1
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Oxygen-Glucose Deprivation Decreases the Motility and Length of Axonal Mitochondria in Cultured Dorsal Root Ganglion Cells of Rats. Cell Mol Neurobiol 2023; 43:1267-1280. [PMID: 35771293 DOI: 10.1007/s10571-022-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Controlling axonal mitochondria is important for maintaining normal function of the neural network. Oxygen-glucose deprivation (OGD), a model used for mimicking ischemia, eventually induces neuronal cell death similar to axonal degeneration. Axonal mitochondria are disrupted during OGD-induced neural degeneration; however, the mechanism underlying mitochondrial dysfunction has not been completely understood. We focused on the dynamics of mitochondria in axons exposed to OGD; we observed that the number of motile mitochondria significantly reduced in 1 h following OGD exposure. In our observation, the decreased length of stationary mitochondria was affected by the following factors: first, the halt of motile mitochondria; second, the fission of longer stationary mitochondria; and third, a transformation from tubular to spherical shape in OGD-exposed axons. Motile mitochondria reduction preceded stationary mitochondria fragmentation in OGD exposure; these conditions induced the decrease of stationary mitochondria in three different ways. Our results suggest that mitochondrial morphological changes precede the axonal degeneration while ischemia-induced neurodegeneration.
Collapse
|
3
|
Mitochondria in Cell-Based Therapy for Stroke. Antioxidants (Basel) 2023; 12:antiox12010178. [PMID: 36671040 PMCID: PMC9854436 DOI: 10.3390/antiox12010178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Despite a relatively developed understanding of the pathophysiology underlying primary and secondary mechanisms of cell death after ischemic injury, there are few established treatments to improve stroke prognoses. A major contributor to secondary cell death is mitochondrial dysfunction. Recent advancements in cell-based therapies suggest that stem cells may be revolutionary for treating stroke, and the reestablishment of mitochondrial integrity may underlie these therapeutic benefits. In fact, functioning mitochondria are imperative for reducing oxidative damage and neuroinflammation following stroke and reperfusion injury. In this review, we will discuss the role of mitochondria in establishing the anti-oxidative effects of stem cell therapies for stroke.
Collapse
|
4
|
Nakamura DS, Lin YH, Khan D, Gothié JDM, de Faria O, Dixon JA, McBride HM, Antel JP, Kennedy TE. Mitochondrial dynamics and bioenergetics regulated by netrin-1 in oligodendrocytes. Glia 2020; 69:392-412. [PMID: 32910475 DOI: 10.1002/glia.23905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic organelles that produce energy and molecular precursors that are essential for myelin synthesis. Unlike in neurons, mitochondria in oligodendrocytes increase intracellular movement in response to glutamatergic activation and are more susceptible to oxidative stress than in astrocytes or microglia. The signaling pathways that regulate these cell type-specific mitochondrial responses in oligodendrocytes are not understood. Here, we visualized mitochondria migrating through thin cytoplasmic channels crossing myelin basic protein-positive compacted membranes and localized within paranodal loop cytoplasm. We hypothesized that local extracellular enrichment of netrin-1 might regulate the recruitment and function of paranodal proteins and organelles, including mitochondria. We identified rapid recruitment of mitochondria and paranodal proteins, including neurofascin 155 (NF155) and the netrin receptor deleted in colorectal carcinoma (DCC), to sites of contact between oligodendrocytes and netrin-1-coated microbeads in vitro. We provide evidence that Src-family kinase activation and Rho-associated protein kinase (ROCK) inhibition downstream of netrin-1 induces mitochondrial elongation, hyperpolarization of the mitochondrial inner membrane, and increases glycolysis. Our findings identify a signaling mechanism in oligodendrocytes that is sufficient to locally recruit paranodal proteins and regulate the subcellular localization, morphology, and function of mitochondria.
Collapse
Affiliation(s)
- Diane S Nakamura
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James A Dixon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Front Neurosci 2020; 14:679. [PMID: 32760239 PMCID: PMC7373761 DOI: 10.3389/fnins.2020.00679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.
Collapse
Affiliation(s)
| | - Elisandra Henriques
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Amanda Siena
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Clélia Rejane Antonio Bertoncini
- CEDEME, Center of Development of Experimental Models for Medicine and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, Faculty of Medicine, University of Victoria and Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| |
Collapse
|
6
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
7
|
Agrawal A, Pekkurnaz G, Koslover EF. Spatial control of neuronal metabolism through glucose-mediated mitochondrial transport regulation. eLife 2018; 7:40986. [PMID: 30561333 PMCID: PMC6322862 DOI: 10.7554/elife.40986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic cells modulate their metabolism by organizing metabolic components in response to varying nutrient availability and energy demands. In rat axons, mitochondria respond to glucose levels by halting active transport in high glucose regions. We employ quantitative modeling to explore physical limits on spatial organization of mitochondria and localized metabolic enhancement through regulated stopping of processive motion. We delineate the role of key parameters, including cellular glucose uptake and consumption rates, that are expected to modulate mitochondrial distribution and metabolic response in spatially varying glucose conditions. Our estimates indicate that physiological brain glucose levels fall within the limited range necessary for metabolic enhancement. Hence mitochondrial localization is shown to be a plausible regulatory mechanism for neuronal metabolic flexibility in the presence of spatially heterogeneous glucose, as may occur in long processes of projection neurons. These findings provide a framework for the control of cellular bioenergetics through organelle trafficking. Cells are equipped with power factories called mitochondria that turn nutrients into chemical energy to fuel processes in the cell. Hundreds of mitochondria move throughout the cell, shifting their positions in response to energy demands. This happens via molecular motors that pick the mitochondria up and carry them to new locations. Such movements enable the mitochondria to accumulate in parts of the cell with the greatest energy needs. Mitochondria of nerve cells or neurons have a particular challenging job, as neurons can be very long and different parts within the cells can have different energy needs. It has been shown that mitochondria stop in regions where nutrients such as sugar are most concentrated. So far, it has been unclear whether this regulated stopping helps control energy balance in neurons. Here, Agrawal et al. used a computational model of rat neurons to find out whether sugar levels are sufficient in guiding mitochondria. The results showed that the mitochondria only accumulated in high-nutrient regions when the sugar concentrations were moderate – not too low and not too high. A specific range of sugar levels was necessary to make this mechanism useful for increasing the efficiency of energy production. Such concentrations match the ones observed in healthy rat brains. When neurons are unable to meet their energy demands, they stop working and sometimes even die. This is the case in many diseases, including diabetes, dementia, and Alzheimer’s disease. Computer models allow us to explore the complex energy regulation in detail. A better understanding of how neurons regulate their energy production and demand may help us discover how they become faulty in these diseases.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California, San Diego, San Diego, United States
| | - Gulcin Pekkurnaz
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, San Diego, United States
| |
Collapse
|
8
|
Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J Neurosci 2018; 39:663-677. [PMID: 30541916 DOI: 10.1523/jneurosci.2272-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
Myelinated axons are constricted at nodes of Ranvier. These constrictions are important physiologically because they increase the speed of saltatory nerve conduction, but they also represent potential bottlenecks for the movement of axonally transported cargoes. One type of cargo are neurofilaments, which are abundant space-filling cytoskeletal polymers that function to increase axon caliber. Neurofilaments move bidirectionally along axons, alternating between rapid movements and prolonged pauses. Strikingly, axon constriction at nodes is accompanied by a reduction in neurofilament number that can be as much as 10-fold in the largest axons. To investigate how neurofilaments navigate these constrictions, we developed a transgenic mouse strain that expresses a photoactivatable fluorescent neurofilament protein in neurons. We used the pulse-escape fluorescence photoactivation technique to analyze neurofilament transport in mature myelinated axons of tibial nerves from male and female mice of this strain ex vivo Fluorescent neurofilaments departed the activated region more rapidly in nodes than in flanking internodes, indicating that neurofilament transport is faster in nodes. By computational modeling, we showed that this nodal acceleration can be explained largely by a local increase in the duty cycle of neurofilament transport (i.e., the proportion of the time that the neurofilaments spend moving). We propose that this transient acceleration functions to maintain a constant neurofilament flux across nodal constrictions, much as the current increases where a river narrows its banks. In this way, neurofilaments are prevented from piling up in the flanking internodes, ensuring a stable neurofilament distribution and uniform axonal morphology across these physiologically important axonal domains.SIGNIFICANCE STATEMENT Myelinated axons are constricted at nodes of Ranvier, resulting in a marked local decrease in neurofilament number. These constrictions are important physiologically because they increase the efficiency of saltatory nerve conduction, but they also represent potential bottlenecks for the axonal transport of neurofilaments, which move along axons in a rapid intermittent manner. Imaging of neurofilament transport in mature myelinated axons ex vivo reveals that neurofilament polymers navigate these nodal axonal constrictions by accelerating transiently, much as the current increases where a river narrows its banks. This local acceleration is necessary to ensure a stable axonal morphology across nodal constrictions, which may explain the vulnerability of nodes of Ranvier to neurofilament accumulations in animal models of neurotoxic neuropathies and neurodegenerative diseases.
Collapse
|
9
|
Misgeld T, Schwarz TL. Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture. Neuron 2017; 96:651-666. [PMID: 29096078 DOI: 10.1016/j.neuron.2017.09.055] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
Abstract
Neurons have more extended and complex shapes than other cells and consequently face a greater challenge in distributing and maintaining mitochondria throughout their arbors. Neurons can last a lifetime, but proteins turn over rapidly. Mitochondria, therefore, need constant rejuvenation no matter how far they are from the soma. Axonal transport of mitochondria and mitochondrial fission and fusion contribute to this rejuvenation, but local protein synthesis is also likely. Maintenance of a healthy mitochondrial population also requires the clearance of damaged proteins and organelles. This involves degradation of individual proteins, sequestration in mitochondria-derived vesicles, organelle degradation by mitophagy and macroautophagy, and in some cases transfer to glial cells. Both long-range transport and local processing are thus at work in achieving neuronal mitostasis-the maintenance of an appropriately distributed pool of healthy mitochondria for the duration of a neuron's life. Accordingly, defects in the processes that support mitostasis are significant contributors to neurodegenerative disorders.
Collapse
Affiliation(s)
- Thomas Misgeld
- Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany; Center of Integrated Protein Science, Munich, Germany.
| | - Thomas L Schwarz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Hamid HS, Hayes JM, Feldman EL, Lentz SI. Three-dimensional Imaging and Analysis of Mitochondria within Human Intraepidermal Nerve Fibers. J Vis Exp 2017. [PMID: 28994751 DOI: 10.3791/53369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The goal of this protocol is to study mitochondria within intraepidermal nerve fibers. Therefore, 3D imaging and analysis techniques were developed to isolate nerve-specific mitochondria and evaluate disease-induced alterations of mitochondria in the distal tip of sensory nerves. The protocol combines fluorescence immunohistochemistry, confocal microscopy and 3D image analysis techniques to visualize and quantify nerve-specific mitochondria. Detailed parameters are defined throughout the procedures in order to provide a concrete example of how to use these techniques to isolate nerve-specific mitochondria. Antibodies were used to label nerve and mitochondrial signals within tissue sections of skin punch biopsies, which was followed by indirect immunofluorescence to visualize nerves and mitochondria with a green and red fluorescent signal respectively. Z-series images were acquired with confocal microscopy and 3D analysis software was used to process and analyze the signals. It is not necessary to follow the exact parameters described within, but it is important to be consistent with the ones chosen throughout the staining, acquisition and analysis steps. The strength of this protocol is that it is applicable to a wide variety of circumstances where one fluorescent signal is used to isolate other signals that would otherwise be impossible to study alone.
Collapse
|
11
|
An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 2017; 187:26-32. [PMID: 28526279 PMCID: PMC5646380 DOI: 10.1016/j.schres.2017.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/27/2022]
Abstract
Abnormal brain development has long been thought to contribute to the pathophysiology of schizophrenia. Impaired dendritic arborization, synaptogenesis, and long term potentiation and memory have been demonstrated in animal models of schizophrenia. In addition to aberrant nervous system development, altered brain metabolism and mitochondrial function has long been observed in schizophrenic patients. Single nucleotide polymorphisms in the mitochondrial genome as well as impaired mitochondrial function have both been associated with increased risk for developing schizophrenia. Mitochondrial function in neurons is highly dependent on fission, fusion, and transport of the organelle, collectively referred to as mitochondrial dynamics. Indeed, there is mounting evidence that mitochondrial dynamics strongly influences neuron development and synaptic transmission. While there are a few studies describing altered mitochondrial shape in schizophrenic patients, as well as in animal and in vitro models of schizophrenia, the precise role of mitochondrial dynamics in the pathophysiology of schizophrenia is all but unexplored. Here we discuss the influence of mitochondrial dynamics and mitochondrial function on nervous system development, and highlight recent work suggesting a link between aberrant mitochondrial dynamics and schizophrenia.
Collapse
|
12
|
Imaging of neuronal mitochondria in situ. Curr Opin Neurobiol 2016; 39:152-63. [PMID: 27454347 DOI: 10.1016/j.conb.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022]
Abstract
Neuronal mitochondria are receiving a rapidly increasing level of attention. This is to a significant part due to the ability to visualize neuronal mitochondria in novel ways, especially in vivo. Such an approach allows studying neuronal mitochondria in an intact tissue context, during different developmental states and in various genetic backgrounds and disease conditions. Hence, in vivo imaging of mitochondria in the nervous system can reveal aspects of the 'mitochondrial life cycle' in neurons that hitherto have remained obscure or could only be inferred indirectly. In this survey of the current literature, we review the new insights that have emerged from studies using mitochondrial imaging in intact neural preparations ranging from worms to mice.
Collapse
|
13
|
Ino D, Sagara H, Suzuki J, Kanemaru K, Okubo Y, Iino M. Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination. Cell Rep 2015; 12:1951-9. [PMID: 26365190 DOI: 10.1016/j.celrep.2015.08.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/01/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca(2+) increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination.
Collapse
Affiliation(s)
- Daisuke Ino
- Department of Pharmacology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Junji Suzuki
- Department of Pharmacology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Yohei Okubo
- Department of Pharmacology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Masamitsu Iino
- Department of Pharmacology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan.
| |
Collapse
|
14
|
Abstract
Mitochondria are mobile organelles that dynamically remodel their membranes and actively migrate along cytoskeletal tracks. There is overwhelming evidence that regulators of mitochondrial dynamics are critical for the survival and function of neural tissues. In multiple animal models, ablation of genes regulating mitochondrial shape result in stunted neural development and neurodegeneration. Organotypic cultures serve as ideal in vitro tissue models to further dissect the mechanisms of mitochondrial function in neuronal survival. Slice cultures preserve the three-dimensional cytoarchitecture of neural networks and can survive for prolonged periods in culture. In addition, these cultures allow long-term assessment of genetic or pharmacologic perturbations on neuronal function. Organotypic preparations from murine and rat models have been developed for many regions of the brain. In this chapter, we describe our methods for preparing basal ganglia and cerebellar slice cultures suitable for studying mitochondrial function in Parkinson's disease and cerebellar ataxia, respectively. With such slices, we describe a robust method for live imaging of mitochondrial dynamics. To quantitatively analyze mitochondrial motility, we show how to generate kymographs using the open source image analysis program ImageJ. These techniques provide a powerful platform for assessing mitochondrial activity in neural networks.
Collapse
Affiliation(s)
- Anh H Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
15
|
Bros H, Niesner R, Infante-Duarte C. An ex vivo model for studying mitochondrial trafficking in neurons. Methods Mol Biol 2015; 1264:465-72. [PMID: 25631035 DOI: 10.1007/978-1-4939-2257-4_38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Distribution of mitochondria throughout the cytoplasm is necessary for cellular function and health. Due to their unique, highly polarized morphology, neurons are particularly vulnerable to defects of mitochondrial transport, and its disruption can contribute to neuropathology. In this chapter, we present an ex vivo method for monitoring mitochondrial transport within myelinated sensory and motor axons from spinal nerve roots. This approach can be used to investigate mitochondrial behavior under a number of experimental conditions, e.g., by applying ion channel modulators, ionophores, or toxins, as well as for testing the therapeutic potential of new strategies targeting axonal mitochondrial dynamics.
Collapse
Affiliation(s)
- Helena Bros
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | |
Collapse
|
16
|
Iqbal S, Hood DA. Cytoskeletal regulation of mitochondrial movements in myoblasts. Cytoskeleton (Hoboken) 2014; 71:564-72. [PMID: 25147078 DOI: 10.1002/cm.21188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/13/2014] [Indexed: 11/07/2022]
Abstract
Mitochondria are distributed in the cell to match the energy demands, and it is their interaction with the cytoskeleton that controls their movement and displacement. Our purpose was to determine which cytoskeletal components are primarily responsible for mitochondrial movement in muscle cells. Live-cell imaging was used to visualize mitochondrial dynamics in myoblasts. Destabilization of microtubules (MT) reduced the total path length and average speed traveled by mitochondria by 64-74%, whereas actin disruption only reduced these variables by 37-40%. Downregulation of the microtubule motor proteins, Kif5B and dynein, by siRNA resulted in decreases in the average speed of mitochondrial movements, by 30 to 40%. We observed a reduction in the average speed of mitochondrial movements (by 22 to 48%) under high calcium conditions. This attenuation in the presence of calcium was negated in cells pre-treated with siRNA targeted to the microtubule motor protein adaptor, Milton, suggesting that Milton is involved in mediating mitochondrial arrest in the presence of high calcium within muscle cells. Thus, we have demonstrated that, in myoblasts, mitochondria primarily move along microtubules tracks with the aid of the motor proteins Kif5B and dynein, in a manner which is inhibited by calcium. These observations will eventually help us understand organelle movements in more complex muscle systems, such as mature myotubes subjected to elevated calcium levels and contractile activity.
Collapse
Affiliation(s)
- Sobia Iqbal
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, Nori SL, Calissano P. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci 2014; 6:18. [PMID: 24600391 PMCID: PMC3927396 DOI: 10.3389/fnagi.2014.00018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/27/2014] [Indexed: 01/12/2023] Open
Abstract
Evidence suggests a striking causal relationship between changes in quality control of neuronal mitochondria and numerous devastating human neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Contrary to replicating mammalian cells with a metabolism essentially glycolytic, post-mitotic neurons are distinctive owing to (i) their exclusive energetic dependence from mitochondrial metabolism and (ii) their polarized shape, which entails compartmentalized and distinct energetic needs. Here, we review the recent findings on mitochondrial dynamics and mitophagy in differentiated neurons focusing on how the exceptional characteristics of neuronal populations in their morphology and bioenergetics needs make them quite different to other cells in controlling the intracellular turnover of these organelles.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology - National Research Council Rome, Italy ; European Brain Research Institute Rome, Italy
| | - Veronica Corsetti
- Institute of Translational Pharmacology - National Research Council Rome, Italy
| | | | - Anna Atlante
- Institute of Biomembrane and Bioenergetics - National Research Council Bari, Italy
| | - Antonella Bobba
- Institute of Biomembrane and Bioenergetics - National Research Council Bari, Italy
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Science, University of Trieste Trieste, Italy
| | - Stefania L Nori
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | | |
Collapse
|
18
|
Khatri N, Man HY. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 2013; 4:199. [PMID: 24376435 PMCID: PMC3858785 DOI: 10.3389/fneur.2013.00199] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022] Open
Abstract
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.
Collapse
Affiliation(s)
- Natasha Khatri
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| | - Heng-Ye Man
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
19
|
Einheber S, Bhat MA, Salzer JL. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. ACTA ACUST UNITED AC 2012; 2:165-74. [PMID: 17460780 PMCID: PMC1855224 DOI: 10.1017/s1740925x06000275] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region.
Collapse
Affiliation(s)
- Steven Einheber
- Hunter College School of Health Sciences, 425 E 25th Street, New York, NY 10010, USA.
| | | | | |
Collapse
|
20
|
Abstract
The energetics of CNS white matter are poorly understood. We derive a signaling energy budget for the white matter (based on data from the rodent optic nerve and corpus callosum) which can be compared with previous energy budgets for the gray matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of gray matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than gray matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes.
Collapse
|
21
|
Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease. Neurobiol Dis 2012; 51:13-26. [PMID: 22297163 DOI: 10.1016/j.nbd.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 11/22/2022] Open
Abstract
Nascent evidence indicates that mitochondrial fission, fusion, and transport are subject to intricate regulatory mechanisms that intersect with both well-characterized and emerging signaling pathways. While it is well established that mutations in components of the mitochondrial fission/fusion machinery can cause neurological disorders, relatively little is known about upstream regulators of mitochondrial dynamics and their role in neurodegeneration. Here, we review posttranslational regulation of mitochondrial fission/fusion enzymes, with particular emphasis on dynamin-related protein 1 (Drp1), as well as outer mitochondrial signaling complexes involving protein kinases and phosphatases. We also review recent evidence that mitochondrial dynamics has profound consequences for neuronal development and synaptic transmission and discuss implications for clinical translation.
Collapse
|
22
|
Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13:77-93. [PMID: 22218207 DOI: 10.1038/nrn3156] [Citation(s) in RCA: 609] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.
Collapse
|
23
|
Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 2011; 31:7249-58. [PMID: 21593309 DOI: 10.1523/jneurosci.0095-11.2011] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Energy production presents a formidable challenge to axons as their mitochondria are synthesized and degraded in neuronal cell bodies. To meet the energy demands of nerve conduction, small mitochondria are transported to and enriched at mitochondrial stationary sites located throughout the axon. In this study, we investigated whether size and motility of mitochondria in small myelinated CNS axons are differentially regulated at nodes, and whether mitochondrial distribution and motility are modulated by axonal electrical activity. The size/volume of mitochondrial stationary sites was significantly larger in juxtaparanodal/internodal axoplasm than in nodal/paranodal axoplasm. With three-dimensional electron microscopy, we observed that axonal mitochondrial stationary sites were composed of multiple mitochondria of varying length, except at nodes where mitochondria were uniformly short and frequently absent altogether. Mitochondrial transport speed was significantly reduced in nodal axoplasm compared with internodal axoplasm. Increased axonal electrical activity decreased mitochondrial transport and increased the size of mitochondrial stationary sites in nodal/paranodal axoplasm. Decreased axonal electrical activity had the opposite effect. In cerebellar axons of the myelin-deficient rat, which contain voltage-gated Na(+) channel clusters but lack paranodal specializations, axonal mitochondrial motility and stationary site size were similar at Na(+) channel clusters and other axonal regions. These results demonstrate juxtaparanodal/internodal enrichment of stationary mitochondria and neuronal activity-dependent dynamic modulation of mitochondrial distribution and transport in nodal axoplasm. In addition, the modulation of mitochondrial distribution and motility requires oligodendrocyte-axon interactions at paranodal specializations.
Collapse
|
24
|
Duffy LM, Chapman AL, Shaw PJ, Grierson AJ. Review: The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2011; 37:336-52. [DOI: 10.1111/j.1365-2990.2011.01166.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Cai Q, Davis ML, Sheng ZH. Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res 2011; 70:9-15. [PMID: 21352858 PMCID: PMC3086944 DOI: 10.1016/j.neures.2011.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential organelles for neuronal survival and play important roles in ATP generation, calcium buffering, and apoptotic signaling. Due to their extreme polarity, neurons utilize specialized mechanisms to regulate mitochondrial transport and retention along axons and near synaptic terminals where energy supply and calcium homeostasis are in high demand. Axonal mitochondria undergo saltatory and bidirectional movement and display complex mobility patterns. In cultured neurons, approximately one-third of axonal mitochondria are mobile, while the rest remain stationary. Stationary mitochondria at synapses serve as local energy stations that produce ATP to support synaptic function. In addition, axonal mitochondria maintain local Ca²+ homeostasis at presynaptic boutons. The balance between mobile and stationary mitochondria is dynamic and responds quickly to changes in axonal and synaptic physiology. The coordination of mitochondrial mobility and synaptic activity is crucial for neuronal function synaptic plasticity. In this update article, we introduce recent advances in our understanding of the motor-adaptor complexes and docking machinery that mediate mitochondrial transport and axonal distribution. We will also discuss the molecular mechanisms underlying the complex mobility patterns of axonal mitochondria and how mitochondrial mobility impacts the physiology and function of synapses.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Matthew L. Davis
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
26
|
Abstract
Myelinated axons conduct nerve impulses at high speed using a unique mode of excitation, referred to as saltatory conduction, which is enabled structurally by the narrowing of the site of action potentials to a tiny gap in the axon called the node of Ranvier. With this structural specialization comes an interesting metabolic matching problem. How do mitochondria find and supply energy to these tiny nodes of Ranvier distributed sparsely along a myelinated axon? Does the intense Na(+) influx at the node, which is produced by the highest known sodium channel density in all excitable membranes, help guide where mitochondria stop? Evidence suggests that during excitation in the peripheral nervous system, Na(+) influx recruits mitochondria to the node by triggering Ca(2+) elevation and activating Na(+) pumps. Intriguingly, indirect evidence suggests that in the central nervous system, activity recruits mitochondria to the internode (myelin-covered portion of the axon). Metabolic dysfunction thus might produce spatially distinct lesions in PNS and CNS myelinated fibers. Future dissection of regional variation in mitochondrial biology in myelinated axons using live imaging will likely yield surprises about sites of vulnerability in demyelinating diseases and clues for therapeutic intervention strategy.
Collapse
Affiliation(s)
- Shing Y Chiu
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
28
|
Perkins GA, Ellisman MH. Mitochondrial configurations in peripheral nerve suggest differential ATP production. J Struct Biol 2010; 173:117-27. [PMID: 20600951 DOI: 10.1016/j.jsb.2010.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/21/2010] [Indexed: 12/25/2022]
Abstract
Physiological states of mitochondria often correlate with distinctive morphology. Electron microscopy and tomographic reconstruction were used to investigate the three-dimensional structure of axonal mitochondria and mitochondria in the surrounding Schwann cells of the peripheral nervous system (PNS), both in the vicinity of nodes of Ranvier and far from these nodes. Condensed mitochondria were found to be abundant in the axoplasm, but not in the Schwann cell. Uncharacteristic of the classical morphology of condensed mitochondria, the outer and inner boundary membranes are in close apposition and the crista junctions are narrow, consistent with their function as gates for the diffusion of macromolecules. There is also less cristae surface area and lower density of crista junctions in these mitochondria. The density of mitochondria was greater at the paranode-node-paranode (PNP) as was the crista junction opening, yet there were fewer cristae in these organelles compared to those in the internodal region. The greater density of condensed mitochondria in the PNS axoplasm and in particular at the PNP suggests a need for these organelles to operate at a high workload of ATP production.
Collapse
Affiliation(s)
- Guy A Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0608, United States.
| | | |
Collapse
|
29
|
Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 2010; 30:6658-66. [PMID: 20463228 DOI: 10.1523/jneurosci.5265-09.2010] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Axonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination, or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport. Using live myelinated rat dorsal root ganglion (DRG) cultures, we investigated whether myelination and lysolecithin-induced demyelination affect axonal mitochondria. Myelination increased the size of axonal stationary mitochondrial sites by 2.3-fold. After demyelination, the size of axonal stationary mitochondrial sites was increased by an additional 2.2-fold and the transport velocity of motile mitochondria was increased by 47%. These measures returned to the levels of myelinated axons after remyelination. Demyelination induced activating transcription factor 3 (ATF3) in DRG neurons. Knockdown of neuronal ATF3 by short hairpin RNA abolished the demyelination-induced increase in axonal mitochondrial transport and increased nitrotyrosine immunoreactivity in axonal mitochondria, suggesting that neuronal ATF3 expression and increased mitochondrial transport protect demyelinated axons from oxidative damage. In response to insufficient ATP production, demyelinated axons increase the size of stationary mitochondrial sites and thereby balance ATP production with the increased energy needs of nerve conduction.
Collapse
|
30
|
Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci 2010; 30:3555-66. [PMID: 20219989 DOI: 10.1523/jneurosci.4551-09.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The node of Ranvier is a tiny segment of a myelinated fiber with various types of specializations adapted for generation of high-speed nerve impulses. It is ionically specialized with respect to ion channel segregation and ionic fluxes, and metabolically specialized in ionic pump expression and mitochondrial density augmentation. This report examines the interplay of three important parameters (calcium fluxes, Na pumps, mitochondrial motility) at nodes of Ranvier in frog during normal nerve activity. First, we used calcium dyes to resolve a highly localized elevation in axonal calcium at a node of Ranvier during action potentials, and showed that this calcium elevation retards mitochondrial motility during nerve impulses. Second, we found, surprisingly, that physiologic activation of the Na pumps retards mitochondrial motility. Blocking Na pumps alone greatly prevents action potentials from retarding mitochondrial motility, which reveals that mitochondrial motility is coupled to Na/K-ATPase. In conclusion, we suggest that during normal nerve activity, Ca elevation and activation of Na/K-ATPase act, possibly in a synergistic manner, to recruit mitochondria to a node of Ranvier to match metabolic needs.
Collapse
|
31
|
Edgar JM, McCulloch MC, Thomson CE, Griffiths IR. Distribution of mitochondria along small-diameter myelinated central nervous system axons. J Neurosci Res 2008; 86:2250-7. [PMID: 18381760 DOI: 10.1002/jnr.21672] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small-diameter myelinated CNS axons are preferentially affected in multiple sclerosis (MS) and in the hereditary spastic paraplegias (HSP), in which the distal axon degenerates. Mitochondrial dysfunction has been implicated in the pathogenesis of these and other disorders involving axonal degeneration. The aim of this study was to determine whether the frequency of axonal mitochondria changes along the length of small-diameter fibers and whether there is a preferential localization to the region of the node of Ranvier. We find that mitochondrial numbers do not change along the length of a myelinated small-diameter fiber, and, in contrast to the peripheral nervous system, there is no tendency for mitochondrial numbers to increase at the node.
Collapse
Affiliation(s)
- Julia M Edgar
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden, Glasgow, Scotland.
| | | | | | | |
Collapse
|
32
|
Abstract
Oligodendrocytes and Schwann cells are highly specialized glial cells that wrap axons with a multilayered myelin membrane for rapid impulse conduction. Investigators have recently identified axonal signals that recruit myelin-forming Schwann cells from an alternate fate of simple axonal engulfment. This is the evolutionary oldest form of axon-glia interaction, and its function is unknown. Recent observations suggest that oligodendrocytes and Schwann cells not only myelinate axons but also maintain their long-term functional integrity. Mutations in the mouse reveal that axonal support by oligodendrocytes is independent of myelin assembly. The underlying mechanisms are still poorly understood; we do know that to maintain axonal integrity, mammalian myelin-forming cells require the expression of some glia-specific proteins, including CNP, PLP, and MAG, as well as intact peroxisomes, none of which is necessary for myelin assembly. Loss of glial support causes progressive axon degeneration and possibly local inflammation, both of which are likely to contribute to a variety of neuronal diseases in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany.
| | | |
Collapse
|
33
|
De Vos KJ, Sheetz MP. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 2007; 80:627-82. [PMID: 17445716 DOI: 10.1016/s0091-679x(06)80030-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt J De Vos
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, The Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | | |
Collapse
|
34
|
Chevalier-Larsen E, Holzbaur ELF. Axonal transport and neurodegenerative disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1094-108. [PMID: 16730956 DOI: 10.1016/j.bbadis.2006.04.002] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/24/2006] [Accepted: 04/11/2006] [Indexed: 01/12/2023]
Abstract
Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function and survival. Thus, neurons are uniquely dependent on microtubule based transport. Growing evidence supports the idea that deficits in axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. We describe the motor, cytoskeletal, and adaptor proteins involved in axonal transport and their interactions. Data linking disruption of axonal transport to diseases such as ALS are discussed. Finally, we explore the pathways that may cause neuronal dysfunction and death.
Collapse
|
35
|
Chen H, Chan DC. Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol 2006; 18:453-9. [PMID: 16781135 DOI: 10.1016/j.ceb.2006.06.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/05/2006] [Indexed: 01/16/2023]
Abstract
The selective disruption of certain cell types--notably neurons--in diseases involving mitochondrial dysfunction is thought to reflect the high-energy requirements of these cells, but few details are known. Recent studies have provided clues to the cellular basis of this mitochondrial requirement. Mitochondria are regionally organized within some nerve cells, with higher accumulations in the soma, the hillock, the nodes of Ranvier and the nerve terminal. In the synaptic region, mitochondria regulate calcium and ATP levels, thereby maintaining synaptic transmission and structure. Defects in mitochondrial dynamics can cause deficits in mitochondrial respiration, morphology and motility. Moreover, mutations in the mitochondrial fusion genes Mitofusin-2 and OPA1 lead to the peripheral neuropathy Charcot-Marie-Tooth type 2A and dominant optic atrophy. Perhaps it is the strict spatial and functional requirements for mitochondria in neurons that cause defects in mitochondrial fusion to manifest primarily as neurodegenerative diseases.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, 1200 East California Blvd, MC114-96, Pasadena, CA 91125, United States
| | | |
Collapse
|
36
|
Abstract
Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
37
|
Yu Wai Man CY, Chinnery PF, Griffiths PG. Optic neuropathies--importance of spatial distribution of mitochondria as well as function. Med Hypotheses 2005; 65:1038-42. [PMID: 16098682 DOI: 10.1016/j.mehy.2004.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/05/2004] [Accepted: 10/11/2004] [Indexed: 11/28/2022]
Abstract
Optic neuropathies such as Leber's hereditary optic neuropathy, dominant optic atrophy and toxic amblyopia are an important cause of irreversible visual failure. Although they are associated with a defect of mitochondrial energy production, their pathogenesis is poorly understood. A common feature to all these disorders is relatively selective degeneration of the papillomacular bundle of retinal ganglion cells resulting central or caecocentral visual field defects. The striking similarity in the pattern of clinical involvement seen with these disparate disorders suggests a common pathway in their aetiology. The existing hypothesis that the optic nerve head has higher energy demands than other tissues making it uniquely dependent on oxidative phosporylation is not satisfactory. First, other ocular tissues such as photoreceptors, which are more dependent on oxidative phosporylation are not affected. Second, other mitochondrial disorders, which have a greater impact on mitochondrial energy function, do not affect the optic nerve. The optic nerve head has certain unique ultra structural features. Ganglion cell axons exit the eye through a perforated collagen plate, the lamina cribrosa. There is a sharp discontinuity in the density of mitochondria at the optic nerve head, with a very high concentration in the prelaminar nerve fibre layer and low concentration behind the lamina. This has previously been attributed to a mechanical hold up of axoplasmic flow, which has itself been proposed as a factor in the pathogenesis of a number of optic neuropathies. More recent evidence shows that mitochondrial distribution reflects the different energy requirements of the unmyelinated prelaminar axons in comparison to the myelinated retrolaminar axons. The heterogeous distribution of mitochondria is actively maintained to support conduction through the optic nerve head. We propose that factors that disrupt the heterogeneous distribution of mitochondria can result in ganglion cell death. Evidence for this comes from studies of cultured cells with the dominant optic atrophy mutation in which mitochondrial distribution is altered and from some forms of hereditary spastic paraparesis which are associated with optic atrophy. The responsible mutations do not affect ATP production until late in the disease but do affect mitochondrial arrangement, again showing that mitochondrial distribution as well as energy production by individual mitochondria may be important in the pathogenesis of ganglion cell death. Greater understanding of the factors localising mitochondria within the ganglion cell axon in particular the interaction with cytoskeleton is required to formulate new treatments. Boosting energy production alone may not be an effective treatment.
Collapse
Affiliation(s)
- C Y Yu Wai Man
- Department of Neurology, The Medical School, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
38
|
Abstract
Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons.
Collapse
|
39
|
Abstract
We have investigated the axonal transport of neurofilament protein in cultured neurons by constricting single axons with fine glass fibers. We observed a rapid accumulation of anterogradely and retrogradely transported membranous organelles on both sides of the constrictions and a more gradual accumulation of neurofilament protein proximal to the constrictions. Neurofilament protein accumulation was dependent on the presence of metabolic substrates and was blocked by iodoacetate, which is an inhibitor of glycolysis. These data indicate that neurofilament protein moves anterogradely in these axons by a mechanism that is directly or indirectly dependent on nucleoside triphosphates. The average transport rate was estimated to be at least 130 micrometer/h (3.1 mm/d), and approximately 90% of the accumulated neurofilament protein remained in the axon after detergent extraction, suggesting that it was present in a polymerized form. Electron microscopy demonstrated that there were an abnormally large number of neurofilament polymers proximal to the constrictions. These data suggest that the neurofilament proteins were transported either as assembled polymers or in a nonpolymeric form that assembled locally at the site of accumulation. This study represents the first demonstration of the axonal transport of neurofilament protein in cultured neurons.
Collapse
Affiliation(s)
- T J Koehnle
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
| | | |
Collapse
|
40
|
Einheber S, Zanazzi G, Ching W, Scherer S, Milner TA, Peles E, Salzer JL. The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 1997; 139:1495-506. [PMID: 9396755 PMCID: PMC2132621 DOI: 10.1083/jcb.139.6.1495] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1997] [Revised: 09/30/1997] [Indexed: 02/05/2023] Open
Abstract
We have investigated the potential role of contactin and contactin-associated protein (Caspr) in the axonal-glial interactions of myelination. In the nervous system, contactin is expressed by neurons, oligodendrocytes, and their progenitors, but not by Schwann cells. Expression of Caspr, a homologue of Neurexin IV, is restricted to neurons. Both contactin and Caspr are uniformly expressed at high levels on the surface of unensheathed neurites and are downregulated during myelination in vitro and in vivo. Contactin is downregulated along the entire myelinated nerve fiber. In contrast, Caspr expression initially remains elevated along segments of neurites associated with nascent myelin sheaths. With further maturation, Caspr is downregulated in the internode and becomes strikingly concentrated in the paranodal regions of the axon, suggesting that it redistributes from the internode to these sites. Caspr expression is similarly restricted to the paranodes of mature myelinated axons in the peripheral and central nervous systems; it is more diffusely and persistently expressed in gray matter and on unmyelinated axons. Immunoelectron microscopy demonstrated that Caspr is localized to the septate-like junctions that form between axons and the paranodal loops of myelinating cells. Caspr is poorly extracted by nonionic detergents, suggesting that it is associated with the axon cytoskeleton at these junctions. These results indicate that contactin and Caspr function independently during myelination and that their expression is regulated by glial ensheathment. They strongly implicate Caspr as a major transmembrane component of the paranodal junctions, whose molecular composition has previously been unknown, and suggest its role in the reciprocal signaling between axons and glia.
Collapse
MESH Headings
- Animals
- Axons/physiology
- Axons/ultrastructure
- Cell Adhesion Molecules, Neuronal
- Coculture Techniques
- Contactins
- Down-Regulation
- Embryo, Mammalian
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Membrane Glycoproteins/biosynthesis
- Microscopy, Immunoelectron
- Myelin Sheath/physiology
- Nerve Fibers/physiology
- Nerve Fibers/ultrastructure
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/physiology
- Neurites/physiology
- Neurites/ultrastructure
- Neuroglia/physiology
- Neurons/cytology
- Neurons/physiology
- Oligodendroglia/cytology
- Oligodendroglia/physiology
- Rats
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/physiology
- Schwann Cells/cytology
- Schwann Cells/physiology
- Signal Transduction
Collapse
Affiliation(s)
- S Einheber
- Department of Cell Biology, New York University Medical School, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- J L Salzer
- Department of Cell Biology, New York University Medical Center, New York 10016, USA
| |
Collapse
|
42
|
Abstract
Lysosomes play an important role for the maintenance of a normal internal milieu in the cell. In neurons lysosomes are abundant in the perikaryon and dendrites, but have been observed to a much lesser degree in the axon. A general opinion has therefore formed among biologists interested in the nervous system that axonal material destined for degradation has to be transported to the neuronal perikaryon. The lysosomal occurrence and distribution at the level of the axon have, however, not been investigated systematically. This review summarizes recent morphological data based on light, fluorescence, and electron microscopic observations in peripheral nerve fibres of cats and rats providing evidence that node-paranode regions mainly along the peripheral parts of alpha motor axons, where the axon cross-section area decreases to 10-25% of internodal values, can control the passage and participate in a lysosome-mediated degradation of axonally transported materials directed towards the neuronal perikaryon. An important role is played by the paranodal axon-Schwann cell networks, which are lysosome-rich entities whereby the Schwann cells can sequester material from the axoplasm of large myelinated peripheral nerve fibres. The networks also seem to serve as depots for axonal waste products. The degradative ability of node-paranode regions in alpha-motor axons could be of some significance for the protection of the motor neuron perikarya from being flooded with and perhaps injured by indigestible materials as well as potentially deleterious, exogenous substances imbibed by the axon terminals in the muscle. A similar degradative capacity may not be needed in nerve fibres with synaptic terminals in the CNS where the local environment is regulated by the blood-brain barrier.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| |
Collapse
|
43
|
Abstract
Nodes of Ranvier of peripheral nerve fibres represent repetitive physiological axon constrictions. The nodal attenuation of the axon cylinder is expected to facilitate eliciting axon potentials. But as revealed by immunocytochemical analysis of synaptic vesicle proteins such as SV2 and synaptophysin, nodes are also sites of accumulation of the synaptic vesicle membrane compartment. Results from our studies and other laboratories suggest that the local nodal retardation of the axonally transported synaptic vesicle membrane compartment serves membrane processing and/or turnover. Nodes of Ranvier as well as incisures of Schmidt-Lanterman are rich in filamentous actin and can easily be depicted by fluoresceinated phalloidin. At the node and paranode phalloidin fluorescence appears to be mainly associated with the Schwann cell compartment. Immunofluorescence demonstrates that this compartment also contains myosin and spectrin. The nodal contents in actin and myosin may be effective in actively constricting the axon cylinder at both the node of Ranvier and the Schmidt-Lanterman incisures. This hypothesis is discussed in the light of the nodal cytoskeletal specializations of the axon cylinder and the ensheathing Schwann cell.
Collapse
Affiliation(s)
- H Zimmermann
- Biozentrum der J.W. Goethe-Universität, Zoologisches Institut, Frankfurt am Main, Germany
| |
Collapse
|