1
|
Archer T, Beninger RJ. Movement disorders: neurodevelopment and neurobehavioural expression. J Neural Transm (Vienna) 2006; 114:XXXIII-XLI. [PMID: 17024325 DOI: 10.1007/s00702-006-0572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/31/2006] [Indexed: 12/15/2022]
Abstract
Braak and co-workers have recently shown that movement disorders such as Parkinson's disease develop progressively over years with early neuronal losses in brainstem regions caudal to the substantia nigra. The relevance of this finding to notions of comorbidity between movement disorders and psychiatric symptoms was recognised at the recent meeting concerning, "Implications of Comorbidity for the Etiology and Treatment of Neuropsychiatric Disorders" held in Oct. 2005 in Mazagon, Spain. The identification of stages in the early development of neurodegenerative disorders appeared to unify multiple, diverse findings. These included: novel therapeutic innovations for Parkinson's disease, Alzheimer's disease and depression in the aged; the neurochemical ontogeny of drug-induced oral dyskinesias; the types of chemical agents abused in neuropsychiatric states; postnatal iron overload effects upon the functional and interactive role of dopaminergic and noradrenergic pathways that contribute to the expression of movement disorders; and the spectrum of motor symptoms expressed in schizophrenia and attention deficit hyperactivity disorder and the eventual treatment of these disorders. A continued focus on a number of neuropsychiatric diseases as progressive disorders may lead to further advances in understanding their etiology and in developing better therapeutics.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Göteborg, Göteborg, Sweden.
| | | |
Collapse
|
2
|
McCullumsmith RE, Stincic TL, Agrawal SM, Meador-Woodruff JH. Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat. Eur J Pharmacol 2003; 477:101-12. [PMID: 14519413 DOI: 10.1016/j.ejphar.2003.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The behavioral and neurochemical effects of switching from typical to atypical medications have not been evaluated in the rodent models of tardive dyskinesia. Thus, we treated rats with haloperidol-decanoate for 12 weeks, and assessed the effects of additional treatment with olanzapine, haloperidol, clozapine, or vehicle on vacuous chewing movements and expression of transcripts for dopamine receptors, tyrosine hydroxylase, delta-opioid receptor, prodynorphin, preproenkephalin, glutamic acid decarboxylase-65 (glutamic acid decarboxylase (GAD)-65) and GAD-67 and N-methyl-D-aspartate (NMDA) receptor subunits in the striatum and its efferent pathways. Haloperidol-decanoate induced vacuous chewing movements extinguished following an additional 4 weeks of treatment with vehicle, olanzapine or haloperidol, but not clozapine. Post-treatment, vacuous chewing movements in the clozapine group were significantly higher than the vehicle, olanzapine and haloperidol groups. GAD-67 mRNA expression in the globus pallidus was decreased following additional treatment with olanzapine or haloperidol, but not clozapine. Changes in expression of other transcripts were not detected. These findings demonstrate important differences in the effects of typical and atypical antipsychotics on chronic vacuous chewing movements.
Collapse
Affiliation(s)
- Robert E McCullumsmith
- Department of Psychiatry and Mental Health Research Institute, University of Michigan Medical School, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
3
|
Palomo T, Beninger RJ, Kostrzewa RM, Archer T. Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. Neurotox Res 2003; 5:1-26. [PMID: 12832221 DOI: 10.1007/bf03033369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In assessing and assimilating the neurodevelopmental basis of the so-called movement disorders it is probably useful to establish certain concepts that will modulate both the variation and selection of affliction, mechanisms-processes and diversity of disease states. Both genetic, developmental and degenerative aberrations are to be encompassed within such an approach, as well as all deviations from the necessary components of behaviour that are generally understood to incorporate "normal" functioning. In the present treatise, both conditions of hyperactivity/hypoactivity, akinesia and bradykinesia together with a constellation of other symptoms and syndromes are considered in conjunction with the neuropharmacological and brain morphological alterations that may or may not accompany them, e.g. following neonatal denervation. As a case in point, the neuroanatomical and neurochemical points of interaction in Attention Deficit and Hyperactivity disorder (ADHD) are examined with reference to both the perinatal metallic and organic environment and genetic backgrounds. The role of apoptosis, as opposed to necrosis, in cell death during brain development necessitates careful considerations of the current explosion of evidence for brain nerve growth factors, neurotrophins and cytokines, and the processes regulating their appearance, release and fate. Some of these processes may possess putative inherited characteristics, like alpha-synuclein, others may to greater or lesser extents be endogenous or semi-endogenous (in food), like the tetrahydroisoquinolines, others exogenous until inhaled or injested through environmental accident, like heavy metals, e.g. mercury. Another central concept of neurodevelopment is cellular plasticity, thereby underlining the essential involvement of glutamate systems and N-methyl-D-aspartate receptor configurations. Finally, an essential assimilation of brain development in disease must delineate the relative merits of inherited as opposed to environmental risks not only for the commonly-regarded movement disorders, like Parkinson's disease, Huntington's disease and epilepsy, but also for afflictions bearing strong elements of psychosocial tragedy, like ADHD, autism and Savantism.
Collapse
Affiliation(s)
- T Palomo
- Servicio de Psiquiatria, Hospital 12 de Octobre, Ctra. Andalucia Km. 5,400, 28041 Madrid, Spain.
| | | | | | | |
Collapse
|
4
|
Peacock L, Gerlach J. Aberrant behavioral effects of a dopamine D1 receptor antagonist and agonist in monkeys: evidence of uncharted dopamine D1 receptor actions. Biol Psychiatry 2001; 50:501-9. [PMID: 11600103 DOI: 10.1016/s0006-3223(01)01189-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Basic research indicates a role for dopamine (DA) D1 antagonism in the treatment of schizophrenia. Clinical trials have not confirmed any role. Besides the defining second messenger (adenylyl cyclase [AC]), DA D1 receptors are linked to other effectors (e.g., phospholipase C [PLC]). Differing actions of DA D1 antagonists upon differing effectors could explain conflicting results between the lab/clinic. METHODS In a monkey model in which behavioral effects of DA D1 antagonists/agonists have been well characterized we examined: 1) SKF 83959, biochemically, a DA D1 antagonist, behaviorally a DA D1 agonist, and 2) SKF 83822, biochemically, a DA D1 agonist, which, unlike all previously tested DA D1 agonists, does not also stimulate PLC. SKF 83959 and SKF 83822 were given alone and combined with DA D1 and D2 agonists, antagonists, and dextroamphetamine (AMP). RESULTS SKF 83959 acted as a DA D1 agonist (induced oral dyskinesia given alone, counteracted DA D1 antagonist [NNC 756], induced dystonia, and did not inhibit AMP induced behaviors). SKF 83822, unlike previously studied DA D1 agonists, did not induce dyskinesia, but resulted in a state of extreme arousal and locomotor activation without stereotypy, effectively counteracted by NNC 756, but not by SKF 83959 nor raclopride (DA D2 antagonist). CONCLUSIONS It is hypothesized that: 1) dyskinesia is linked to PLC stimulation; 2) DA D1 agonism can play a role in the induction of psychosis, via a mechanism linked neither to AC nor PLC, and 3) DA D1 antagonists differ in antipsychotic potential, possibly via this unidentified mechanism.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Arousal/drug effects
- Behavior, Animal/drug effects
- Cebus
- Cross-Over Studies
- Dopamine/metabolism
- Dopamine Agonists/adverse effects
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/adverse effects
- Dopamine Antagonists/pharmacology
- Dyskinesia, Drug-Induced/physiopathology
- Dystonia/chemically induced
- Dystonia/physiopathology
- Locomotion/drug effects
- Receptors, Dopamine D1/drug effects
- Stereotyped Behavior/drug effects
Collapse
Affiliation(s)
- L Peacock
- Institute of Biological Psychiatry, St. Hans Hospital, Roskilde, Denmark
| | | |
Collapse
|
5
|
Abstract
Our previous work has shown that chronic haloperidol treatment decreases striatal symmetric synapses preferentially in rats which develop oral dyskinesias (vacuous chewing movements (VCMs)). The present experiment tests the hypothesis that olanzapine, which does not cause dyskinesia in humans or rats, would not cause the ultrastructural changes produced by haloperidol. After 6 months of treatment, VCM scores for the olanzapine group (5.1 +/- 4.5) were similar to those of controls (5.2 +/- 3.9), whereas rats in the haloperidol group were either nondyskinetic (4.3 +/- 2.2) or dyskinetic (16.9 +/- 6.7). The volume of the striatum (mm(3)), did not differ among the groups: control, 37.5 +/- 4.7; olanzapine, 36.4 +/- 4.3; haloperidol, nondyskinetic, 40.5 +/- 6.3; haloperidol, dyskinetic, 36.6 +/- 5.9. Synaptic density (per 1 microm(3)), obtained from the central region of the striatum, did not differ between the olanzapine (0.699 +/- 0.146) and control groups (0.652 +/- 0.108). The number of asymmetric synapses in the olanzapine group (0.624 +/- 0.136) was also similar to that of controls (0.550 +/- 0.090). The number of symmetric synapses in the olanzapine group (0.074 +/- 0.032) was not significantly different from that of controls (0.096 +/- 0.043). Thus, olanzapine, in contrast to haloperidol, did not produce dyskinesias or synapse loss. These results strengthen the correlation between the expression of VCMs and striatal synaptic changes and indicate that olanzapine has fewer behavioral and anatomical side effects than does haloperidol.
Collapse
Affiliation(s)
- R C Roberts
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA.
| |
Collapse
|
6
|
Andreassen OA, Jørgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog Neurobiol 2000; 61:525-41. [PMID: 10748322 DOI: 10.1016/s0301-0082(99)00064-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tardive dyskinesia is a serious motor side effect of long-term treatment with neuroleptics, with an unknown pathophysiologic basis. Brain damage and aging are prominent risk-factors, and together with the persistent character of the disorder, it is likely that long-lasting neuronal changes are involved in the pathogenesis. It has been hypothesized that striatal neurodegeneration caused by excitotoxic mechanisms and oxidative stress may play an important role in the development of the disorder, and the scope of the present work is to review the evidence supporting this hypothesis. The rat model of tardive dyskinesia has been used extensively in the field, and the usefulness of this model will be discussed. Neuroleptics are able to induce oxidative stress in vitro and increase striatal glutamatergic activity in rats, which may lead to toxic effects in the striatum. Drugs that block excitotoxicity inhibit the development of persistent oral dyskinesia in the rat model, and impaired energy metabolism leads to increased frequency of oral dyskinesia. There are also signs of altered striatal histology in rats with high frequency of oral dyskinesia. Furthermore, markers of increased oxidative stress and glutamatergic neurotransmission have been found in the cerebrospinal fluid of patients with tardive dyskinesia. In conclusion, several lines of evidence implicate neurotoxic events in the development of neuroleptic induced tardive dyskinesia.
Collapse
Affiliation(s)
- O A Andreassen
- Department of Psychiatry, Sandviken Hospital, University of Bergen, Bergen, Norway.
| | | |
Collapse
|
7
|
Yu J, Källström L, Wiesel FA, Johnson AE. Neurochemical changes in the entopeduncular nucleus and increased oral behavior in rats treated subchronically with clozapine or haloperidol. Synapse 1999; 34:192-207. [PMID: 10523757 DOI: 10.1002/(sici)1098-2396(19991201)34:3<192::aid-syn4>3.0.co;2-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of the present experiment was to test the possibility that atypical antipsychotics and classical antipsychotics differentially regulate specific neurochemical processes within the entopeduncular nucleus. For these experiments, rats were administered clozapine (25 mg/kg), haloperidol (1 mg/kg), or Tween-80 (control) daily for 21 days. Dopamine D(1)-receptor binding was assessed with in vitro receptor autoradiographic methods and the mRNAs corresponding to the two forms of glutamate decarboxylase (glutamate decarboxylase-65 and glutamate decarboxylase-67) were analyzed using in situ hybridization histochemical methods. In addition, vacuous chewing movements (VCM) were measured throughout the drug administration period as a functional indicator of drug action and changes in striatal dopamine D(2)-receptor binding were measured as a positive control for D(2)-receptor antagonist properties of haloperidol and clozapine. In agreement with previous reports, haloperidol increased D(2)-receptor binding throughout the striatum while clozapine had a more limited impact on D(2)-receptors. Behavioral analysis revealed that both haloperidol and clozapine enhanced the display of vacuous chewing movements to a similar extent but with a different postinjection latency. In the entopeduncular nucleus, clozapine increased D(1)-receptor binding compared to controls while haloperidol was without effect. With respect to the regulation of GAD mRNAs, haloperidol increased glutamate decarboxylase-65 and glutamate decarboxylase-67 mRNA levels throughout the entopeduncular nucleus. The effects of clozapine were restricted to increases in glutamate decarboxylase-65 mRNA. These studies show that clozapine and haloperidol, both of which increase the occurrence of VCM, differentially modulate the neurochemistry of the entopeduncular nucleus.
Collapse
Affiliation(s)
- J Yu
- Department of Neuroscience, Ullerâker, University Hospital, Uppsala University, SE-750 17 Uppsala, Sweden
| | | | | | | |
Collapse
|
8
|
Rosengarten H, Schweitzer JW, Friedhoff AJ. The effect of novel antipsychotics in rat oral dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:1389-404. [PMID: 10631765 DOI: 10.1016/s0278-5846(99)00073-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1. The effect of the D1 agonist SKF38393 and the 5HT2C agonist m-CPP on repetitive jaw movements (RJM) was studied in rats. Acute administration of SKF38393 and/or m-CPP induced RJM in a dose dependent manner. In rats treated with both drugs, RJM responses were about equal to the sum of those obtained with each drug alone. 2. The induction of RJM by SKF38393 was somewhat lower in rats pretreated with 5HT2C receptor antagonist, mianserin, whereas mianserin severely reduced RJM induced by m-CPP alone. 3. D1 antagonist SCH23390 inhibited SKF38393 induced RJM but had no effect on m-CPP induced chewing behavior. 4. The present study confirms earlier evidence that D1 agonists used at optimal doses for the induction of RJM do not involve the serotonergic system in a significant way. It does, however, implicate the system in the emergence of drug induced oral behavior in rats. 5. The effect of the atypical antipsychotics, clozapine, olanzapine and risperidone was studied on SKF38393 and m-CPP induced RJM. Pretreatment with the atypical antipsychotics clozapine and olanzapine inhibit SKF38393 and m-CPP induced RJM. Pretreatment with risperidone inhibits m-CPP induced oral behavior in rats while increases dose dependently SKF38393 induced RJM.
Collapse
Affiliation(s)
- H Rosengarten
- Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, NY, USA
| | | | | |
Collapse
|
9
|
Chakos MH, Shirakawa O, Lieberman J, Lee H, Bilder R, Tamminga CA. Striatal enlargement in rats chronically treated with neuroleptic. Biol Psychiatry 1998; 44:675-84. [PMID: 9798070 DOI: 10.1016/s0006-3223(98)00029-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Striatal enlargement with chronic neuroleptic treatment in schizophrenic patients has been reported by several investigators. Longitudinal magnetic resonance imaging studies of patients suggest that changes in striatal volume may be caused by treatment with antipsychotic medication. METHODS We have examined the effects of chronic neuroleptic treatment on postmortem striatal volume in the laboratory rat and have examined the relationship between striatal volume and vacuous chewing movements (VCMs). Autoradiographs of 50 rats treated with haloperidol (1.5 mg/kg/day) or drug free for varying durations of time (1-12 months) were utilized in this analysis. RESULTS Chronic treatment with neuroleptics (1 month or greater) was associated with larger striatal volumes. The increase in striatal volume was present at 1 month of treatment and was sustained to 12 months of treatment. Rats that developed the high-VCM syndrome had larger striatal volumes than both drug-free and low-VCM rats, while low-VCM rats had larger striatal volumes than drug-free rats. CONCLUSIONS These data suggest that chronic neuroleptic treatment is the cause of striatal enlargement in the laboratory rat, and that this enlargement is most prominent in rats that have the high-VCM syndrome.
Collapse
Affiliation(s)
- M H Chakos
- University of North Carolina at Chapel Hill, Neurosciences Hospital 27599-7160, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rodríguez-Arias M, Miñarro J, Aguilar MA, Pinazo J, Simón VM. Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 1998; 8:95-103. [PMID: 9619687 DOI: 10.1016/s0924-977x(97)00051-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, the antiaggressive effects of risperidone and SCH 23390 have been explored. Using the paradigm of isolation-induced aggression, 150 albino male mice of the OF1 strain were allocated to control and experimental groups which received three doses of risperidone (0.01, 0.05 and 0.1 mg/kg) or two doses of SCH 23390 (0.05 and 0.1 mg/kg). Only the highest doses of risperidone decreased threat and attack behaviours but all doses significantly impaired motor behaviour. SCH 23390 decreased attack with the two doses used and also produced significant increases in immobility. Although both antipsychotics are antiaggressive, this action seems to be more specific in the case of risperidone. Finally, both drugs failed to affect animals with short attack latency, being antiaggressive only in subjects with long attack latency, which suggests that these two types of animals are different in their dopamine and serotonin neurotransmission.
Collapse
Affiliation(s)
- M Rodríguez-Arias
- Area de Psicobiología, Facultad de Psicología, Universitat de València, Spain.
| | | | | | | | | |
Collapse
|
11
|
Vital MA, Flório JC, Frussa-Filho R, De Lucia R, Tufik S, Palermo-Neto J. Effects of haloperidol and GM1 ganglioside treatment on striatal D2 receptor binding and dopamine turnover. Life Sci 1998; 62:1161-9. [PMID: 9519797 DOI: 10.1016/s0024-3205(98)00042-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that whereas exogenous GM1 ganglioside co-administration leads to an increase of haloperidol-induced behavioral supersensitivity, GM1 significantly attenuates the behavioral parameters of dopaminergic supersensitivity when administered after abrupt haloperidol withdrawal. In the present study, the effects of GM1 and haloperidol co-administration (5 mg/kg GM1 i.p. and 1 mg/kg haloperidol i.p., twice daily, for 30 days) as well as the effects of a 3 day treatment with GM1 were investigated in rats withdrawn from haloperidol administration by measuring striatal D2 dopamine receptor binding and dopamine turnover. The results showed that under these two experimental conditions GM1 modified neither the haloperidol-induced striatal D2 dopamine receptor up regulation nor the decrease in dopamine turnover produced by haloperidol withdrawal. These results suggest that the effects of GM1 on behavioral supersensitivity are not related to modifications in dopamine receptor number or affinity and in the synaptic availability of this catecholamine.
Collapse
Affiliation(s)
- M A Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Gao XM, Hashimoto T, Cooper TB, Tamminga CA. The dose-response characteristics of rat oral dyskinesias with chronic haloperidol or clozapine administration. J Neural Transm (Vienna) 1997; 104:97-104. [PMID: 9085197 DOI: 10.1007/bf01271298] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Whether the pathophysiology and treatment of neuroleptic-induced oral dyskinesias in rats parallel that for tardive dyskinesia in humans remains a question. To address the issue further, Sprague Dawley rats were treated for 6 months with multiple oral doses of haloperidol (1.5 and 3.0 mg/ kg/day) or clozapine (10, 20, and 30 mg/kg/day) and compared with water treated animals. The rate of oral dyskinesias was monitored at study start and monthly by trained raters who were blind to treatment group. All haloperidol-treated rats developed oral dyskinesias at a significantly higher rate than rats treated with water (p = 0.0007) or those treated with clozapine (p = 0.0017). Each dose of haloperidol produced significantly higher rates of oral dyskinesias than did any dose of clozapine and did so in an apparent dose-sensitive manner. Clozapine lacked a dose-sensitive relationship with the oral dyskinesias, and failed to show a significant difference in rate from control rats at any dose. Plasma levels of haloperidol with these doses were in the human therapeutic range; with clozapine only the highest dose produced plasma levels in the human therapeutic range. These data show little association between rat oral dyskinesias and clozapine treatment, whereas a strong association is present with haloperidol. The data are, thereby, consistent with the clinical association of tardive dyskinesia with typical neuroleptics like haloperidol but not with the atypical neuroleptic clozapine.
Collapse
Affiliation(s)
- X M Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, USA
| | | | | | | |
Collapse
|