfish embryo. It also labeled cell bodies and/or processes of some cultured cerebellar cells. An anti-bovine glial fibrillary acidic protein antibody, which recognized 42-44 kDa protein(s) in dogfish brain stem homogenates, labeled astrocyte-like processes in the brain stem and cerebellum of the dogfish embryo and numerous large and small flat cells in the cerebellar cultures. These results demonstrate that dogfish oligodendrocytes, neurons, and astrocytes express antigens that are conserved in mammalian neural cells. The ability to culture and identify neural cell types from cartilaginous fish sets the stage for studies to determine if proliferation, migration, and differentiation of these cell types are regulated in a similar fashion to mammalian cells.
Collapse
Affiliation(s)
- R M Gould
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314-6399, USA
| | | | | |
Collapse
|
11
|
Hyun CS, Chen CW, Shinowara NL, Palaia T, Fallick FS, Martello LA, Mueenuddin M, Donovan VM, Teichberg S. Morphological factors influencing transepithelial conductance in a rabbit model of ileitis. Gastroenterology 1995; 109:13-23. [PMID: 7797012 DOI: 10.1016/0016-5085(95)90264-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Infection of rabbits with coccidia (Eimeria magna) causes chronic ileal inflammation and diarrhea. Inflamed ileum also shows decreased transmural conductance. The aim of this study was to characterize morphological factors known to affect paracellular permeability that may alter transmural conductance in inflamed ileum. METHODS Ileal mucosa was mounted in Ussing chambers for study of [3H]mannitol and [3H]inulin fluxes. Light and electron microscopy were used for morphometric studies. Alterations in the zonula occludens of epithelial cells were evaluated in freeze-fracture replicas. RESULTS Inflamed ileum showed diminished paracellular fluxes. Inoculated rabbits showed marked lymphoplasmocytic infiltration and villus blunting in ileum. Villus linear junctional density was unaffected. However, total villus apical surface area per square centimeter of tissue was reduced in inflamed ileum, causing a diminished total villus linear junctional pathway per square centimeter of apical surface. Villus zonula occludens strand number was reduced in inflamed ileum, whereas the frequency of both villus and crypt lateral surface extrajunctional strands increased. CONCLUSIONS Chronic inflammation exerts a profound effect on ileal paracellular permeability. Morphological data suggest that this effect may be caused in part by alterations in inflamed ileal mucosal structure and tight junctional organization and density, particularly on villi.
Collapse
Affiliation(s)
- C S Hyun
- Division of Gastroenterology, Winthrop-University Hospital, Mineola, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miragall F, Krause D, de Vries U, Dermietzel R. Expression of the tight junction protein ZO-1 in the olfactory system: presence of ZO-1 on olfactory sensory neurons and glial cells. J Comp Neurol 1994; 341:433-48. [PMID: 8201022 DOI: 10.1002/cne.903410402] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The olfactory system is a unique part of the central nervous system since it retains neuronal turnover and regenerative capacities in adulthood. Thus it provides an ideal model to study plasticity of membrane moities involved in cell-cell interactions. One structure particularly involved in cell-cell interaction is the tight junction, which establishes polarization of epithelial cells and creates diffusion barriers to paracellular passages. ZO-1 is a phosphoprotein peripherally associated with tight junctions. We have studied expression of ZO-1 protein in the developing and adult olfactory system of the mouse in order to get information about the localization and developmental expression of this tight junction component. ZO-1 expression has also been determined in cell cultures of olfactory bulbs. ZO-1 was present in the olfactory placode prior to formation of tight junctions. ZO-1 was localized in the developing and mature olfactory epithelium at heterotypic contacts between supporting cells and olfactory neurons as well as at homotypic contacts between both these cell types. Confocal microscopy showed quantitative differences in the ZO-1 expression among different olfactory dendrites. In the olfactory nerves ZO-1 immunolabeling was detectable between olfactory ensheathing cells. From the seventh postnatal day ZO-1 immunolabeling was detected at the mitral cell layer of the bulb on cells tentatively identified as oligodendrocytes. Myelinated tracts of the bulb were ZO-1 negative. Cell cultures of olfactory bulbs showed ZO-1 immunoreaction, mostly localized on glial fibrillary acidic protein (GFAP)-positive cells. Our results provide further evidence that ZO-1 serves functions unrelated to the tight junction complex and indicate molecular heterogeneity of these cell-cell contacts.
Collapse
Affiliation(s)
- F Miragall
- Institut für Anatomie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
13
|
Karthigasan J, Kosaras B, Nguyen J, Kirschner DA. Protein and lipid composition of radial component-enriched CNS myelin. J Neurochem 1994; 62:1203-13. [PMID: 8113804 DOI: 10.1046/j.1471-4159.1994.62031203.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The radial component is a junctional complex that is believed to stabilize the apposition of myelin membranes in the internode of CNS myelin. Based on our previous finding that the radial component of compact myelin retains its structure in tissue treated with the detergent Triton X-100, we have attempted to isolate the junctional complex from spinal cord myelin treated with this detergent. Using 0.5% Triton X-100, our procedures yielded a fraction of isolated myelin that was enriched in well-preserved radial component. This fraction that contained morphologically well-defined radial component was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting, and TLC, and was found to be significantly and consistently enriched in the 21.5-kDa and 17-kDa isoforms of myelin basic protein, and in cerebrosides, hydroxy sulfatide, and sphingomyelin. In addition, the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase, tubulin, and actin tended to be resistant to Triton extraction. The fraction of isolated myelin that contained radial component was deficient in proteolipid protein and DM-20, the 18.5- and 14-kDa isoforms of myelin basic proteins, and in the major phospholipids, phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine. Our data indicate that the radial component can be isolated and that certain myelin and cytoskeletal proteins and lipids are closely associated with it.
Collapse
|
14
|
Curtis R, Stewart HJ, Hall SM, Wilkin GP, Mirsky R, Jessen KR. GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system. J Biophys Biochem Cytol 1992; 116:1455-64. [PMID: 1531832 PMCID: PMC2289380 DOI: 10.1083/jcb.116.6.1455] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreactivity is present in Schwann cell precursors and in mature non-myelin-forming Schwann cells both in vitro and in vivo. This immunoreactivity is shown by Western blotting to be a membrane-associated protein that comigrates with purified central nervous system GAP-43. Furthermore, metabolic labeling experiments demonstrate definitively that Schwann cells in culture can synthesize GAP-43. Mature myelin-forming Schwann cells do not express GAP-43 but when Schwann cells are removed from axonal contact in vivo by nerve transection GAP-43 expression is upregulated in nearly all Schwann cells of the distal stump by 4 wk after denervation. In contrast, in cultured Schwann cells GAP-43 is not rapidly upregulated in cells that have been making myelin in vivo. Thus the regulation of GAP-43 appears to be complex and different from that of other proteins associated with nonmyelin-forming Schwann cells such as N-CAM, glial fibrillary acidic protein, A5E3, and nerve growth factor receptor, which are rapidly upregulated in myelin-forming cells after loss of axonal contact. These observations suggest that GAP-43 may play a more general role in the nervous system than previously supposed.
Collapse
Affiliation(s)
- R Curtis
- Imperial College of Science, Technology, and Medicine, Department of Biochemistry, Kensington, London, England
| | | | | | | | | | | |
Collapse
|
15
|
Howarth AG, Hughes MR, Stevenson BR. Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C461-9. [PMID: 1539634 DOI: 10.1152/ajpcell.1992.262.2.c461] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ZO-1 is a high molecular mass phosphoprotein peripherally associated with the cytoplasmic surface of tight junctions in epithelial and endothelial cells. We report here that ZO-1 is also present in several nonepithelial cell types in vitro that are not believed to form tight junctions, including primary cultures of astrocytes, Schwann cells, and dermal fibroblasts and the C6 glioma, S-180 (sarcoma), and P3 myeloma cell lines. Immunoblots of cell extracts probed with a ZO-1-specific monoclonal antibody reveal a single band that comigrates with ZO-1 from rodent epithelial cells at 225 kDa. In addition, these cells contain a single mRNA species of identical size to that previously reported for ZO-1 in epithelial tissues, as determined by Northern blots probed with a partial ZO-1 cDNA. Immunofluorescence microscopy demonstrates diverse ZO-1 distributions in these cells. In astrocytes, identified by the presence of glial fibrillary acidic protein, ZO-1 is localized at discrete sites of cell-cell contact as well as within the cell cytoplasm. In contrast, S-180 cells display diffuse staining at the cell periphery and within the cytoplasm. Dermal fibroblasts show no staining above background, although ZO-1 was detected on immunoblots of fibroblast cell extracts. Immunofluorescence staining of frozen sections of mouse brain demonstrates no detectable ZO-1 immunoreactivity outside blood vessels where endothelial cell tight junctions of the blood-brain barrier are located. These studies suggest that, although ZO-1 is found to be associated with the tight junction, it has a broader distribution than previously recognized.
Collapse
Affiliation(s)
- A G Howarth
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
16
|
Suzuki F, Nagano T. Three-dimensional model of tight junction fibrils based on freeze-fracture images. Cell Tissue Res 1991; 264:381-4. [PMID: 1878951 DOI: 10.1007/bf00313978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To study the three-dimensional structure of tight junction fibrils, the epithelia of the jejunum and epididymis of adult mice were examined by the freeze-fracture technique in unfixed and in aldehyde-fixed specimens. The fibrils have a stronger affinity for the protoplasmic (P) face of the lipid bilayer in fixed material, and for the external (E) face in unfixed and rapidly frozen material. Therefore we can observe the fibrils both from the outside and inside of the cell. Fibrils appearing on the P-face are smoothly contoured ridges and rows of hemispherical particles, while those appearing on the E-face are exclusively rows of hemispherical particles. Based on these observations, we wish to propose a new fibril model for the tight junction. There are two distinctive types of junctional elements. One type is composed of a smooth and continuous strand in the external view of the cell, but is studded with hemispherical bulgings in its internal view. This type will be referred to as the "continuous type". The other type is bead-like, and will be referred to as the "particle type". The relative proportion of these two types of elements appearing within a tight junction network differs among tissues.
Collapse
Affiliation(s)
- F Suzuki
- Department of Anatomy, School of Medicine, Chiba University, Japan
| | | |
Collapse
|
17
|
KOSARAS BÉLA, KIRSCHNER DANIELA. Fine-Structure and Supramolecular Organization of the Radial Component of CNS Myelin. Ann N Y Acad Sci 1990. [DOI: 10.1111/j.1749-6632.1990.tb42437.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Kosaras B, Kirschner DA. Radial component of CNS myelin: junctional subunit structure and supramolecular assembly. JOURNAL OF NEUROCYTOLOGY 1990; 19:187-99. [PMID: 2113569 DOI: 10.1007/bf01217297] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The radial component is a structural specialization within CNS myelin that is believed to stabilize the apposition of membranes in the internode. Previous observations on thin sections and freeze-fracture replicas show that this junctional complex consists of linear, particulate strands that run parallel to the nerve fibre axis and radially through the myelin sheath, but details on its molecular organization are lacking. The objective of our current study was to gain further insight into its arrangement and composition by examining its fine-structure and incidence in: myelin with known deficits in protein composition (e.g., shiverer, transgenic shiverer, myelin deficient and jimpy mutant mice); isolated CNS myelin, which has been shown by X-ray diffraction to be more stable than intact CNS myelin; and human white matter, in which this junctional complex has not yet been described. Our results confirm the localization and general appearance of the radial component as previously reported. In addition, we found that: (1) the radial component occurs abundantly in human CNS myelin where it has a complex subunit structure; (2) the constituent junctional unit of this structure is organized as a pair of globular domains (each approximately 40 A diameter) at the extracellular apposition which is linked by approximately 15 A diameter filaments extending through the bilayer to approximately 25 A globular domains in the adjacent cytoplasmic apposition; (3) the radial component is present with apparently normal structure in the sparse, compact myelin of murine mutants containing either different amounts of MBP or no PLP which indicates that neither of these proteins is necessary for junctional integrity; (4) the radial component is present in purified CNS myelin membranes which may account for the stability of these membranes; and (5) the radial component is structurally resistant to Triton, which suggests a method for its further biochemical characterization. Finally, from an analysis of images from tilted transverse and longitudinal sections, we have reconstructed a model of its three-dimensional, supramolecular organization.
Collapse
Affiliation(s)
- B Kosaras
- Neurology Research, Children's Hospital, Boston, MA 02115
| | | |
Collapse
|
19
|
Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C749-58. [PMID: 3322036 DOI: 10.1152/ajpcell.1987.253.6.c749] [Citation(s) in RCA: 405] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The zonula occludens (ZO), also referred to as the tight junction, forms the barrier to the diffusion of molecules and ions across the epithelial cell layer through the paracellular space. The level of electrical resistance of the paracellular pathway seems to depend on the number of strands in the ZO observed by freeze-fracture electron microscopy (EM). The ZO also forms the boundary between the compositionally distinct apical and basolateral plasma membrane domains because it is a barrier to the lateral diffusion of lipids and membrane proteins that reside in the extracytoplasmic leaflet of the membrane bilayer. In contrast to its appearance in transmission EM, the tight junction is not a fusion between the outer membrane leaflets of neighboring cells. Rather it consists of protein molecules, including the newly discovered protein ZO-1 and probably others, which bring the plasma membranes into extremely close apposition so as to occlude the extracellular space. Very little is known about the assembly of tight junctions, but several kinds of evidence suggest that they are very dynamic structures. Other elements of the epithelial junctional complex including the zonula adherens (ZA), the Ca2+-dependent cell adhesion molecule uvomorulin, or L-CAM, and actin filaments of the cytoskeleton may participate in the assembly of the ZO.
Collapse
Affiliation(s)
- B Gumbiner
- Department of Pharmacology, University of California, San Francisco 94143
| |
Collapse
|
20
|
Blanchard CE, Sikri K, Allt G. Filipin-sterol complexes at Schmidt-Lanterman incisures. Acta Neuropathol 1987; 72:355-61. [PMID: 3577691 DOI: 10.1007/bf00687267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Employing the freeze-fracture technique, the distribution of filipin-sterol complexes was determined for membranes of peripheral nerve myelin. A heterogeneous distribution of complexes was observed with the greatest abundance on membranes associated with the cytoplasmic channels of Schmidt-Lanterman and longitudinal incisures. In addition there was an irregular network of well-labelled membrane bands in compact myelin. The results are related to a possible role for these channels and bands in the biochemical turnover of cholesterol in myelin.
Collapse
|
21
|
Bigbee JW, Calabrese VP, DeVries GH. Characterization of an antiserum against an axolemma-enriched fraction. J Neuroimmunol 1985; 7:221-9. [PMID: 2578136 DOI: 10.1016/s0165-5728(84)80022-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An antiserum was raised to rat central nervous system (CNS) axolemma-enriched fractions (AEF), which showed no cross-reactivity with myelin proteins or liver microsomes yet gave an endpoint titer of 1:51 200 to CNS AEF by the enzyme-linked immunosorbent assay (ELISA). Immunochemical staining of electroblotted proteins from rat CNS and peripheral nervous system (PNS) AEFs separated by gel electrophoresis identified a major reactive band at 38.5 kD. CNS AEF also showed major immunoreactivity at 91 kD (+/- 3 kD) and a broad band from 110 kD to 130 kD. By immunoperoxidase staining the antiserum specifically recognized the axolemma of peripheral nerve and synaptic terminals in the CNS. The significance of the specificity is discussed with respect to anti-synaptosome antisera.
Collapse
|
22
|
Köling A. Membrane architecture of myelinated nerve fibres in the human dental pulp studied by freeze-fracturing. Arch Oral Biol 1985; 30:121-8. [PMID: 3857028 DOI: 10.1016/0003-9969(85)90103-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The outer surface of the myelin sheath was well visualized in electron micrographs of replicas and the distribution of its cytoplasm-containing portions could be analysed. Numerous caveolae, probably representing the surface stomata of endo- or exocytotic vesicles were found on the plasmalemmal surface overlying organelle-rich cytoplasmic regions. Membrane specializations of the tight-junction type were found at the outer and inner mesaxons of the myelin sheath as well as at the Ranvier node and Schmidt-Lanterman incisures. Presuming that so-called leakiness is related to the junctional morphology, these junctions would be classified as moderately leaky. The morphological features of the Schwann-cell nuclear envelope were essentially as described for other mammalian cells.
Collapse
|
23
|
MacKenzie ML, Ghabriel MN, Allt G. Nodes of Ranvier and Schmidt-Lanterman incisures: an in vivo lanthanum tracer study. JOURNAL OF NEUROCYTOLOGY 1984; 13:1043-55. [PMID: 6534973 DOI: 10.1007/bf01148601] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The permeability of the tight junctional system of myelin, at the juxtanodal myelin terminal loops and Schmidt-Lanterman incisures, was investigated using the ionic tracer lanthanum (a) in vivo followed by fixation, (b) concurrently with fixation, (c) following fixation. Employing the same methods the juxtanodal membrane complex formed between myelin loops and axolemma was also tested. The results of this study demonstrate that the periaxonal space (between axon and Schwann cell) is apparently accessible to lanthanum via the myelin loop-axolemmal junction, irrespective of the mode of exposure of myelinated fibres to the tracer. Similarly, the tight junctions between adjacent myelin terminal loops apparently do not prevent lanthanum penetration either in living or in fixed nerves. By contrast the tracer obtained access to the extracellular space within incisures only in vivo. The results are interpreted in terms of the permeability of nodes and incisures in vivo to physiologically important ions and related to current concepts of the electrophysiology of the myelinated nerve fibre.
Collapse
|
24
|
Inouye H, Kirschner DA. New X-ray spacings from central myelinated tissue. JOURNAL OF NEUROCYTOLOGY 1984; 13:883-94. [PMID: 6534975 DOI: 10.1007/bf01148591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
New X-ray reflections have been detected from myelinated tissue of the mammalian C.N.S. Diffraction patterns from unfixed optic nerves of mouse, rat, guinea-pig and rabbit, and unfixed corpus callosum of calf were recorded during X-ray exposures of 1-6 days. The equatorial pattern was typical of lamellar myelin of the C.N.S.; however, the meridional pattern showed new features: a strong, sharp intensity maximum at 30.4 +/- 0.4 A (N = 11) spacing, and a weak, diffuse ring centered at 11.0 +/- 0.5 A (N = 5) spacing. The 30.4 A reflection was neither strictly arced like the equatorial reflections from lamellar myelin nor fully horizontal. Since the 30.4 A meridional reflection was not observed in patterns from myelinated nerve of the P.N.S., we suggest that this diffraction comes from the radial component, or interlamellar tight junctions, which is unique to mammalian C.N.S. myelinated tissue. The diffuse ring at 11.0 A probably comes from myelin protein.
Collapse
|
25
|
|
26
|
Tetzlaff W. Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. JOURNAL OF NEUROCYTOLOGY 1982; 11:839-58. [PMID: 7143029 DOI: 10.1007/bf01153522] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tight and gap junctions are described on the basis of freeze-fractures in normal chicken sciatic nerves as well as during Wallerian degeneration and subsequent regeneration. 1. Small calibre nerve fibres display a fairly continuous tight junction contact zone in the membranes of the mesaxons, paranodal loops and Schmidt-Lanterman incisures. Large fibres with more than 40 lamellae have only focal tight junction contacts in the mesaxonal membranes. 2. With the onset of Wallerian degeneration (days 2-4 post-crush, distal stump) myelinic tight junctions become arranged as maculae composed of one circular or several polygonally oriented strands that are criss-crossed by other tight junctional strands. These maculae are subsequently found in the membranes of cytoplasmic vacuoles of the Schwann cells, indicating an endocytotic mode of uptake. Tight junctions are not found between the 5th and 6th day after crush. 3. During the proliferation phase of the Schwann cells and the arrangement of these cells into Büngner cell bands (2 to 8 days post-crush) gap junctions appear between the Schwann cells of the bands. These junctions then disappear with the onset of remyelination (8 days post-crush). 4. With the onset of remyelination (from the 8th day onwards) short focal tight junctions appear in the membranes of the outer mesaxons. Shortly thereafter, when the sheaths possess 4 to 8 lamellae, tight junctions also appear in the membranes of the inner mesaxons, the paranodal loops and the cytoplasmic inclusions. The characteristic differences of tight junction elaboration in small versus large nerve fibres are re-established after three months of regeneration. The elaborated tight junctions in small and early remyelinating fibres point to a specific function; in small fibres (versus large fibres) the tight junctions might effect a separation of the intramyelinic extracellular space as a single compartment. The tight junction contacts in early remyelinating fibres support the hypothesis that myelin growth occurs within the myelin spiral and not by a free rotation and elongation of the Schwann cell tongues. It is assumed that the gap junctions between the Schwann cells contribute to the co-ordination of the Schwann cell band formation, which is involved in the guidance of sprouting axons.
Collapse
|
27
|
Massa PT, Mugnaini E. Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 1982; 7:523-38. [PMID: 7078735 DOI: 10.1016/0306-4522(82)90285-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The plasma membranes of astrocytes and oligondendrocytes in the white matter of the cat were studied with the freeze-fracturing technique. The intramembrane particle profiles differ in the two type of cell. Orthogonal, small particle assembles and isolated globular particles 5-18 nm in diameter characterize the astrocytic plasmalemma, whereas the plasma membrane of oligodendrocytes shows large, tall globular particles, small globular particles, small ellipsoidal particles and previously undescribed, thin, short, rectilinear strands composed of fused subunits. Using these distinct differential features we can identify partners of glial cell junctions. We confirm the existence of interastrocytic gap junctions. Moreover, we identify numerous heterologous gap junctions between astrocytes and oligodendrocytic cell bodies, processes and the outer turn of myelin sheaths. Interoligodendrocytic gap junctions are not observed. Adjacent oligodendrocytes, however, form tight junctions consisting of linear P face strands and rows of particles; tight junctions are a reliable marker for oligodendroglial membranes. Connexons of interastrocytic gap junctions are packed in a crystalline array, while astrocyte-oligodendrocyte junctional connexons are closely packed but not crystalline. This study indicates that gap junctions between glial cells are pleomorphic and non-randomly distributed. The junctions between astrocytes and those between astrocytes and oligodendrocytes may had different roles in interglial and neuron-glia cooperation.
Collapse
|
28
|
Gotow T, Hashimoto PH. Graded differences in tightness of ependymal intercellular junctions within and in the vicinity of the rat median eminence. JOURNAL OF ULTRASTRUCTURE RESEARCH 1981; 76:293-311. [PMID: 7299904 DOI: 10.1016/s0022-5320(81)80060-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Abstract
Radial component of myelin sheaths was investigated in C57BL and quaking mice. In immature myelinated fibres of C57BL mice, more than one group of radial component were observed in the several regions of myelin sheaths while in mature fibres, one group of radial component was localized between the internal mesaxon and outer tongue process which were situated within 90 degrees of each other. In thinly myelinated fibres of adult quaking mice, numerous groups of radial component were found at random distance and directions but they were always closely related to the cytoplasmic islands of oligodendroglia. Even in quaking mice, small well myelinated fibres showed normal mature pattern of radial component. Possible functional significance of radial component was briefly discussed.
Collapse
|
30
|
|