1
|
Pappolla MA, Martins RN, Poeggeler B, Omar RA, Perry G. Oxidative Stress in Alzheimer's Disease: The Shortcomings of Antioxidant Therapies. J Alzheimers Dis 2024; 101:S155-S178. [PMID: 39422961 DOI: 10.3233/jad-240659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual and progressive cognitive decline leading to dementia. At its core, the neuropathological features of AD include hallmark accumulations of amyloid-β and hyperphosphorylated tau proteins. Other harmful processes, such as oxidative stress and inflammation, contribute to the disease's neuropathological progression. This review evaluates the role of oxidative stress in AD, placing a spotlight on the disappointing outcomes of various antioxidant clinical trials. Several hypotheses are discussed that might elucidate the failures of these therapies in AD. Specifically: 1) The paradoxical and overlooked harmful implications of prooxidant intermediates, particularly stemming from conventional antioxidants like vitamins E and C; 2) The challenges and failure to appreciate the issue of bioavailability-epitomized by the dictum "no on-site protection, no protection"-and the preeminent, yet often ignored, role played by endogenous antioxidant enzymes in combating oxidative stress; 3) The influence of unrecognized etiologies, such as latent infectious agents and others, as foundational drivers of oxidative stress in AD; 4) The underestimation of the complexity of oxidative mechanisms and the necessity of multi-targeted therapeutic approaches, such as those provided by various diets; and 5) The limitations of clinical trial designs in fully capturing the effects of antioxidants on AD progression. This article also examines the outcomes of select clinical trials while highlighting the challenges and barriers these therapies pose, offering insights into potential mechanisms to overcome their marginal success.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease Centre, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University, Gottingen, Germany
| | - Rawhi A Omar
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Tahir UA, Katz DH, Avila-Pachecho J, Bick AG, Pampana A, Robbins JM, Yu Z, Chen ZZ, Benson MD, Cruz DE, Ngo D, Deng S, Shi X, Zheng S, Eisman AS, Farrell L, Hall ME, Correa A, Tracy RP, Durda P, Taylor KD, Liu Y, Johnson WC, Guo X, Yao J, Chen YDI, Manichaikul AW, Ruberg FL, Blaner WS, Jain D, Bouchard C, Sarzynski MA, Rich SS, Rotter JI, Wang TJ, Wilson JG, Clish CB, Natarajan P, Gerszten RE. Whole Genome Association Study of the Plasma Metabolome Identifies Metabolites Linked to Cardiometabolic Disease in Black Individuals. Nat Commun 2022; 13:4923. [PMID: 35995766 PMCID: PMC9395431 DOI: 10.1038/s41467-022-32275-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | | | | | - Akhil Pampana
- Broad Institute of Harvard and MIT, Cambridge, MA, US
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Zhi Yu
- Broad Institute of Harvard and MIT, Cambridge, MA, US
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Daniel E Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Aaron S Eisman
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Michael E Hall
- University of Mississippi Medical Center, Jackson, MS, US
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, US
| | - Russell P Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, US
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, US
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, US
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, US
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, US
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, US
| | - Frederick L Ruberg
- Section of Cardiovascular Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, US
| | | | - Deepti Jain
- University of Washington, Seattle, Washington, US
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, US
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, US
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, US
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, US
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Thomas J Wang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX, US
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, US
| | - Pradeep Natarajan
- Broad Institute of Harvard and MIT, Cambridge, MA, US
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US.
- Broad Institute of Harvard and MIT, Cambridge, MA, US.
| |
Collapse
|
3
|
Ulatowski L, Ghelfi M, West R, Atkinson J, Finno CJ, Manor D. The tocopherol transfer protein TTP mediates Vitamin Vitamin E trafficking between cerebellar astrocytes and neurons. J Biol Chem 2022; 298:101712. [PMID: 35150738 PMCID: PMC8913317 DOI: 10.1016/j.jbc.2022.101712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The tocopherol transfer protein (TTP) binds α-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in GFAP-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the TtpA gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor-related protein 1 (LRP1) receptor. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- L Ulatowski
- Department of Biology, Ursuline College, Pepper Pike, OH 44124
| | - Mikel Ghelfi
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ryan West
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - J Atkinson
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California School of Veterinary Medicine, Davis, CA 95616
| | - D Manor
- Departments of Nutrition and Pharmacology, School of Medicine, Cleveland, OH 44106; Case Western Reserve University and the Case Comprehensive Cancer Center, Cleveland, OH 44106.
| |
Collapse
|
4
|
Hyun DH, Lee J. A New Insight into an Alternative Therapeutic Approach to Restore Redox Homeostasis and Functional Mitochondria in Neurodegenerative Diseases. Antioxidants (Basel) 2021; 11:antiox11010007. [PMID: 35052511 PMCID: PMC8772965 DOI: 10.3390/antiox11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dysfunction, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and other misfolded proteins and neuroinflammation have been identified in animal models and patients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular signalling. Although several molecules have been approved clinically, there is no known cure for neurodegenerative diseases, though some drugs are focused on improving mitochondrial function. Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle. Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mitochondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane redox enzymes improve mitochondrial function without the further production of reactive oxygen species. In addition, inducers of antioxidant response elements can be useful to induce a series of detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic targets for delaying the progression of neurodegenerative diseases.
Collapse
|
5
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
6
|
Baranowski BJ, Marko DM, Fenech RK, Yang AJT, MacPherson REK. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. Appl Physiol Nutr Metab 2020; 45:1055-1065. [PMID: 32717151 DOI: 10.1139/apnm-2019-0910] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the world's population aging at a rapid rate, the prevalence of Alzheimer's disease (AD) has significantly increased. These statistics are alarming given recent evidence that a third of dementia cases may be preventable. The role of lifestyle factors, such as diet and exercise, can directly alter the risk of disease development. However, an understanding of the effectiveness of dietary patterns and exercise strategies to reduce AD risk or improve brain function is not fully understood. The aim of this review is to discuss the effects of diet and exercise on AD risk. Key components of the Western and Mediterranean diets are discussed in relation to AD progression, as well as how physical activity promotes brain health. Components of the Western diet (saturated fatty acids and simple carbohydrates) are detrimental to the brain, impair cognition, and increase AD pathologies. While components of the Mediterranean diet (polyunsaturated fatty acids, polyphenols, and antioxidants) are considered to be neuroprotective. Exercise can significantly reduce the risk of AD; however, specific exercise recommendations for older adults are limited and optimal intensity, duration, and type remains unknown. This review highlights important modifiable risk factors for AD and points out potential avenues for future research. Novelty Diet and exercise are modifiable factors that can improve brain health and reduce the risk of AD. Polyunsaturated fatty acids, polyphenols, and antioxidants are neuroprotective. Exercise reduces neuroinflammation, improves brain insulin sensitivity, and increases brain derived neurotrophic factor.
Collapse
Affiliation(s)
- Bradley J Baranowski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rachel K Fenech
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alex J T Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Ashley S, Bradburn S, Murgatroyd C. A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer’s disease. Nutr Neurosci 2019; 24:795-809. [DOI: 10.1080/1028415x.2019.1681066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Ashley
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Chris Murgatroyd
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
8
|
Valis M, Herman D, Vanova N, Masopust J, Vysata O, Hort J, Pavelek Z, Klimova B, Kuca K, Misik J, Zdarova Karasova J. The Concentration of Memantine in the Cerebrospinal Fluid of Alzheimer's Disease Patients and Its Consequence to Oxidative Stress Biomarkers. Front Pharmacol 2019; 10:943. [PMID: 31555132 PMCID: PMC6722429 DOI: 10.3389/fphar.2019.00943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Memantine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist utilized as a palliative cure for Alzheimer’s disease. This is the second study examining the memantine concentrations in cerebrospinal fluid. The previously published study enrolled six patients, and three of them were theoretically in a steady state. In our study, we enrolled 22 patients who regularly used a standard therapeutic dose of memantine (20 mg/day, oral administration) before the sample collection. Patients were divided into four groups, according to the time of plasma and cerebrospinal fluid collection: 6, 12, 18, and 24 h after memantine administration. The cerebrospinal fluid samples were also assessed for selected oxidative stress parameters (malondialdehyde, 3-nitrotyrosine, glutathione, non-protein thiols, and non-protein disulfides). The plasma/cerebrospinal fluid (CSF) ratio for all time intervals were within the range of 45.89% (6 h) to 55.60% (18 h), which corresponds with previously published findings in most patients. The other aim of our study was to deduce whether the achieved “real” memantine concentration in the central compartment was sufficient to block NMDA receptors. The IC50 value of memantine as an NMDA antagonist is in micromolar range; the lowest limit is 112 ng/ml (GluN2C), and this value was achieved only in three cases. The memantine cerebrospinal fluid concentration did not reach one quarter of the IC50 value in five cases (one patient was excluded for noncompliance); therefore, the potency of memantine as a therapeutic effect in patients may be questionable. However, it appears that memantine therapy positively affected the levels of some oxidative stress parameters, especially non-protein thiols and 3-nitrotyrosine.
Collapse
Affiliation(s)
- Martin Valis
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| | - David Herman
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czechia
| | - Nela Vanova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czechia.,Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Czechia
| | - Jiri Masopust
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia.,Department of Psychiatry, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| | - Oldrich Vysata
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| | - Jakub Hort
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zbysek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| | - Blanka Klimova
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| | - Kamil Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Jan Misik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czechia
| | - Jana Zdarova Karasova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czechia
| |
Collapse
|
9
|
Gugliandolo A, Chiricosta L, Silvestro S, Bramanti P, Mazzon E. α-Tocopherol Modulates Non-Amyloidogenic Pathway and Autophagy in an In Vitro Model of Alzheimer's Disease: A Transcriptional Study. Brain Sci 2019; 9:E196. [PMID: 31405115 PMCID: PMC6721308 DOI: 10.3390/brainsci9080196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. The hallmarks of AD are the extracellular amyloid plaques, which are formed by amyloid β (Aβ) aggregates derived from the processing of the amyloid precursor protein (APP), and the intraneuronal neurofibrillary tangles, which are formed by the hyperphosphorylated tau protein. The aim of this work was to study the effects of α-tocopherol in retinoic acid differentiated SH-SY5Y neuroblastoma cells exposed to Aβ1-42 evaluating the transcriptional profile by next-generation sequencing. We observed that α-tocopherol was able to reduce the cytotoxicity induced by Aβ treatment, as demonstrated by Thiazolyl Blue Tetrazolium Bromide (MTT) assay. Moreover, the transcriptomic analysis evidenced that α-tocopherol treatment upregulated genes involved in the non-amyloidogenic processing of APP, while it downregulated the amyloidogenic pathway. Moreover, α-tocopherol modulated the expression of the genes involved in autophagy and the cell cycle, which are both known to be altered in AD. The treatment with α-tocopherol was also able to reduce oxidative stress, restoring nuclear factor erythroid-derived 2-like 2 (Nrf2) and decreasing inducible nitric oxide synthase (iNOS) levels, as demonstrated by immunocytochemistry.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Serena Silvestro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
10
|
Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2105607. [PMID: 31210837 PMCID: PMC6532273 DOI: 10.1155/2019/2105607] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Age is the main risk factor for a number of human diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, which increasing numbers of elderly individuals suffer. These pathological conditions are characterized by progressive loss of neuron cells, compromised motor or cognitive functions, and accumulation of abnormally aggregated proteins. Mitochondrial dysfunction is one of the main features of the aging process, particularly in organs requiring a high-energy source such as the heart, muscles, brain, or liver. Neurons rely almost exclusively on the mitochondria, which produce the energy required for most of the cellular processes, including synaptic plasticity and neurotransmitter synthesis. The brain is particularly vulnerable to oxidative stress and damage, because of its high oxygen consumption, low antioxidant defenses, and high content of polyunsaturated fats very prone to be oxidized. Thus, it is not surprising the importance of protecting systems, including antioxidant defenses, to maintain neuronal integrity and survival. Here, we review the role of mitochondrial oxidative stress in the aging process, with a specific focus on neurodegenerative diseases. Understanding the molecular mechanisms involving mitochondria and oxidative stress in the aging and neurodegeneration may help to identify new strategies for improving the health and extending lifespan.
Collapse
|
11
|
The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040879. [PMID: 30781638 PMCID: PMC6412423 DOI: 10.3390/ijms20040879] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Vitamin E was proposed as treatment for Alzheimer’s disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer’s disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer’s. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer’s disease? In this paper we review the studies with and without positive results in Alzheimer’s disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.
Collapse
|
12
|
Lee P, Ulatowski LM. Vitamin E: Mechanism of transport and regulation in the CNS. IUBMB Life 2018; 71:424-429. [PMID: 30556640 DOI: 10.1002/iub.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/17/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Although vitamin E has been recognized as a critical micronutrient to neuronal health for more than half a century, vitamin E transport and regulation in the brain remain a mystery. Currently, the majority of what is known about vitamin E transport has been delineated in the liver. However, clues from the pathogenesis of neurological-related vitamin E deficient diseases point to compromised neuronal integrity and function, underlining the critical need to understand vitamin E regulation in the CNS. Additionally, most of the same molecular players involved in vitamin E transport in the liver are also found in CNS, including sterol SRB1, TTP, and ABCA/ABCG, suggesting similar intracellular pathways between these organ systems. Finally, based on chemical similarities, intracellular CNS shuttling of vitamin E likely resembles cholesterol's use of ApoE particles. Utilizing this information, this review will address what is currently known about trafficking vitamin E across the blood brain barrier in order to ensure an adequate supply of the essential nutrient to the brain. Although debatable, the health of the brain in relation to vitamin E levels has been demonstrated, most notably in oxidative stress-related conditions such as ataxias, Alzheimer's disease, and Parkinson's disease. Future vitamin E research is vital in understanding how the regulation of the vitamin can aid in the prevention, treatment, and curing of neurological diseases. © 2018 IUBMB Life, 71(4):424-429, 2019.
Collapse
Affiliation(s)
- Paris Lee
- Ursuline College, Department of Biology, 2550 Lander Rd Pepper Pike, Ohio 44124
| | - Lynn M Ulatowski
- Ursuline College, Department of Biology, 2550 Lander Rd Pepper Pike, Ohio 44124
| |
Collapse
|
13
|
Chang KH, Cheng ML, Chiang MC, Chen CM. Lipophilic antioxidants in neurodegenerative diseases. Clin Chim Acta 2018; 485:79-87. [DOI: 10.1016/j.cca.2018.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
|
14
|
Cansev M, Turkyilmaz M, Sijben JWC, Sevinc C, Broersen LM, van Wijk N. Synaptic Membrane Synthesis in Rats Depends on Dietary Sufficiency of Vitamin C, Vitamin E, and Selenium: Relevance for Alzheimer's Disease. J Alzheimers Dis 2018; 59:301-311. [PMID: 28598848 PMCID: PMC5502840 DOI: 10.3233/jad-170081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic consumption of a diet enriched with nutritional precursors of phospholipids, including uridine and the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), was shown previously to enhance levels of brain phospholipids and synaptic proteins in rodents. Vitamin C, vitamin E, and selenium may directly affect the breakdown or synthesis of membrane phospholipids. The present study investigated the necessity of antioxidants for the effectiveness of supplementation with uridine plus DHA and EPA (as fish oil) in rats. Rats were randomized to four treatment groups and received, for 6 weeks, one of four experimental diets, i.e., a diet low in antioxidants, a diet high in antioxidants, a diet low in antioxidants supplemented with DHA+EPA+uridine, or a diet high in antioxidants supplemented with DHA+EPA+uridine. On completion of dietary treatment, rats were sacrificed, and brain levels of phospholipids, synaptic proteins, and two enzymes involved in phospholipid synthesis (choline-phosphate cytidylyltransferase, PCYT1A, and choline/ethanolamine phosphotransferase, CEPT1) were analyzed. Levels of phospholipids, the pre- and post-synaptic proteins Synapsin-1 and PSD95, and the enzymes PCYT1A and CEPT1 were significantly enhanced by combined supplementation of DHA+EPA+uridine and antioxidants and not enhanced by supplementation of DHA+EPA+uridine with insufficient antioxidant levels. Our data suggest that dietary vitamin C, vitamin E, and selenium are essential for the phospholipid precursors' effects on increasing levels of membrane phospholipids and synaptic proteins, the indirect indicators of synaptogenesis. Their concomitant supply may be relevant in Alzheimer's disease patients, because the disease is characterized by synapse loss and lower plasma and brain levels of phospholipid precursors and antioxidants.
Collapse
Affiliation(s)
- Mehmet Cansev
- Department of Pharmacology, Uludag University Medical School, Gorukle, Bursa, Turkey
| | - Mesut Turkyilmaz
- Department of Pharmacology, Uludag University Medical School, Gorukle, Bursa, Turkey
| | - John W C Sijben
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Cansu Sevinc
- Department of Pharmacology, Uludag University Medical School, Gorukle, Bursa, Turkey
| | - Laus M Broersen
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Nick van Wijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| |
Collapse
|
15
|
Dong Y, Chen X, Liu Y, Shu Y, Chen T, Xu L, Li M, Guan X. Do low-serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int J Geriatr Psychiatry 2018; 33:e257-e263. [PMID: 28833475 DOI: 10.1002/gps.4780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Whether low-serum vitamin E increases the risk of Alzheimer disease (AD) in older people remains inconclusive. This meta-analysis aims to synthesize evidence-based case-control studies to evaluate the association between serum vitamin E and the risk of AD. METHODS Potentially relevant studies were selected through PubMed, Embase, Wanfang, Chongqing VIP, and China National Knowledge Infrastructure databases by using the core terms Vitamin E/alpha-tocopherol and Alzheime's disease/senile dementia/AD in the titles, abstracts, and keywords of the articles. The association between serum vitamin E levels and AD was estimated by using the weighted mean difference (WMD) and 95% confidence interval by adopting a random effects model. Heterogeneity was assessed by using Cochran Q test and I2 statistic. Forest plot was used to present the results graphically from meta-analysis. Publication bias was evaluated by using funnel plots and Egger test. RESULTS We identified 17 studies that met the eligibility criteria. The studies included 2057 subjects with 904 AD patients and 1153 controls. The results indicated that AD patients had a lower concentration of serum vitamin E compared with healthy controls among older people (WMD = -6.811 μmol/L, 95% confidence interval -8.998 to -4.625; Z = -6.105, P < .001). Publication bias was not detected and sensitivity analysis performed by omitting each study, and calculating the pooled WMD again for the remaining studies indicated the results stable. CONCLUSIONS Alzheimer disease is associated with a low concentration of serum vitamin E in older people. However, necessary prospective cohort studies should be conducted to determine the risk of serum vitamin E for AD in the future.
Collapse
Affiliation(s)
- Yonghai Dong
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Xiaodan Chen
- Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Yun Liu
- Cadre Wards of Neurology Medicine, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yan Shu
- The First Hospital of Nanchang, Jiangxi Province, Nanchang, China
| | - Ting Chen
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Lei Xu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Meng Li
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Xihong Guan
- Remote Diagnosis Center, Jiangxi Provincial People's Hospital, Nanchang, China
| |
Collapse
|
16
|
Mohn ES, Kuchan MJ, Erdman JW, Neuringer M, Matthan NR, Chen CYO, Johnson EJ. The Subcellular Distribution of Alpha-Tocopherol in the Adult Primate Brain and Its Relationship with Membrane Arachidonic Acid and Its Oxidation Products. Antioxidants (Basel) 2017; 6:antiox6040097. [PMID: 29186823 PMCID: PMC5745507 DOI: 10.3390/antiox6040097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
The relationship between α-tocopherol, a known antioxidant, and polyunsaturated fatty acid (PUFA) oxidation, has not been directly investigated in the primate brain. This study characterized the membrane distribution of α-tocopherol in brain regions and investigated the association between membrane α-tocopherol and PUFA content, as well as brain PUFA oxidation products. Nuclear, myelin, mitochondrial, and neuronal membranes were isolated using a density gradient from the prefrontal cortex (PFC), cerebellum (CER), striatum (ST), and hippocampus (HC) of adult rhesus monkeys (n = 9), fed a stock diet containing vitamin E (α-, γ-tocopherol intake: ~0.7 µmol/kg body weight/day, ~5 µmol/kg body weight/day, respectively). α-tocopherol, PUFAs, and PUFA oxidation products were measured using high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography-gas chromatography/mass spectrometry (LC-GC/MS) respectively. α-Tocopherol (ng/mg protein) was highest in nuclear membranes (p < 0.05) for all regions except HC. In PFC and ST, arachidonic acid (AA, µg/mg protein) had a similar membrane distribution to α-tocopherol. Total α-tocopherol concentrations were inversely associated with AA oxidation products (isoprostanes) (p < 0.05), but not docosahexaenoic acid oxidation products (neuroprostanes). This study reports novel data on α-tocopherol accumulation in primate brain regions and membranes and provides evidence that α-tocopherol and AA are similarly distributed in PFC and ST membranes, which may reflect a protective effect of α-tocopherol against AA oxidation.
Collapse
Affiliation(s)
- Emily S. Mohn
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | | | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA;
| | - Nirupa R. Matthan
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Chung-Yen Oliver Chen
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Elizabeth J. Johnson
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
17
|
Gugliandolo A, Bramanti P, Mazzon E. Role of Vitamin E in the Treatment of Alzheimer's Disease: Evidence from Animal Models. Int J Mol Sci 2017; 18:ijms18122504. [PMID: 29168797 PMCID: PMC5751107 DOI: 10.3390/ijms18122504] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS) production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
18
|
de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW. Lower brain and blood nutrient status in Alzheimer's disease: Results from meta-analyses. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:416-431. [PMID: 29067348 PMCID: PMC5651428 DOI: 10.1016/j.trci.2017.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Recently, we showed the results of the meta-analyses indicating lower plasma levels of vitamins A, B12, C, E, and folate in AD patients compared with cognitively intact elderly controls (controls). Now, additional and more extensive literature searches were performed selecting studies which compare blood and brain/cerebrospinal fluid (CSF) levels of vitamins, minerals, trace elements, micronutrients, and fatty acids in AD patients versus controls. METHODS The literature published after 1980 in Cochrane Central Register of Controlled Trials, Medline, and Embase electronic databases was systematically analyzed using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines to detect studies meeting the selection criteria. Search terms used are as follows: AD patients, Controls, vitamins, minerals, trace elements, micronutrients, and fatty acids. Random-effects meta-analyses using a linear mixed model with correction for age differences between AD patients and controls were performed when four or more publications were retrieved for a specific nutrient. RESULTS Random-effects meta-analyses of 116 selected publications showed significant lower CSF/brain levels of docosahexaenoic acid (DHA), choline-containing lipids, folate, vitamin B12, vitamin C, and vitamin E. In addition, AD patients showed lower circulatory levels of DHA, eicosapentaenoic acid, choline as phosphatidylcholine, and selenium. CONCLUSION The current data show that patients with AD have lower CSF/brain availability of DHA, choline, vitamin B12, folate, vitamin C, and vitamin E. Directionally, brain nutrient status appears to parallel the lower circulatory nutrient status; however, more studies are required measuring simultaneously circulatory and central nutrient status to obtain better insight in this observation. The brain is dependent on nutrient supply from the circulation, which in combination with nutrient involvement in AD-pathophysiological mechanisms suggests that patients with AD may have specific nutritional requirements. This hypothesis could be tested using a multicomponent nutritional intervention.
Collapse
Affiliation(s)
- Martijn C. de Wilde
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Bruno Vellas
- Gerontopole and UMR INSERM 1027 University Paul Sabatier, Toulouse University Hospital, Toulouse, France
| | - Elodie Girault
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | | | - John W. Sijben
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| |
Collapse
|
19
|
Cervantes B, Ulatowski LM. Vitamin E and Alzheimer's Disease-Is It Time for Personalized Medicine? Antioxidants (Basel) 2017; 6:antiox6030045. [PMID: 28672782 PMCID: PMC5618073 DOI: 10.3390/antiox6030045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
For the last two decades, it has been hotly debated whether vitamin E-the major lipid-soluble antioxidant, which functions to maintain neurological integrity-is efficacious as a therapy for Alzheimer's disease. Several factors key to the debate, include (1) which of the eight naturally-occurring vitamin E forms should be used; (2) how combination treatments affect vitamin E efficacy; and (3) safety concerns that most-recently resurfaced after the results of the Selenium and vitamin E Cancer prevention trial SELECT prostate cancer trial. However, with the advent of new genetic technologies and identifications of vitamin E-modulating single nucleotide polymorphisms (SNPs), we propose that clinical trials addressing the question "Is vitamin E an effective treatment for Alzheimer's disease" should consider a more focused and personalized medicine approach to designing experiments. An individual's naturally-occurring SNP variants may indeed influence vitamin E's therapeutic effect on Alzheimer's disease.
Collapse
|
20
|
Farina N, Llewellyn D, Isaac MGEKN, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 2017; 4:CD002854. [PMID: 28418065 PMCID: PMC6478142 DOI: 10.1002/14651858.cd002854.pub5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. OBJECTIVES To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. MAIN RESULTS Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures.In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence).We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. AUTHORS' CONCLUSIONS We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Collapse
Affiliation(s)
- Nicolas Farina
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | - David Llewellyn
- University of ExeterMedical SchoolExeterUK+44 (0) 1392 726018
| | | | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | | |
Collapse
|
21
|
Kim JH, Hwang J, Shim E, Chung EJ, Jang SH, Koh SB. Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson's Disease. Nutr Res Pract 2017; 11:114-120. [PMID: 28386384 PMCID: PMC5376529 DOI: 10.4162/nrp.2017.11.2.114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 10/10/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES A pivotal role of oxidative stress has been emphasized in the pathogenesis as well as in the disease progression of Parkinson's disease (PD). We aimed at investigating serum levels of antioxidant vitamins and elucidating whether they could be associated with the pathogenesis and progression of PD. MATERIALS/METHODS Serum levels of retinol, α- and γ-tocopherols, α- and β-carotenes, lutein, lycopene, zeaxanthin and β-cryptoxanthin were measured and compared between 104 patients with idiopathic PD and 52 healthy controls matched for age and gender. In order to examine the relationship between antioxidant vitamins and the disease progression, multiple group comparisons were performed among the early PD (Hoehn and Yahr stage I and II, N = 47), advanced PD (stage III and IV, N = 57) and control groups. Separate correlation analyses were performed between the measured antioxidant vitamins and clinical variables, such as Hoehn and Yahr stage and Unified Parkinson's Disease Rating Scale (UPDRS) motor score. RESULTS Compared to controls, PD patients had lower levels of α- and β-carotenes and lycopene. α-carotene, β-carotene and lycopene levels were significantly reduced in advanced PD patients relative to early PD patients and were negatively correlated with Hoehn and Yahr stage and UPDRS motor score in PD patients. No significant differences were found in serum levels of retinol, α- and γ-tocopherols, and other carotenoids between PD patients and controls. No significant correlations were found between these vitamin levels and clinical variables in PD patients. CONCLUSIONS We found that serum levels of some carotenoids, α-carotene, β-carotene and lycopene, were lower in PD patients, and that these carotenoids inversely correlated with clinical variables representing disease progression. Our findings suggest that decreases in serum α-carotene, β-carotene and lycopene may be associated with the pathogenesis as well as progression of PD.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Guro-dong Road, Guro-gu, Seoul 08308, Korea
| | - Jinah Hwang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, Yongin, Gyeonggi 17058, Korea
| | - Eugene Shim
- Department of Food and Nutrition, Soongeui Women's College, Seoul 04628, Korea
| | - Eun-Jung Chung
- Division of General Studies, Kangnam University, Yongin, Gyeonggi 16979, Korea
| | - Sung Hee Jang
- Division of Diet Research, Institute of Food & Culture, Pulmuone, Seoul 13722, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Guro-dong Road, Guro-gu, Seoul 08308, Korea
| |
Collapse
|
22
|
Abstract
BACKGROUND Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. OBJECTIVES To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. MAIN RESULTS Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures.In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence).We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. AUTHORS' CONCLUSIONS We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Collapse
Affiliation(s)
- Nicolas Farina
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | - David Llewellyn
- University of ExeterMedical SchoolExeterUK+44 (0) 1392 726018
| | | | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| |
Collapse
|
23
|
Uchoa MF, de Souza LF, Dos Santos DB, Peres TV, Mello DF, Leal RB, Farina M, Dafre AL. Modulation of Brain Glutathione Reductase and Peroxiredoxin 2 by α-Tocopheryl Phosphate. Cell Mol Neurobiol 2016; 36:1015-1022. [PMID: 26749581 DOI: 10.1007/s10571-015-0298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022]
Abstract
α-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP. However, this effect was not observed ex vivo with mitochondrial-enriched fraction from mice treated with an intracerebroventricular injection of 0.1 or 1 nmol/site of αTP. Two days after treatment (1 nmol/site αTP), peroxiredoxin 2 (Prx2) and glutathione reductase (GR) expression and GR activity were decreased in cerebral cortex and hippocampus. Glutathione content, glutathione peroxidase, and thioredoxin reductase activities were not affected by αTP. In conclusion, the persistent decrease in GR and Prx2 protein content is the first report of an in vivo effect of αTP on protein expression in the mouse brain, potentially associated to a novel and biologically relevant function of this naturally occurring compound.
Collapse
Affiliation(s)
- Mariana Figueiroa Uchoa
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | | | - Tanara Vieira Peres
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Danielle Ferraz Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Rodrigo Bainy Leal
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| |
Collapse
|
24
|
|
25
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a chronic, progressive neurodegenerative disease that manifests clinically as a slow global decline in cognitive function, including deterioration of memory, reasoning, abstraction, language and emotional stability, culminating in a patient with end-stage disease, totally dependent on custodial care. With a global ageing population, it is predicted that there will be a marked increase in the number of people diagnosed with AD in the coming decades, making this a significant challenge to socio-economic policy and aged care. Global estimates put a direct cost for treating and caring for people with dementia at $US604 billion, an estimate that is expected to increase markedly. According to recent global statistics, there are 35.6 million dementia sufferers, the number of which is predicted to double every 20 years, unless strategies are implemented to reduce this burden. Currently, there is no cure for AD; while current therapies may temporarily ameliorate symptoms, death usually occurs approximately 8 years after diagnosis. A greater understanding of AD pathophysiology is paramount, and attention is now being directed to the discovery of biomarkers that may not only facilitate pre-symptomatic diagnosis, but also provide an insight into aberrant biochemical pathways that may reveal potential therapeutic targets, including nutritional ones. AD pathogenesis develops over many years before clinical symptoms appear, providing the opportunity to develop therapy that could slow or stop disease progression well before any clinical manifestation develops.
Collapse
|
26
|
Effects of vitamin E on cognitive performance during ageing and in Alzheimer's disease. Nutrients 2014; 6:5453-72. [PMID: 25460513 PMCID: PMC4276978 DOI: 10.3390/nu6125453] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/23/2022] Open
Abstract
Vitamin E is an important antioxidant that primarily protects cells from damage associated with oxidative stress caused by free radicals. The brain is highly susceptible to oxidative stress, which increases during ageing and is considered a major contributor to neurodegeneration. High plasma vitamin E levels were repeatedly associated with better cognitive performance. Due to its antioxidant properties, the ability of vitamin E to prevent or delay cognitive decline has been tested in clinical trials in both ageing population and Alzheimer’s disease (AD) patients. The difficulty in performing precise and uniform human studies is mostly responsible for the inconsistent outcomes reported in the literature. Therefore, the benefit of vitamin E as a treatment for neurodegenerative disorders is still under debate. In this review, we focus on those studies that mostly have contributed to clarifying the exclusive function of vitamin E in relation to brain ageing and AD.
Collapse
|
27
|
The roles of biomarkers of oxidative stress and antioxidant in Alzheimer's disease: a systematic review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182303. [PMID: 24949424 PMCID: PMC4053273 DOI: 10.1155/2014/182303] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
Purpose. Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). This paper aims to examine whether biomarkers of oxidative stress and antioxidants could be useful biomarkers in AD, which might form the bases of future clinical studies. Methods. PubMed, SCOPUS, and Web of Science were systematically queried to obtain studies with available data regarding markers of oxidative stress and antioxidants from subjects with AD. Results and Conclusion. Although most studies show elevated serum markers of lipid peroxidation in AD, there is no sufficient evidence to justify the routine use of biomarkers as predictors of severity or outcome in AD.
Collapse
|
28
|
Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:427318. [PMID: 24669288 PMCID: PMC3941783 DOI: 10.1155/2014/427318] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/06/2013] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, with increasing prevalence and no disease-modifying treatment available yet. A remarkable amount of data supports the hypothesis that oxidative stress is an early and important pathogenic operator in AD. However, all clinical studies conducted to date did not prove a clear beneficial effect of antioxidant treatment in AD patients. In the current work, we review the current knowledge about oxidative stress in AD pathogeny and we suggest future paths that are worth to be explored in animal models and clinical studies, in order to get a better approach of oxidative imbalance in this inexorable neurodegenerative disease.
Collapse
|
29
|
Abd-El-Fattah MA, Abdelakader NF, Zaki HF. Pyrrolidine dithiocarbamate protects against scopolamine-induced cognitive impairment in rats. Eur J Pharmacol 2014; 723:330-8. [DOI: 10.1016/j.ejphar.2013.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
|
30
|
Schrag M, Mueller C, Zabel M, Crofton A, Kirsch W, Ghribi O, Squitti R, Perry G. Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: A meta-analysis. Neurobiol Dis 2013; 59:100-10. [DOI: 10.1016/j.nbd.2013.07.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022] Open
|
31
|
Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T. Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis. Alzheimers Dement 2013; 10:485-502. [PMID: 24144963 DOI: 10.1016/j.jalz.2013.05.1771] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Alzheimer disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Nutritional compounds are postulated to play a role in the pathophysiological processes that are affected in AD. We here provide the first systematic review and meta-analysis that compares plasma levels of micronutrients and fatty acids in AD patients to those in cognitively intact elderly controls. A secondary objective was to explore the presence of different plasma nutrient levels between AD and control populations that did not differ in measures of protein/energy nourishment. METHODS We screened literature published after 1990 in the Cochrane Central Register of Controlled Trials, Medline, and Embase electronic databases using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines for AD patients, controls, micronutrient, vitamins, and fatty acids, resulting in 3397 publications, of which 80 met all inclusion criteria. Status of protein/energy malnutrition was assessed by body mass index, mini nutritional assessment score, or plasma albumin. Meta-analysis, with correction for differences in mean age between AD patients and controls, was performed when more than five publications were retrieved for a specific nutrient. RESULTS We identified five or more studies for folate, vitamin A, vitamin B12, vitamin C, vitamin D, vitamin E, copper, iron, and zinc but fewer than five studies for vitamins B1 and B6, long-chain omega-3 fatty acids, calcium, magnesium, manganese, and selenium (the results of the individual publications are discussed). Meta-analysis showed significantly lower plasma levels of folate and vitamin A, vitamin B12, vitamin C, and vitamin E (P < .001), whereas nonsignificantly lower levels of zinc (P = .050) and vitamin D (P = .075) were found in AD patients. No significant differences were observed for plasma levels of copper and iron. A meta-analysis that was limited to studies reporting no differences in protein/energy malnourishment between AD and control populations yielded similar significantly lower plasma levels of folate and vitamin B12, vitamin C, and vitamin E in AD. CONCLUSIONS The lower plasma nutrient levels indicate that patients with AD have impaired systemic availability of several nutrients. This difference appears to be unrelated to the classic malnourishment that is well known to be common in AD, suggesting that compromised micronutrient status may precede protein and energy malnutrition. Contributing factors might be AD-related alterations in feeding behavior and intake, nutrient absorption, alterations in metabolism, and increased utilization of nutrients for AD pathology-related processes. Given the potential role of nutrients in the pathophysiological processes of AD, the utility of nutrition may currently be underappreciated and offer potential in AD management.
Collapse
Affiliation(s)
- Sofia Lopes da Silva
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bruno Vellas
- Gerontopole and UMR INSERM 1027 University Paul Sabatier, Toulouse University Hospital, Toulouse, France
| | - Saskia Elemans
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - José Luchsinger
- Department of Medicine, Columbia University, New York, NY, USA
| | - Patrick Kamphuis
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - John Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands.
| | - Martine Groenendijk
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Theo Stijnen
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Naumann EC, Göring S, Ogorek I, Weggen S, Schmidt B. Membrane anchoring γ-secretase modulators with terpene-derived moieties. Bioorg Med Chem Lett 2013; 23:3852-6. [PMID: 23707256 DOI: 10.1016/j.bmcl.2013.04.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 02/02/2023]
Abstract
Modulation of γ-secretase activity is a promising therapeutic strategy for the treatment of Alzheimer's disease. Herein we report on the synthesis of carprofen- and tocopherol-derived small-molecule modulators carrying terpene moieties as lipophilic membrane anchors. Additionally, these modulators are equipped with an acidic moiety, which contributes to the desired modulatory effect on the γ-secretase with decreased formation of Aβ42 and increased Aβ38 production.
Collapse
Affiliation(s)
- Eva Christine Naumann
- Clemens Schöpf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
33
|
Abstract
Vitamin E was identified almost a century ago as a botanical compound necessary for rodent reproduction. Decades of research since then established that of all members of the vitamin E family, α-tocopherol is selectively enriched in human tissues, and it is essential for human health. The major function of α-tocopherol is thought to be that of a lipid-soluble antioxidant that prevents oxidative damage to biological components. As such, α-tocopherol is necessary for numerous physiological processes such as permeability of lipid bilayers, cell adhesion, and gene expression. Inadequate levels of α-tocopherol interfere with cellular function and precipitate diseases, notably ones that affect the central nervous system. The extreme hydrophobicity of α-tocopherol poses a serious thermodynamic barrier for proper distribution of the vitamin to target tissues and cells. Although transport of the vitamin shares some steps with that of other lipids, selected tissues evolved dedicated transport mechanisms involving the α-tocopherol transfer protein (αTTP). The critical roles of this protein and its ligand are underscored by the debilitating pathologies that characterize human carriers of mutations in the TTPA gene.
Collapse
Affiliation(s)
- Lynn Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
34
|
Abstract
Alzheimer′s disease (AD) represents a highly common form of dementia, but can be diagnosed in the earlier stages before dementia onset. Early diagnosis is crucial for successful therapeutic intervention. The introduction of new diagnostic biomarkers for AD is aimed at detecting underlying brain pathology. These biomarkers reflect structural or biochemical changes related to AD. Examination of cerebrospinal fluid has many drawbacks; therefore, the search for sensitive and specific blood markers is ongoing. Investigation is mainly focused on upstream processes, among which oxidative stress in the brain is of particular interest. Products of oxidative stress may diffuse into the blood and evaluating them can contribute to diagnosis of AD. However, results of blood oxidative stress markers are not consistent among various studies, as documented in this review. To find a specific biochemical marker for AD, we should concentrate on specific metabolic products formed in the brain. Specific fluorescent intermediates of brain lipid peroxidation may represent such candidates as the composition of brain phospholipids is unique. They are small lipophilic molecules and can diffuse into the blood stream, where they can then be detected. We propose that these fluorescent products are potential candidates for blood biomarkers of AD.
Collapse
Affiliation(s)
- Alice Skoumalová
- Department of Medical Chemistry and Biochemistry, Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| | | |
Collapse
|
35
|
Farina N, Isaac MGEKN, Clark AR, Rusted J, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 2012; 11:CD002854. [PMID: 23152215 PMCID: PMC6464798 DOI: 10.1002/14651858.cd002854.pub3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin E is a dietary compound that functions as an antioxidant scavenging toxic free radicals. Evidence that free radicals may contribute to the pathological processes of cognitive impairment including Alzheimer's disease has led to interest in the use of vitamin E in the treatment of mild cognitive impairment (MCI) and Alzheimer's dementia (AD). OBJECTIVES To assess the efficacy of vitamin E in the treatment of AD and prevention of progression of MCI to dementia. SEARCH METHODS The Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources were searched on 25 June 2012 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA All unconfounded, double-blind, randomised trials in which treatment with vitamin E at any dose was compared with placebo for patients with AD and MCI. DATA COLLECTION AND ANALYSIS Two review authors independently applied the selection criteria and assessed study quality and extracted and analysed the data. For each outcome measure data were sought on every patient randomised. Where such data were not available an analysis of patients who completed treatment was conducted. It was not possible to pool data between studies owing to a lack of comparable outcome measure. MAIN RESULTS Only three studies met the inclusion criteria: two in an AD population and one in an MCI population. In the first of the AD studies (Sano 1996) the authors reported some benefit from vitamin E (2000 IU/day) with fewer participants reaching an end point of death, institutionalisation, change to a Clinical Dementia Rating (CDR) of three, or loss of two basic activities of daily living within two years. Of patients completing treatment, 58% (45/77) on vitamin E compared with 74% (58/78) on placebo reached one of the end points (odds ratio (OR) 0.49; 95% confidence interval (CI) 0.25 to 0.96). The second AD treatment study (Lloret 2009) explored the effects of vitamin E (800 IU/day) on cognitive progression in relation to oxidative stress levels. Patients whose oxidative stress markers were lowered by vitamin E showed no significant difference in the percentage change in Mini-Mental State Examination (MMSE) score, between baseline and six months, compared to the placebo group. The primary aim of the MCI study (Petersen 2005) was to investigate the effect of vitamin E (2000 IU/day) on the time to progression from MCI to possible or probable AD. A total of 214 of the 769 participants progressed to dementia, with 212 being classified as having possible or probable AD. There was no significant difference in the probability of progression from MCI to AD between the vitamin E group and the placebo group (hazard ratio 1.02; 95% CI 0.74 to 1.41; P = 0.91). AUTHORS' CONCLUSIONS No convincing evidence that vitamin E is of benefit in the treatment of AD or MCI. Future trials assessing vitamin E treatment in AD should not be restricted to alpha-tocopherol.
Collapse
|
36
|
What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm (Vienna) 2012; 120:233-52. [DOI: 10.1007/s00702-012-0877-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/26/2012] [Indexed: 12/30/2022]
|
37
|
Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer's disease: from pathogenesis to biomarkers. Int J Cell Biol 2012; 2012:735206. [PMID: 22701485 PMCID: PMC3373122 DOI: 10.1155/2012/735206] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting several million of people worldwide. Pathological changes in the AD brain include the presence of amyloid plaques, neurofibrillary tangles, loss of neurons and synapses, and oxidative damage. These changes strongly associate with mitochondrial dysfunction and stress of the endoplasmic reticulum (ER). Mitochondrial dysfunction is intimately linked to the production of reactive oxygen species (ROS) and mitochondrial-driven apoptosis, which appear to be aggravated in the brain of AD patients. Concomitantly, mitochondria are closely associated with ER, and the deleterious crosstalk between both organelles has been shown to be involved in neuronal degeneration in AD. Stimuli that enhance expression of normal and/or folding-defective proteins activate an adaptive unfolded protein response (UPR) that, if unresolved, can cause apoptotic cell death. ER stress also induces the generation of ROS that, together with mitochondrial ROS and decreased activity of several antioxidant defenses, promotes chronic oxidative stress. In this paper we discuss the critical role of mitochondrial and ER dysfunction in oxidative injury in AD cellular and animal models, as well as in biological fluids from AD patients. Progress in developing peripheral and cerebrospinal fluid biomarkers related to oxidative stress will also be summarized.
Collapse
Affiliation(s)
- E. Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - I. Baldeiras
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
- University Coimbra Hospital, 3000-075, Coimbra, Portugal
| | - I. L. Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - R. O. Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - A. C. Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. F. Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. R. Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| |
Collapse
|
38
|
Hensley K, Barnes LL, Christov A, Tangney C, Honer WG, Schneider JA, Bennett DA, Morris MC. Analysis of postmortem ventricular cerebrospinal fluid from patients with and without dementia indicates association of vitamin E with neuritic plaques and specific measures of cognitive performance. J Alzheimers Dis 2012; 24:767-74. [PMID: 21321395 DOI: 10.3233/jad-2011-101995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ventricular cerebrospinal fluid (vCSF) obtained at autopsy from 230 participants in the Religious Orders Study was analyzed for alpha tocopherol (αT, vitamin E) and gamma tocopherol (γT) in relation to brain tissue neuropathological diagnoses (NIA-Reagan criteria); neuritic plaque density and neurofibrillary tangle state (Braak stage); and cognitive function proximate to death. Neither vCSF αT nor γT was related to the pathological diagnosis of Alzheimer's disease, but vCSF αT concentration was inversely related to neuritic plaque density (β = -0.21, SE = 0.105, p = 0.04) in regression models adjusted for age, gender, education, and APOE-4. Ventricular CSF αT concentration was positively associated with perceptual speed (β = 0.27, SE = 0.116, p = 0.02) whereas the γT/αT ratio was negatively associated with episodic memory (β = -0.037, SE = 0.017, p = 0.04). Only vCSF αT, but not γT, was correlated with postmortem interval (PMI). Adjustment for PMI had no effect on significance of associations between αT and perceptual speed or γT/αT and episodic memory, but after this adjustment the αT concentration was no longer significantly associated with neuritic plaques. These data suggest that vCSF αT, but not γT, is weakly associated with less Alzheimer's disease neuropathology, specifically neuritic plaques, and correlates with better performance on tests of perceptual speed.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vanmierlo T, Popp J, Kölsch H, Friedrichs S, Jessen F, Stoffel-Wagner B, Bertsch T, Hartmann T, Maier W, von Bergmann K, Steinbusch H, Mulder M, Lütjohann D. The plant sterol brassicasterol as additional CSF biomarker in Alzheimer's disease. Acta Psychiatr Scand 2011; 124:184-92. [PMID: 21585343 DOI: 10.1111/j.1600-0447.2011.01713.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Plant sterols (sitosterol, campesterol, stigmasterol and brassicasterol) are solely dietary-derivable sterols that are structurally very similar to cholesterol. In contrast to peripheral cholesterol, plant sterols can cross the blood-brain barrier and accumulate within mammalian brain. As an impaired function of the cerebrospinal fluid (CSF)-blood barrier is linked to neurodegenerative disorders, i.e. Alzheimer's disease (AD), we investigated whether this results in altered plant sterol concentrations in CSF. METHOD Applying gas chromatography/mass spectrometry analysis, plant sterol concentrations were measured in plasma and CSF of patients with AD (n = 67) and controls (n = 29). Age, gender, plasma-to-CSF albumin ratio, CSF Aβ(42) , CSF pTau, APOE4 genotype, and serum creatinine were applied as covariates in the statistical analysis for individual plant sterols in order to compare plasma and CSF plant sterol concentrations between patients with AD and controls. RESULTS Albumin quotient was a consistent predictor in CSF for cholesterol and methyl plant sterols campesterol and brassicasterol. Comparison of lipid parameters per diagnosis based on relevant predictors revealed significantly lower concentrations of brassicasterol (P < 0.001) in CSF of patients with AD. Binary logistic regression analysis revealed that brassicasterol improved the predictive value when added to pTau and Aβ42 in a biomarker model. CONCLUSION Brassicasterol might be a relevant additional biomarker in AD.
Collapse
Affiliation(s)
- T Vanmierlo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer's disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 2011; 59:535-41. [PMID: 21672580 DOI: 10.1016/j.neuint.2011.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/16/2011] [Accepted: 04/20/2011] [Indexed: 01/09/2023]
Abstract
Carotenoids play a pivotal role in prevention of many degenerative diseases mediated by oxidative stress including neurodegenerative diseases like Alzheimer's Disease (AD). The involvement of retinoids in physiology, AD pathology and their therapeutic role in vitro and in vivo has been extensively studied. This review focuses on the role of carotenoids like retinoic acid (RA), all trans retinoic acid (ATRA), lycopene and β-carotene in prevention of AD symptoms primarily through inhibition of amyloid beta (Aβ) formation, deposition and fibril formation either by reducing the levels of p35 or inhibiting corresponding enzymes. The role of antioxidant micronutrients in prevention or delaying of AD symptoms has been included. This study emphasizes the dietary supplementation of carotenoids to combat AD and warrants further studies on animal models to unravel their mechanism of neuroprotection.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Rayalaseema University, Kurnool, Andhra Pradesh, India.
| | | | | |
Collapse
|
41
|
The plasma membrane redox system in Alzheimer's disease. Exp Neurol 2011; 228:9-14. [DOI: 10.1016/j.expneurol.2010.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 12/09/2010] [Indexed: 01/05/2023]
|
42
|
Maetzler W, Berg D. Biomarkers of Alzheimer's and Parkinson's Disease. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Lee HP, Casadesus G, Zhu X, Lee HG, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A. All-trans retinoic acid as a novel therapeutic strategy for Alzheimer's disease. Expert Rev Neurother 2010; 9:1615-21. [PMID: 19903021 DOI: 10.1586/ern.09.86] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid, an essential factor derived from vitamin A, has been shown to have a variety of functions including roles as an antioxidant and in cellular differentiation. Since oxidative stress and dedifferentiation of neurons appear to be common pathological elements of a number of neurodegenerative disorders, we speculated that retinoic acid may offer therapeutic promise. In this vein, recent compelling evidence indicates a role of retinoic acid in cognitive activities and anti-amyloidogenic properties. Here, we review the actions of retinoic acid that indicate that it may have therapeutic properties ideally served for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009; 31:13-29. [PMID: 18763202 DOI: 10.1080/08923970802331943] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) play an important role in various events underlying multiple sclerosis pathology. In the initial phase of lesion formation, ROS are known to mediate the transendothelial migration of monocytes and induce a dysfunction in the blood-brain barrier. Although the pathogenesis of MS is not completely understood, various studies suggest that reactive oxygen species contribute to the formation and persistence of multiple sclerosis lesions by acting on distinct pathological processes. The detrimental effects of ROS in the central nervous system are endowed with a protective mechanism consisting of enzymatic and non-enzymatic antioxidant. Antioxidant therapy may therefore represent an attractive treatment of MS. Several studies have shown that antioxidant therapy is beneficial in vitro and in vivo in animal models for MS. Since oxidative damage has been known to be involved in inflammatory and autoimmune-mediated tissue destruction in which, modulation of oxygen free radical production represents a new approach to the treatment of inflammatory and autoimmune diseases. Several experimental studies have been performed to see whether dietary intake of several antioxidants can prevent and or reduce the progression of EAE or not. Although a few antioxidants showed some efficacy in these studies, little information is available on the effect of treatments with such compounds in patients with MS. In this review, our aim is to clarify the therapeutic efficacy of antioxidants in MS disease.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, Tehran University of Medical Sciences, Iran.
| | | |
Collapse
|
45
|
Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 2008; 216:278-89. [PMID: 19135442 DOI: 10.1016/j.expneurol.2008.11.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) individuals develop several neuropathological hallmarks seen in Alzheimer's disease, including cognitive decline and the early loss of cholinergic markers in the basal forebrain. These deficits are replicated in the Ts65Dn mouse, which contains a partial trisomy of murine chromosome 16, the orthologous genetic segment to human chromosome 21. Oxidative stress levels are elevated early in DS, and may contribute to the neurodegeneration seen in these individuals. We evaluated oxidative stress in Ts65Dn mice, and assessed the efficacy of long-term antioxidant supplementation on memory and basal forebrain pathology. We report that oxidative stress was elevated in the adult Ts65Dn brain, and that supplementation with the antioxidant vitamin E effectively reduced these markers. Also, Ts65Dn mice receiving vitamin E exhibited improved performance on a spatial working memory task and showed an attenuation of cholinergic neuron pathology in the basal forebrain. This study provides evidence that vitamin E delays onset of cognitive and morphological abnormalities in a mouse model of DS, and may represent a safe and effective treatment early in the progression of DS neuropathology.
Collapse
|
46
|
Abstract
BACKGROUND Vitamin E is a dietary compound that functions as an antioxidant scavenging toxic free radicals. Evidence that free radicals may contribute to the pathological processes of cognitive impairment including Alzheimer's disease (AD) has led to interest in the use of Vitamin E in the treatment of Alzheimer's disease and Mild Cognitivie Impairment (MCI). OBJECTIVES To assess the efficacy of Vitamin E in the treatment of Alzheimer's disease and prevention of progression of Mild Cognitive Impairment to Alzheimer's disease. SEARCH STRATEGY The Cochrane Dementia and Cognitive Improvement's Specialized Register was searched on 8 January 2007 using the following terms: "Vitamin E", vitamin-E, alpha-tocopherol. The CDCIG Registers contains records from major health care databases and ongoing trial databases and is updated regularly. SELECTION CRITERIA All unconfounded, double blind, randomized trials in which treatment with Vitamin E at any dose was compared with placebo for patients with Alzheimer's disease or Mild Cognitive Impairment. DATA COLLECTION AND ANALYSIS Two reviewers independently applied the selection criteria and assessed study quality and extracted and analysed the data. For each outcome measure data were sought on every patient randomized. Where such data were not available an analysis of patients who completed treatment was conducted. MAIN RESULTS Only 2 studies met the inclusion criteria. The primary outcome used in the AD study was survival time to the first of 4 endpoints: death, institutionalisation, loss of 2 out of 3 basic activities of daily living and severe dementia (defined as a global Clinical Dementia Rating of 3). The investigators reported the total numbers in each group who reached the primary endpoint within two years for participants completing the study ("completers"). There appeared to be some benefit from Vitamin E with fewer participants reaching endpoint - 58% (45/77) of completers compared with 74% (58/78) - a Peto odds ratio of 0.49, 95% confidence interval 0.25 to 0.96.However, more participants taking Vitamin E suffered a fall (12/77 compared with 4/78; odds ratio 3.07, 95% CI 1.09 to 8.62). It was not possible to interpret the reported results for specific endpoints or for secondary outcomes of cognition, dependence, behavioural disturbance and activities of daily living.The primary outcome used in the MCI study which had 769 participants (257 in the Vitamin E group and 259 in the placebo group; a third Donepezil group of 253 was not included in this review) was the time to progression from MCI to possible or probable AD. A total of 214 of the 769 participants had progression to dementia, with 212 being classified as having possible or probable AD. There was no significant difference in the probability of progression from MCI to AD between the Vitamin E group and the placebo group. There was no significant difference between the placebo group and the Vitamin E group in adverse events. Five subjects died in each group and 72 discontinued treatment in the Vitamin E group and 66 in the placebo group. AUTHORS' CONCLUSIONS There is no evidence of efficacy of Vitamin E in the prevention or treatment of people with AD or MCI. More research is needed to identify the role of Vitamin E, if any, in the management of cognitive impairment.
Collapse
|
47
|
Kontush A, Schekatolina S. An update on using vitamin E in Alzheimer's disease. Expert Opin Drug Discov 2008; 3:261-71. [DOI: 10.1517/17460441.3.2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Ancelin ML, Christen Y, Ritchie K. Is antioxidant therapy a viable alternative for mild cognitive impairment? Examination of the evidence. Dement Geriatr Cogn Disord 2007; 24:1-19. [PMID: 17495472 DOI: 10.1159/000102567] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2007] [Indexed: 12/14/2022] Open
Abstract
Therapeutic interventions for the prodromal stages of dementia are currently being sought with a view to delaying if not preventing disease onset. Uncertainty as to whether cognitive disorder in a given individual will progress towards dementia and adverse drug side effects has led to hesitancy on the part of drug regulators to instigate preventive pharmacotherapies. In this context, antioxidant therapies may provide a low-risk alternative, targeting very early biological changes. While a growing body of knowledge demonstrates both the importance of oxidative stress in the aetiology of dementia and the efficacy of antioxidant treatment in animal and cellular models, studies in humans are presently inconclusive. While some antioxidants, notably flavonoid- or vitamin-rich diets, appear to lower the relative risk for Alzheimer's disease in humans in observational studies, these results must be interpreted in the light of the biological complexity of the relationship between oxidative stress and neurodegeneration, and the methodological and theoretical shortcomings of studies conducted to date. A clearer understanding of these factors will assist in the interpretation of the results of the intervention studies which are now being undertaken; these studies being the only current means of establishing efficacy for preventive drug treatment of Alzheimer's disease.
Collapse
|
49
|
Giordano V, Peluso G, Iannuccelli M, Benatti P, Nicolai R, Calvani M. Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer's dementia. Neurochem Res 2006; 32:555-67. [PMID: 16915364 DOI: 10.1007/s11064-006-9125-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2006] [Indexed: 01/23/2023]
Abstract
Since its definition Alzheimer's disease has been at the centre of consideration for neurologists, psychiatrists, and pathologists. With John P. Blass it has been disclosed a different approach Alzheimer's disease neurodegeneration understanding not only by the means of neurochemistry but also biochemistry opening new scenarios in the direction of a metabolic system degeneration. Nowadays, the understanding of the role of cholesterol, insulin, and adipokines among the others in Alzheimer's disease etiopathogenesis is clarifying approaches valuable not only in preventing the disease but also for its therapy.
Collapse
Affiliation(s)
- Vincenzo Giordano
- Scientific Department, Sigma-Tau, Via Pontina km 30,400, Pomezia, Rome, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Mas E, Dupuy AM, Artero S, Portet F, Cristol JP, Ritchie K, Touchon J. Functional Vitamin E deficiency in ApoE4 patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2006; 21:198-204. [PMID: 16407653 DOI: 10.1159/000090868] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2005] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress has been implicated in the development of Alzheimer's disease (AD). Consequently, antioxidant therapies including Vitamin E (VitE) supplementation for both prevention and treatment of neurodegenerative diseases currently appears to be a promising avenue of research. The aim of the present study was to examine the relationship between AD and the ApoE phenotype, lipid parameters and VitE levels in a large cohort of elderly subjects. No absolute deficit was observed in plasma VitE levels. However in AD, ApoE4 is not associated with an increase in total cholesterol (TC) and VitE levels. Moreover, our results suggest that oxidative stress-induced injury and protection by VitE in AD are related to the ApoE phenotype. Our study strongly supports the hypothesis of an impairment of lipophilic antioxidant delivery to neuronal cells in AD leading to a tissular antioxidant deficiency which could facilitate oxidative stress.
Collapse
Affiliation(s)
- Emilie Mas
- Department of Biochemistry, Lapeyronie Hospital, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|