1
|
Weng C, Groh AMR, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M R Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G R Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Gómez-González GB, Becerra-González M, Martínez-Mendoza ML, Rodríguez-Arzate CA, Martínez-Torres A. Organization of the ventricular zone of the cerebellum. Front Cell Neurosci 2022; 16:955550. [PMID: 35959470 PMCID: PMC9358289 DOI: 10.3389/fncel.2022.955550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
The roof of the fourth ventricle (4V) is located on the ventral part of the cerebellum, a region with abundant vascularization and cell heterogeneity that includes tanycyte-like cells that define a peculiar glial niche known as ventromedial cord. This cord is composed of a group of biciliated cells that run along the midline, contacting the ventricular lumen and the subventricular zone. Although the complex morphology of the glial cells composing the cord resembles to tanycytes, cells which are known for its proliferative capacity, scarce or non-proliferative activity has been evidenced in this area. The subventricular zone of the cerebellum includes astrocytes, oligodendrocytes, and neurons whose function has not been extensively studied. This review describes to some extent the phenotypic, morphological, and functional characteristics of the cells that integrate the roof of the 4V, primarily from rodent brains.
Collapse
|
3
|
Edgar JM, McGowan E, Chapple KJ, Möbius W, Lemgruber L, Insall RH, Nave K, Boullerne A. Río-Hortega's drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J Anat 2021; 239:1241-1255. [PMID: 34713444 PMCID: PMC8602028 DOI: 10.1111/joa.13577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
A century ago this year, Pío del Río-Hortega (1921) coined the term 'oligodendroglia' for the 'interfascicular glia' with very few processes, launching an extensive discovery effort on his new cell type. One hundred years later, we review his original contributions to our understanding of the system of cytoplasmic channels within myelin in the context of what we observe today using light and electron microscopy of genetically encoded fluorescent reporters and immunostaining. We use the term myelinic channel system to describe the cytoplasm-delimited spaces associated with myelin; being the paranodal loops, inner and outer tongues, cytoplasm-filled spaces through compact myelin and further complex motifs associated to the sheath. Using a central nervous system myelinating cell culture model that contains all major neural cell types and produces compact myelin, we find that td-tomato fluorescent protein delineates the myelinic channel system in a manner reminiscent of the drawings of adult white matter by Río-Hortega, despite that he questioned whether some cytoplasmic figures he observed represented artefact. Together, these data lead us to propose a slightly revised model of the 'unrolled' sheath. Further, we show that the myelinic channel system, while relatively stable, can undergo subtle dynamic shape changes over days. Importantly, we capture an under-appreciated complexity of the myelinic channel system in mature myelin sheaths.
Collapse
Affiliation(s)
- Julia M. Edgar
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Eleanor McGowan
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Katie J. Chapple
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Wiebke Möbius
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
- Electron Microscopy Core UnitMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Leandro Lemgruber
- Glasgow Imaging FacilityInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Klaus‐Armin Nave
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Anne Boullerne
- Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
Gómez-González GB, Martínez-Torres A. Inter-fastigial projections along the roof of the fourth ventricle. Brain Struct Funct 2021; 226:901-917. [PMID: 33511462 DOI: 10.1007/s00429-021-02217-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The fastigial nucleus (FN) is a bilateral cerebellar integrative center for saccadic and vestibular control associated with non-motor functions such as feeding and cardiovascular regulation. In a previous study, we identified a tract of myelinated axons embedded in the subventricular zone (SVZ) that is located between the ependymal cells that form the dorsal wall of the ventricle and the glia limitans at the roof of the fourth ventricle González-González (Sci Rep 2017, 7:40768). Here, we show that this tract of axons, named subventricular axons or SVa, contains projection neurons that bilaterally interconnect both FNs. The approach consisted of the use of a battery of fluorescent neuronal tracers, transgenic mouse lines, and immunohistofluorescence. Our observations show that the SVa belong to a wide network of GABAergic projection neurons mainly located in the medial and caudal region of the FN. The SVa should be considered a part of a continuum of the cerebellar white matter that follows an alternative pathway through the SVZ, a region closely associated with the physiology of the fourth ventricle. This finding adds to our understanding of the complex organization of the FN; however, the function of the interconnection remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela B Gómez-González
- Laboratory of Molecular and Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México
| | - Ataúlfo Martínez-Torres
- Laboratory of Molecular and Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
5
|
Nicaise C, Marneffe C, Bouchat J, Gilloteaux J. Osmotic Demyelination: From an Oligodendrocyte to an Astrocyte Perspective. Int J Mol Sci 2019; 20:E1124. [PMID: 30841618 PMCID: PMC6429405 DOI: 10.3390/ijms20051124] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed.
Collapse
Affiliation(s)
| | - Catherine Marneffe
- Laboratory of Glia Biology (VIB-KU Leuven Center for Brain & Disease Research), Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium.
| | - Joanna Bouchat
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
| | - Jacques Gilloteaux
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
6
|
Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny. Brain Struct Funct 2015; 221:1691-717. [DOI: 10.1007/s00429-015-0998-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
7
|
Tada MN, Kuratani S. Evolutionary and developmental understanding of the spinal accessory nerve. ZOOLOGICAL LETTERS 2015; 1:4. [PMID: 26605049 PMCID: PMC4604108 DOI: 10.1186/s40851-014-0006-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/27/2014] [Indexed: 05/11/2023]
Abstract
The vertebrate spinal accessory nerve (SAN) innervates the cucullaris muscle, the major muscle of the neck, and is recognized as a synapomorphy that defines living jawed vertebrates. Morphologically, the cucullaris muscle exists between the branchiomeric series of muscles innervated by special visceral efferent neurons and the rostral somitic muscles innervated by general somatic efferent neurons. The category to which the SAN belongs to both developmentally and evolutionarily has long been controversial. To clarify this, we assessed the innervation and cytoarchitecture of the spinal nerve plexus in the lamprey and reviewed studies of SAN in various species of vertebrates and their embryos. We then reconstructed an evolutionary sequence in which phylogenetic changes in developmental neuronal patterning led towards the gnathostome-specific SAN. We hypothesize that the SAN arose as part of a lamprey-like spinal nerve plexus that innervates the cyclostome-type infraoptic muscle, a candidate cucullaris precursor.
Collapse
Affiliation(s)
- Motoki N Tada
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
8
|
Vella A, Della Nave R, Vetrugno R, Diciotti S, Boschi S, Banci Bonamici F, Mascalchi M. Cerebellar hyperperfusion in semantic dementia. Neurocase 2014; 20:175-82. [PMID: 23414345 DOI: 10.1080/13554794.2012.741255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite evidence of a cerebellar contribution to language, possible functional changes of the cerebellum in patients with language impairment secondary to cerebral neurodegeneration has not been investigated so far. We examined with resting perfusion single photon emission tomography one patient with semantic dementia and the data were compared with a normal subject database. Region of interest and Statistical Parametric Mapping 2 analysis showed in the patient hypoperfusion of the left temporal and parietal lobe and hyperperfusion in the superior vermis and cerebellar hemispheres (lobules IV, V, and VI). The cerebellum shows increased flow of possible compensatory significance in patients with language disturbance associated to cerebral degenerative changes.
Collapse
Affiliation(s)
- Alessandra Vella
- a Nuclear Medicine, "Le Scotte" Hospital, University of Siena , Siena , Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Gordon T. Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration. Exp Neurol 2014; 254:99-108. [PMID: 24468476 DOI: 10.1016/j.expneurol.2014.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Tessa Gordon
- Department of Surgery, Division of Plastic Reconstructive Surgery 5549A, The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
10
|
Abstract
Astrocytes are possibly the most numerous cells of the vertebrate central nervous system, yet a detailed characterization of their functions is still missing. One potential reason for the obscurity of astrocytic function is that they represent a diverse population of cells that all share some critical characteristics. In the CNS, astrocytes have been proposed to perform many functions. For example, they are supportive cells that provide guidance to newly formed migrating neurons and axons. They regulate the functions of endothelial cells at the blood brain barrier, provide nutrients, and maintain homeostasis including ionic balance within the CNS. More recently, dissecting the central role of astrocytes in mediating injury responses in the CNS, particularly the spinal cord, has become an area of considerable importance. The ability to culture-enriched populations of astrocytes has facilitated a detailed dissection of their potential roles in the developing and adult, normal, and injured brain and spinal cord. Most importantly, in vitro models have defined molecular signals that may mediate or regulate astrocyte functions and the capacity to modulate these signals may provide new opportunities for therapeutic intervention after spinal cord injury and other neural insults.
Collapse
Affiliation(s)
- Amber E Kerstetter
- Department of Neurosurgery, Center for Translational Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
11
|
Metabolic Changes of Cerebrum by Repetitive Transcranial Magnetic Stimulation over Lateral Cerebellum: A Study with FDG PET. THE CEREBELLUM 2011; 11:739-48. [DOI: 10.1007/s12311-011-0333-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Sobottka B, Ziegler U, Kaech A, Becher B, Goebels N. CNS live imaging reveals a new mechanism of myelination: The liquid croissant model. Glia 2011; 59:1841-9. [DOI: 10.1002/glia.21228] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/18/2011] [Indexed: 11/06/2022]
|
13
|
Vinet J, Lemieux P, Tamburri A, Tiesinga P, Scafidi J, Gallo V, Sík A. Subclasses of oligodendrocytes populate the mouse hippocampus. Eur J Neurosci 2010; 31:425-38. [DOI: 10.1111/j.1460-9568.2010.07082.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G, Tator CH. Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis. ACTA ACUST UNITED AC 2008; 43:123-76. [PMID: 18706353 DOI: 10.1016/j.proghi.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/07/2008] [Indexed: 12/18/2022]
Abstract
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Iris Kulbatski
- Krembil Neuroscience Centre, Toronto Western Research Institute, 399 Bathurst Street, McLaughlin Pavilion #12-423, Toronto, Ontario, Canada M5T-2S8.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pollok B, Butz M, Gross J, Schnitzler A. Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci 2007; 19:704-19. [PMID: 17381260 DOI: 10.1162/jocn.2007.19.4.704] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Compared to unimanual task execution, simultaneous bimanual tapping tasks are associated with a significantly reduced intertap variability. It has been suggested that this bimanual advantage is based on the integration of timing signals which otherwise control each hand independently. Although its functional and anatomic foundations are poorly understood, functional coupling between cerebellar hemispheres might be behind this process. Because the execution of fast alternating fingertaps increases intertap variability, it is hypothesized that intercerebellar coupling is reduced in such tasks. To shed light on the functional significance of intercerebellar coupling, 14 right-handed subjects performed unimanual right, bimanual simultaneous, and bimanual alternating synchronization tasks with respect to a regular auditory pacing signal. In all conditions, within-hand intertap interval was 500 msec. Continuous neuromagnetic activity, using a 122-channel wholehead neuromagnetometer and surface electromyograms of the first dorsal interosseus muscle of both hands, were recorded. For data analysis, we used the analysis tool Dynamic Imaging of Coherent Sources, which provides a tomographic map of cerebromuscular and cerebrocerebral coherence. Analysis revealed a bilateral cerebello-thalamo-cortical network oscillating at alpha (8-12 Hz) and beta (13-24 Hz) frequencies associated with bimanual synchronization. In line with our hypothesis, coupling between cerebellar hemispheres was restricted to simultaneous task execution. This result implies that intercerebellar coupling is key for the execution of simultaneous bimanual movements. Although the criticality of a specific magneto-encephalography pattern for behavioral changes should be interpreted with caution, data suggest that intercerebellar coupling possibly represents the functional foundation of the bimanual advantage.
Collapse
|
16
|
Pollok B, Butz M, Gross J, Südmeyer M, Timmermann L, Schnitzler A. Coupling between cerebellar hemispheres: behavioural, anatomic, and functional data. THE CEREBELLUM 2006; 5:212-9. [PMID: 16997753 DOI: 10.1080/14734220600621294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although the cerebellum has been related to emotional, cognitive, and sensory processes, its outstanding significance for motor behaviour has attracted a vast variety of studies. Specifically, the role of cerebellar activity for appropriate movement timing has been investigated intensively. Behavioural studies, particularly of patients following cerebellar lesions, gave rise to the hypothesis that each hand is controlled by separate timing mechanisms most likely localized within lateral portions of each cerebellar hemisphere. Reduced timing variability during simultaneous bimanual tasks implies that both timing signals are integrated prior to movement execution, probably by information transfer between both cerebellar hemispheres. However, this raises the question for functional and anatomic fundamentals of such an integration process. The present article reviews behavioural, functional, and anatomic data to shed light on possible interactions between both cerebellar hemispheres during the execution of timed motor behaviour.
Collapse
Affiliation(s)
- Bettina Pollok
- Department of Neurology, Heinrich Heine University, Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Manto M, Nowak DA, Schutter DJLG. Coupling between cerebellar hemispheres and sensory processing. THE CEREBELLUM 2006; 5:187-8. [PMID: 16997748 DOI: 10.1080/14734220600925075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage 2005; 28:39-48. [PMID: 16023375 DOI: 10.1016/j.neuroimage.2005.06.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 05/23/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022] Open
Abstract
Recent studies of the cerebellum indicated its involvement in a diverse array of functions, and analyses of non-human primate neuroanatomy have revealed connections between cerebellum and cerebral cortex that might support cerebellar contributions to a wider range of functions than traditionally thought. These include cortico-ponto-cerebellar projections originating throughout cerebral cortex, in addition to projections from the dentate nucleus of the cerebellum to prefrontal and posterior parietal cortices via the thalamus. Such projections likely serve as important substrates for cerebellar involvement in human cognition, assuming their analogues are prominent in the human brain. These connections can be examined from a functional perspective through the use of functional connectivity MRI (FCMRI), a technique that allows the in vivo examination of coherence in MR signal among functionally related brain regions. Using this approach, low-frequency fluctuations in MR signal in the dentate nucleus correlated with signal fluctuations in cerebellar, thalamic, limbic, striatal, and cerebrocortical regions including parietal and frontal sites, with prominent coherence in dorsolateral prefrontal cortex. These findings indicate that FCMRI is a useful tool for examining functional relationships between the cerebellum and other brain regions, and they support the findings from non-human primate studies showing anatomic projections from cerebellum to regions of cerebral cortex with known involvement in higher cognitive functions. To our knowledge, this represents the first demonstration of functional coherence between the dentate nucleus and parietal and prefrontal cortices in the human brain, suggesting the presence of cerebellar-parietal and cerebellar-prefrontal functional connectivity.
Collapse
Affiliation(s)
- Greg Allen
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, 75390-8846, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Butt AM, Dinsdale J. Fibroblast growth factor 2 induces loss of adult oligodendrocytes and myelin in vivo. Exp Neurol 2005; 192:125-33. [PMID: 15698626 DOI: 10.1016/j.expneurol.2004.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/09/2004] [Accepted: 11/09/2004] [Indexed: 01/06/2023]
Abstract
Oligodendrocytes are the myelin-forming cells of the CNS and are lost in demyelinating diseases such as multiple sclerosis (MS). A role for fibroblast growth factor 2 (FGF2) has been proposed in the pathogenesis of demyelination and the failure of remyelination in experimental models of MS. However, the in vivo effects of FGF2 on oligodendrocytes and oligodendrocyte progenitors (OPCs) in the adult CNS had not previously been determined. To address this, FGF2 was delivered into the cerebrospinal fluid (CSF) of the IVth ventricle and its actions were examined on the anterior medullary velum (AMV), a thin tissue that partly roofs the IVth ventricle and is bathed by CSF. FGF2 was administered twice daily for 3 days and AMV were analysed using immunohistochemical labelling; saline was administered in controls. The results show that raised FGF2 induces severe disruption of mature oligodendrocytes and a marked loss of myelin. At the same time, FGF2 treatment resulted in the aberrant accumulation of immature oligodendrocytes with a premyelinating phenotype, together with NG2-expressing OPCs. Axons are patent within demyelinated lesions, and they are contacted but not ensheathed by surviving oligodendrocytes, newly formed premyelinating oligodendrocytes and OPCs. These results demonstrate that raised FGF2 induces demyelination in the adult CNS, and support a role for FGF2 in the pathogenesis of demyelination and regulation of remyelination in MS.
Collapse
Affiliation(s)
- Arthur M Butt
- Neurorestoration Group, Wolfson Centre for Age Related Disease, Hodgkin Building, GKT Guy's Campus, King's College, London SE1 1UL, UK.
| | | |
Collapse
|
20
|
Zhou BY, Liu Y, Kim BO, Xiao Y, He JJ. Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci 2005; 27:296-305. [PMID: 15519244 DOI: 10.1016/j.mcn.2004.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/01/2004] [Accepted: 07/09/2004] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat protein plays an important role in HIV-associated neuropathogenesis. Astrocytosis and neuron death are two hallmarks of HIV-1 infection of the central nervous system (CNS). However, whether there is a direct link between Tat expression, astrocytosis and subsequent neuron death is not known. In this study, we expressed Tat in astrocytes and examined Tat effects on astrocyte function and subsequent neuronal survival. The results showed that Tat expression resulted in a significant increase in glial fibrillary acidic protein (GFAP) expression, a cellular marker of astrocyte activation or astrocytosis. The GFAP promoter-driven reporter gene assay showed that Tat transactivated GFAP expression at the transcriptional level. Furthermore, Tat expression markedly impaired glutamate uptake by astrocytes. Importantly, cell culture supernatants from Tat-expressing astrocytes induced dramatic neuron death. Taken together, these data provide evidence for the first time to directly link Tat expression in astrocytes to astrocytosis, astrocyte dysfunction, and subsequent neuron death. In addition, these data suggest that astrocyte dysfunction contributes, at least in part, to Tat neurotoxicity and subsequently HIV-associated neuropathogenesis.
Collapse
Affiliation(s)
- Betty Y Zhou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
21
|
Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS. Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 2004; 47:346-57. [PMID: 15293232 DOI: 10.1002/glia.20043] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oligodendrocytes of adult rodents express three different connexins: connexin29 (Cx29), Cx32, and Cx47. In this study, we show that Cx29 is localized to the inner membrane of small myelin sheaths, whereas Cx32 is localized on the outer membrane of large myelin sheaths; Cx29 does not colocalize with Cx32 in gap junction plaques. All oligodendrocytes appear to express Cx47, which is largely restricted to their perikarya. Cx32 and Cx47 are colocalized in many gap junction plaques on oligodendrocyte somata, particularly in gray matter. Cx45 is detected in the cerebral vasculature, but not in oligodendrocytes or myelin sheaths. This diversity of connexins in oligodendrocytes (in different populations of cells and in different subcellular compartments) likely reflects functional differences between these connexins and perhaps the oligodendrocytes themselves.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, USA.
| | | | | | | | | |
Collapse
|
22
|
Goddard DR, Berry M, Kirvell SL, Butt AM. Fibroblast growth factor-2 induces astroglial and microglial reactivity in vivo. J Anat 2002; 200:57-67. [PMID: 11833655 PMCID: PMC1570884 DOI: 10.1046/j.0021-8782.2001.00002.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A role for fibroblast growth factor-2 (FGF-2) has been proposed in mediating the glial response to injury in the central nervous system (CNS). We have tested this possibility in vivo, by injecting FGF-2 into the cerebrospinal fluid (CSF) of the brain ventricles of young rats and analysing glial cells in the anterior medullary velum (AMV), which partly roofs the IVth ventricle. FGF-2 was administered at two different doses, low FGF-2 (500 ng mL(-1) CSF) and high FGF-2 (10 microg mL(-1) CSF), and saline vehicle was injected in controls. Injections were performed twice daily for three days, commencing at postnatal day (P) 6, and AMV were analysed at P9, using immunohistochemistry and Western blotting. Glial cells were unaffected by treatment with saline or low FGF-2, whereas high FGF-2 induced reactive changes in glial cell types: (1) there was increased GFAP expression in astrocytes, demonstrated by Western blot and immunohistochemistry, and astrocytes appeared hypertrophic, with increased process thickness and number; (2) the number of ED1 labelled microglia/macrophages was doubled, from 47 +/- 6 to 114 +/- 17 cells per field (0.75 mm2; values are mean +/- SEM), and microglia appeared activated, with a multipolar and granular appearance; (3) NG2 positive glial cells appeared more fibrous and there was increased density of processes, although there was no significant increase in their number; (4) oligodendrocyte somata were enlarged and there was a loss of myelin sheaths. The results show that at high CSF titres of FGF-2 induce glial reactivity in vivo and support a role for FGF-2 in the pathology of CNS injury and EAE.
Collapse
|
23
|
Goddard DR, Berry M, Kirvell SL, Butt AM. Fibroblast growth factor-2 inhibits myelin production by oligodendrocytes in vivo. Mol Cell Neurosci 2001; 18:557-69. [PMID: 11922145 DOI: 10.1006/mcne.2001.1025] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factor-2 (FGF-2) controls in part the timely differentiation of oligodendrocytes into the myelin-producing cells of the CNS. However, although differentiated oligodendrocytes express FGF receptors (R), the effect of FGF-2 on myelin-producing oligodendrocytes in vivo was unknown. In the present study, we show that delivery of FGF-2 into the cerebrospinal fluid of anaesthetized rat pups, aged postnatal day (P) 6 to 9, induced a severe loss of myelin in the caudal anterior medullary velum (AMV). Furthermore, we show that the caudal AMV was myelinated at the time of treatment, so the effects of FGF-2 represent a loss of myelin and not delayed differentiation. This was confirmed by injection of platelet-derived growth factor-AA (PDGF-AA), a factor known to affect the differentiation of PDGF-alphaR expressing oligodendrocyte progenitors, but which did not induce myelin loss in the caudal AMV and did not affect differentiated oligodendrocytes, which do not express PDGF-alphaR. Compared to controls treated with saline or PDGF-AA, FGF-2 induced an accumulation of PLP protein and MBP mRNA within the somata of myelin-producing oligodendrocytes. The results indicate that FGF receptor signalling disrupts myelin production in differentiated oligodendrocytes in vivo and interrupted the transport of myelin-related gene products from the oligodendrocyte cell body to their myelin sheaths.
Collapse
Affiliation(s)
- D R Goddard
- Centre for Neuroscience, GKT School of Biomedical Sciences, King's College London, United Kingdom
| | | | | | | |
Collapse
|
24
|
|
25
|
Thrombomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G-protein-coupled protease-activated receptor-1. J Neurosci 2000. [PMID: 10729334 DOI: 10.1523/jneurosci.20-07-02543.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Because injury of the CNS causes an astrogliosis, characterized by cell swelling and proliferation, similar to the effects of the serine protease thrombin on astrocytes, we hypothesized that a high level of thrombin at the site of injury might initially induce an astrocyte reaction and later increase the expression of its specific inhibitor, thrombomodulin. Thrombomodulin could then stabilize the astroglial scar through its adhesive properties. Here, we studied the in vivo injury response of astrocytes in the anterior medullary velum of adult rat by immunostaining and in situ hybridization of thrombomodulin. Thrombomodulin was poorly expressed on astrocytes in normal tissue, increased up to 2 d after injury, and was still highly expressed at 6 d. To check that thrombin had a direct effect on thrombomodulin expression by astrocytes, we used brain cortical astrocyte primary cultures treated with either thrombin or the agonist peptide thrombin receptor-activating peptide-6, known to activate directly the thrombin G-protein-coupled receptor (GPCR) protease-activated receptor-1 (PAR-1). Modification of thrombomodulin expression was studied by Western blotting and quantitative reverse transcription-PCR. There was a dose-dependent increase in thrombomodulin after 48 hr of treatment, with gene expression peaking at 24 hr but falling to control levels by 48 hr. Together, these results show the following: (1) injury increases astrocyte thrombomodulin expression; (2) thrombin might mediate thrombomodulin expression via the specific receptor PAR-1; and (3) serine proteases, their inhibitors, and the new family of GPCR, PARs, are active on astrogliosis.
Collapse
|
26
|
|
27
|
Abstract
The rat anterior medullary velum (AMV) is representative of the brain and spinal cord, overall, and provides an almost two-dimensional preparation for investigating axon-glial interactions in vivo. Here, we review some of our findings on axon-oligodendrocyte unit relations in our adult, development, and injury paradigms: (1) adult oligodendrocytes are phenotypically heterogeneous, conforming to Del Rio Hortega's types I-IV, whereby differences in oligodendrocyte morphology, metabolism, myelin sheath radial and longitudinal dimensions, and biochemistry correlate with the diameters of axons in the unit; (2) oligodendrocytes derive from a common premyelinating oligodendrocyte phenotype, and divergence of types I-IV is related to the age they emerge and the presumptive diameter of axons in the unit; (3) during myelination, axon-oligodendrocyte units progress through a sequence of maturation phases, related to axon contact, ensheathment, establishment of internodal myelin sheaths, and finally the radial growth and compaction of the myelin sheath; (4) we provide direct in vivo evidence that platelet-derived growth factor-AA (PDGF-AA), fibroblast growth factor (FGF-2), and insulin-like growth factor-I (IGF-I) differentially regulate these events, by injecting the growth factors into the cerebrospinal fluid of neonatal rat pups; (5) in lesioned adult AMV, transected central nervous system (CNS) axons regenerate through the putatively inhibitory environment of the glial scar, but remyelination by oligodendrocytes is incomplete, indicating that axon-oligodendrocyte interactions are defective; and (6) in the adult AMV, cells expressing the NG2 chondroitin sulphate have a presumptive adult oligodendrocyte progenitor antigenic phenotype, but are highly complex cells and send processes to contact axolemma at nodes of Ranvier, suggesting they subserve a specific perinodal function. Thus, axons and oligodendrocyte lineage cells form interdependent functional units, but oligodendrocyte numbers, differentiation, phenotype divergence, and myelinogenesis are governed by axons in the units, mediated by growth factors and contact-dependent signals.
Collapse
Affiliation(s)
- A M Butt
- Neural Damage and Repair Group, Centre for Neuroscience, Guy's Campus, GKT School of Biomedical Sciences, King's College London, London, United Kingdom.
| | | |
Collapse
|
28
|
|
29
|
Goddard DR, Berry M, Butt AM. In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-I on oligodendrocyte development and myelination in the central nervous system. J Neurosci Res 1999; 57:74-85. [PMID: 10397637 DOI: 10.1002/(sici)1097-4547(19990701)57:1<74::aid-jnr8>3.0.co;2-o] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The in vivo effects of fibroblast growth factor-2 (FGF-2) and insulin-like growth factor-I (IGF-I) on oligodendrocytes and CNS myelination were determined in the postnatal rat anterior medullary velum (AMV) following injection of both cytokines into the cerebrospinal fluid. Either FGF-2, IGF-I, or saline were administered via the lateral ventricle, twice daily commencing at postnatal day (P) 6. At P9, AMV were immunohistochemically labeled with the Rip antibody, to enable analysis of the numbers of myelin sheaths and of promyelinating and myelinating oligodendrocytes; promyelinating oligodendrocytes are a recognisable immature phenotype which express myelin-related proteins prior to forming myelin sheaths. In parallel experiments, AMV were treated for Western blot analysis to determine relative changes in expression of the myelin proteins 2', 3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and myelin oligodendrocyte glycoprotein (MOG), which, respectively, characterise early and late stages of myelin maturation. In FGF-2-treated AMV, the number of promyelinating oligodendrocytes increased by 87% compared to saline-injected controls. The numbers of myelinating oligodendrocytes and myelin sheaths were not decreased, but conspicuous unmyelinated gaps within fibre tracts were indications of retarded myelination following FGF-2 treatment. Western blot analysis demonstrated decreased expression of CNP and a near-total loss of MOG, confirming that FGF-2 decreased myelin maturation. In contrast, IGF-I had no effect on the number of promyelinating oligodendrocytes, but increased the numbers of myelinating oligodendrocytes and myelin sheaths by 100% and 93%, respectively. Western blot analysis showed that the amount of CNP was increased following IGF-I treatment, correlating with the greater number of oligodendrocytes, but that MOG expression was lower than in controls, suggesting that the increased number of myelin sheaths in IGF-I was not matched by increased myelin maturation. The results provide in vivo evidence that FGF-2 and IGF-I control the numbers of oligodendrocytes in the brain and, respectively, retard and promote myelination.
Collapse
Affiliation(s)
- D R Goddard
- Division of Physiology, Guy's King's and St. Thomas' School of Biomedical Sciences, King's College, London, England
| | | | | |
Collapse
|
30
|
Butt AM, Duncan A, Hornby MF, Kirvell SL, Hunter A, Levine JM, Berry M. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199903)26:1<84::aid-glia9>3.0.co;2-l] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Butt AM, Hornby MF, Kirvell S, Berry M. Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970615)48:6<588::aid-jnr12>3.0.co;2-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Butt AM, Hornby MF, Ibrahim M, Kirvell S, Graham A, Berry M. PDGF-alpha receptor and myelin basic protein mRNAs are not coexpressed by oligodendrocytes in vivo: a double in situ hybridization study in the anterior medullary velum of the neonatal rat. Mol Cell Neurosci 1997; 8:311-22. [PMID: 9073394 DOI: 10.1006/mcne.1996.0590] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Platelet-derived growth factor (PDGF) is a growth-regulatory dimer with A and B subunits. PDGF-AA, acting via PDGF receptors of the alpha-unit subtype (PDGF-alphaR), is implicated in the differentiation of oligodendrocyte precursors and in the survival of newly formed oligodendrocytes, which gradually lose expression of PDGF-alphaR. However, it is unclear whether terminally differentiated oligodendrocytes express PDGF-alphaR in vivo. To address this question, and to help clarify the role of PDGF-AA in late oligodendrocyte differentiation, we have used double in situ hybridization with digoxigenin- and fluorescein-labeled riboprobes to relate PDGF-alphaR mRNA and myelin basic protein (MBP) mRNA expression in the isolated intact anterior medullary velum (AMV) of rats ages Postnatal Day (P) 10-12 and P30-32. In parallel experiments, AMV were immunolabeled with the oligodendrocyte-specific monoclonal antibody Rip to provide information on oligodendrocyte development and the extent of myelination. At P10, the AMV contained tracts in which axons ranged from unmyelinated to fully myelinated, whereas myelination was complete in P30-32 AMV. The first oligodendrocytes to express MBP mRNA or Rip were promyelinating oligodendrocytes, which had a "star-burst" morphology and had not yet begun to form myelin sheaths. As myelination proceeded, MBP mRNA became dispersed throughout oligodendrocyte units, comprising cell somata, processes, and internodal myelin sheaths. By P30-32, MBP mRNA had been redistributed to the myelin sheaths only, reflecting a change in the site of protein synthesis in mature myelinated axon tracts. At no stage of oligodendrocyte differentiation did we observe cellular coexpression of mRNA for PDGFalphaR and MBP. Our results indicated that oligodendrocytes lost the expression of PDGFalphaR prior to gaining that of myelin gene products, and preclude an action of PDGF-AA on Rip+/MBP+ star-burst promyelinating oligodendrocytes. The spatial and temporal expression of PDGF-alphaR mRNA in the AMV was inversely related to the pattern of maturation of both myelin and oligodendrocytes, and is consistent with PDGF-alphaR being expressed by pro-oligodendrocytes. A notable finding was the high level of expression of PDGF-alphaR mRNA in the AMV of juvenile rats, localized to cell bodies within the myelinated axon tracts, strongly suggesting that oligodendrocyte precursors persisted in the mature velum.
Collapse
Affiliation(s)
- A M Butt
- Division of Physiology, UMDS, London SE1 7EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Butt AM, Kirvell S. Glial cells in transected optic nerves of immature rats. II. An immunohistochemical study. JOURNAL OF NEUROCYTOLOGY 1996; 25:381-92. [PMID: 8835786 DOI: 10.1007/bf02284809] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glia response to Wallerian degeneration was studied in optic nerves 21 days after unilateral enucleation (PED21) of immature rats, 21 days old (P21), using immunohistochemical labelling. Nerves from normal P21 and P42 nerves were also studied for comparison. At PED21, there was a virtual loss of axons apart from a few solitary fibres of unknown origin. The nerve comprised a homogeneous glial scar tissue formed by dense astrocyte processes, oriented parallel to the long axis of the nerve along the tracks of degenerated axons. Astrocytes were almost perfectly co-labelled by antibodies to glial fibrillary acid protein and vimentin in both normal and transected nerves. However, there was a small population of VIM+GFAP- cells in normal P21 and P42 nerves, and we discuss the possibility that they correspond to O-2A progenitor cells described in vitro. Significantly, double immunofluorescence labelling in transected nerves revealed a distinct population of hypertrophic astrocytes which were GFAP+VIM-. These cells represented a novel morphological and antigenic subtype of reactive astrocyte. It was also noted that the number of oligodendrocytes in transected nerves did not appear to be less than in normal nerves, on the basis of double immunofluorescence staining for carbonic anhydrase II, myelin oligodendrocyte glycoprotein, myelin basic protein, glial fibrillary acid protein and ED-1 (for macrophages), although it was not excluded that a small proportion may have been microglia. A further prominent feature of transected nerves was that they contained a substantial amount of myelin debris, notwithstanding that OX-42 and ED1 immunostaining showed that there were abundant microglia and macrophages, sufficient for the rapid and almost complete removal of axonal debris. In conclusion, glial cells in the immature P21 rat optic nerve reacted to Wallerian degeneration in a way equivalent to the adult CNS, i.e. astrocytes underwent pronounced reactive changes and formed a dense glial scar, oligodendrocytes persisted and were not dependent on axons for their continued survival, and there was ineffective phagocytosis of myelin possibly due to incomplete activation of microglia/macrophages.
Collapse
Affiliation(s)
- A M Butt
- Division of Physiology, UMDS, St. Thomas' Hospital, London, UK
| | | |
Collapse
|
34
|
Butt AM, Colquhoun K. Glial cells in transected optic nerves of immature rats. I. An analysis of individual cells by intracellular dye-injection. JOURNAL OF NEUROCYTOLOGY 1996; 25:365-80. [PMID: 8835785 DOI: 10.1007/bf02284808] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glial response to Wallerian degeneration was studied in optic nerves following unilateral enucleation in immature rats, aged 21 days old (P21). The three-dimensional morphology of dye-filled glia was determined in intact nerves, at post-enucleation day 21 in normal nerves from untreated P21 rats, by correlating laser scanning confocal microscopy and camera lucida drawings of single cells. In normal and transected nerves, the majority of dye-filled cells comprized astrocytes (54% and 65%, respectively). In normal P21 nerves, the predominant astrocyte form had a complex stellate morphology and had a centrally-located cell body from which branching processes extended randomly. Two other distinct forms were transverse and longitudinal astrocytes, which had a polarized process extension in a plane perpendicular or parallel to the long axis of the nerve, respectively. These forms were recognized in transected nerves also, but astrocytes in transected nerves had a simple morphology on the whole, and extended few, dense processes which branched infrequently. Quantitative analysis of astrocyte morphology confirmed that individual astrocytes underwent considerable remodelling in response to Wallerian degeneration. A prominent reaction was that astrocytes had withdrawn radial processes and extended a greater proportion of processes longitudinally, parallel to the long axis of the nerve and along the course of degenerated axons. A further, notable feature of transected nerves was the development of novel longitudinal forms and of hypertrophic astroglia. These results indicated that all astrocytes became reactive following enucleation and that glial scar formation was not the function of a single astrocyte subtype. Oligodendrocytes in transected nerves had lost their myelin sheaths and appeared as small cells with numerous bifurcating processes which extended radially, but a small number of oligodendrocytes were recognized which apparently supported myelin sheaths (9%, compared to 40% in normal nerves). In addition, there was a significant population of indeterminate cells in transected nerves (26%, compared to 6% in normal nerves) and, although some of these were identified as microglia/macrophages, it was concluded that many were likely to be dedifferentiated oligodendrocytes.
Collapse
Affiliation(s)
- A M Butt
- Division of Physiology, UMDS, St. Thomas' Hospital, London, UK
| | | |
Collapse
|