1
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
2
|
Mandell DT, Kristoff J, Gaufin T, Gautam R, Ma D, Sandler N, Haret-Richter G, Xu C, Aamer H, Dufour J, Trichel A, Douek DC, Keele BF, Apetrei C, Pandrea I. Pathogenic features associated with increased virulence upon Simian immunodeficiency virus cross-species transmission from natural hosts. J Virol 2014; 88:6778-92. [PMID: 24696477 PMCID: PMC4054382 DOI: 10.1128/jvi.03785-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/27/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While simian immunodeficiency viruses (SIVs) are generally nonpathogenic in their natural hosts, dramatic increases in pathogenicity may occur upon cross-species transmission to new hosts. Deciphering the drivers of these increases in virulence is of major interest for understanding the emergence of new human immunodeficiency viruses (HIVs). We transmitted SIVsab from the sabaeus species of African green monkeys (AGMs) to pigtailed macaques (PTMs). High acute viral replication occurred in all SIVsab-infected PTMs, yet the outcome of chronic infection was highly variable, ranging from rapid progression to controlled infection, which was independent of the dynamics of acute viral replication, CD4(+) T cell depletion, or preinfection levels of microbial translocation. Infection of seven PTMs with plasma collected at necropsy from a rapid-progressor PTM was consistently highly pathogenic, with high acute and chronic viral replication, massive depletion of memory CD4(+) T cells, and disease progression in all PTMs. The plasma inoculum used for the serial passage did not contain adventitious bacterial or viral contaminants. Single-genome amplification showed that this inoculum was significantly more homogenous than the inoculum directly derived from AGMs, pointing to a strain selection in PTMs. In spite of similar peak plasma viral loads between the monkeys in the two passages, immune activation/inflammation levels dramatically increased in PTMs infected with the passaged virus. These results suggest that strain selection and a massive cytokine storm are major factors behind increased pathogenicity of SIV upon serial passage and adaptation of SIVs to new hosts following cross-species transmission. IMPORTANCE We report here that upon cross-species transmission and serial passage of SIVsab from its natural host, the sabaeus African green monkey (AGM), to a new host, the pigtailed macaque (PTM), viral adaptation and increased pathogenicity involve strain selection and a massive cytokine storm. These results permit the design of strategies aimed at preventing cross-species transmission from natural hosts of SIVs to humans in areas of endemicity. Furthermore, our study describes a new animal model for SIV infection. As the outcomes of SIVsab infection in PTMs, African green monkeys, and rhesus macaques are different, the use of these systems enables comparative studies between pathogenic, nonpathogenic, and elite-controlled infections, to gain insight into the mechanisms of SIV immunodeficiency and comorbidities.
Collapse
Affiliation(s)
- Daniel T Mandell
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Netanya Sandler
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - George Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hadega Aamer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Anita Trichel
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Cristian Apetrei
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Departments of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Division of Comparative Pathology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Compton AA, Malik HS, Emerman M. Host gene evolution traces the evolutionary history of ancient primate lentiviruses. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120496. [PMID: 23938749 DOI: 10.1098/rstb.2012.0496] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Simian immunodeficiency viruses (SIVs) have infected primate species long before human immunodeficiency virus has infected humans. Dozens of species-specific lentiviruses are found in African primate species, including two strains that have repeatedly jumped into human populations within the past century. Traditional phylogenetic approaches have grossly underestimated the age of these primate lentiviruses. Instead, here we review how selective pressures imposed by these viruses have fundamentally altered the evolutionary trajectory of hosts genes and, even in cases where there now remains no trace of the viruses themselves, these evolutionary signatures can reveal the types of viruses that were once present. Examination of selection by ancient viruses on the adaptive evolution of host genes has been used to derive minimum age estimates for modern primate lentiviruses. This type of data suggests that ancestors of modern SIV existed in simian primates more than 10 Ma. Moreover, examples of host resistance and viral adaptation have implications not only for estimating the age and host range of ancient primate lentiviruses, but also the pathogenic potential of their modern counterparts.
Collapse
Affiliation(s)
- Alex A Compton
- Molecular and Cellular Biology Graduate Program, University of Washington, , Seattle, WA 98195, USA
| | | | | |
Collapse
|
4
|
CD4-like immunological function by CD4- T cells in multiple natural hosts of simian immunodeficiency virus. J Virol 2011; 85:8702-8. [PMID: 21715501 DOI: 10.1128/jvi.00332-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many species of African nonhuman primates are natural hosts for individual strains of simian immunodeficiency virus (SIV). These infected animals do not, however, develop AIDS. Here we show that multiple species of African nonhuman primate species characteristically have low frequencies of CD4(+) T cells and high frequencies of both T cells that express only the alpha-chain of CD8 and double-negative T cells. These subsets of T cells are capable of eliciting functions generally associated with CD4(+) T cells, yet these cells lack surface expression of the CD4 protein and are, therefore, poor targets for SIV in vivo. These data demonstrate that coevolution with SIV has, in several cases, involved downregulation of receptors for the virus by otherwise-susceptible host target cells. Understanding the genetic factors that lead to downregulation of these receptors may lead to therapeutic interventions that mimic this modulation in progressive infections.
Collapse
|
5
|
Torimiro JN, Javanbakht H, Diaz-Griffero F, Kim J, Carr JK, Carrington M, Sawitzke J, Burke DS, Wolfe ND, Dean M, Sodroski J. A rare null allele potentially encoding a dominant-negative TRIM5alpha protein in Baka pygmies. Virology 2009; 391:140-7. [PMID: 19577266 PMCID: PMC2760473 DOI: 10.1016/j.virol.2009.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/16/2009] [Accepted: 05/28/2009] [Indexed: 01/07/2023]
Abstract
The global acquired immunodeficiency syndrome (AIDS) pandemic is thought to have arisen by the transmission of human immunodeficiency virus (HIV-1)-like viruses from chimpanzees in southeastern Cameroon to humans. TRIM5alpha is a restriction factor that can decrease the susceptibility of cells of particular mammalian species to retrovirus infection. A survey of TRIM5 genes in 127 indigenous individuals from southeastern Cameroon revealed that approximately 4% of the Baka pygmies studied were heterozygous for a rare variant with a stop codon in exon 8. The predicted product of this allele, TRIM5 R332X, is truncated in the functionally important B30.2(SPRY) domain, does not restrict retrovirus infection, and acts as a dominant-negative inhibitor of wild-type human TRIM5alpha. Thus, some indigenous African forest dwellers potentially exhibit diminished TRIM5alpha function; such genetic factors, along with the high frequency of exposure to chimpanzee body fluids, may have predisposed to the initial cross-species transmission of HIV-1-like viruses.
Collapse
Affiliation(s)
- Judith N. Torimiro
- Department of Biochemistry and Physiologic Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
- Chantal Biya International Reference Centre, Yaounde, Cameroon
| | - Hassan Javanbakht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | - Felipe Diaz-Griffero
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | - Jonghwa Kim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | - Jean K. Carr
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick, Inc., NCI-Frederick, Frederick, MD 21702-1201, USA
| | - Julie Sawitzke
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick, Inc., NCI-Frederick, Frederick, MD 21702-1201, USA
| | - Donald S. Burke
- Graduate School of Public Health, A-624 Crabtree Hall, 130 De Soto Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathan D. Wolfe
- Global Viral Forecasting Initiative, San Francisco, CA 94105, USA
- Stanford University, Program in Human Biology, Stanford, CA 94305, USA
| | - Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, Building 560, Room 21-18, Frederick, MD 21702, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
6
|
Wertheim JO, Worobey M. A challenge to the ancient origin of SIVagm based on African green monkey mitochondrial genomes. PLoS Pathog 2008; 3:e95. [PMID: 17616975 PMCID: PMC1904472 DOI: 10.1371/journal.ppat.0030095] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/17/2007] [Indexed: 11/19/2022] Open
Abstract
While the circumstances surrounding the origin and spread of HIV are becoming clearer, the particulars of the origin of simian immunodeficiency virus (SIV) are still unknown. Specifically, the age of SIV, whether it is an ancient or recent infection, has not been resolved. Although many instances of cross-species transmission of SIV have been documented, the similarity between the African green monkey (AGM) and SIVagm phylogenies has long been held as suggestive of ancient codivergence between SIVs and their primate hosts. Here, we present well-resolved phylogenies based on full-length AGM mitochondrial genomes and seven previously published SIVagm genomes; these allowed us to perform the first rigorous phylogenetic test to our knowledge of the hypothesis that SIVagm codiverged with the AGMs. Using the Shimodaira-Hasegawa test, we show that the AGM mitochondrial genomes and SIVagm did not evolve along the same topology. Furthermore, we demonstrate that the SIVagm topology can be explained by a pattern of west-to-east transmission of the virus across existing AGM geographic ranges. Using a relaxed molecular clock, we also provide a date for the most recent common ancestor of the AGMs at approximately 3 million years ago. This study substantially weakens the theory of ancient SIV infection followed by codivergence with its primate hosts.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America.
| | | |
Collapse
|
7
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
8
|
Onanga R, Souquière S, Makuwa M, Mouinga-Ondeme A, Simon F, Apetrei C, Roques P. Primary simian immunodeficiency virus SIVmnd-2 infection in mandrills (Mandrillus sphinx). J Virol 2006; 80:3301-9. [PMID: 16537597 PMCID: PMC1440382 DOI: 10.1128/jvi.80.7.3301-3309.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mandrills are the only nonhuman primate (NHP) naturally infected by two types of simian immunodeficiency virus (SIV): SIVmnd-1 and SIVmnd-2. We have already reported that the high SIVmnd-1 replication during primary infection contrasts with only transient changes in CD4+ and CD8+ cell counts. Since early virus-host interactions predict viral control and disease progression in human immunodeficiency virus-infected patients, we investigated the dynamics of SIVmnd-2 primary infection in mandrills to examine the impact on immune effectors in blood and lymph nodes (LNs). To avoid in vitro strain selection, all mandrills in this study received plasma from SIVmnd-2-infected mandrills. SIVmnd-2 plasma viremia peaked at 10(7) to 10(8) RNA copies/ml between days 7 and 10. This peak was followed in all four monkeys by a decline in virus replication, with a set point level of 10(5) to 10(6) RNA copies/ml at day 42 postinfection (p.i.). Viral DNA load in PBMC and LNs also peaked between days 7 and 10 (10(5) to 10(6) DNA copies/10(6) cells) and stabilized at 10(3) to 10(4) DNA copies/10(6) cells during the chronic phase. Anti-SIVmnd-2 antibodies were detected starting from days 28 to 32. A transitory decline of CD3+ CD4+ cells in the LNs occurred in animals with high peak VLs. CD4+ and CD8+ T-cell activation in blood and LNs was noted between days 5 and 17 p.i., surrounding the peak of viral replication. This was most significant in the LNs. Activation markers then returned to preinfection values despite continuous and active viral replication during the chronic infection. The dynamics of SIVmnd-2 infection in mandrills showed a pattern similar to that of SIVmnd-1 infection. This might be a general feature of nonpathogenic SIV natural African NHP models.
Collapse
Affiliation(s)
- Richard Onanga
- Département de Virologie, Centre International de Recherche Médicales, Gabon.
| | | | | | | | | | | | | |
Collapse
|
9
|
Santiago ML, Range F, Keele BF, Li Y, Bailes E, Bibollet-Ruche F, Fruteau C, Noë R, Peeters M, Brookfield JFY, Shaw GM, Sharp PM, Hahn BH. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Taï Forest, Côte d'Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J Virol 2005; 79:12515-27. [PMID: 16160179 PMCID: PMC1211554 DOI: 10.1128/jvi.79.19.12515-12527.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus of sooty mangabeys (SIVsmm) is recognized as the progenitor of human immunodeficiency virus type 2 (HIV-2) and has been transmitted to humans on multiple occasions, yet the epidemiology and genetic diversity of SIVsmm infection in wild-living populations remain largely unknown. Here, we report the first molecular epidemiological survey of SIVsmm in a community of approximately 120 free-ranging sooty mangabeys in the Taï Forest, Côte d'Ivoire. Fecal samples (n = 39) were collected from 35 habituated animals (27 females and 8 males) and tested for SIVsmm virion RNA (vRNA). Viral gag (800 bp) and/or env (490 bp) sequences were amplified from 11 different individuals (eight females and three males). Based on the sensitivity of fecal vRNA detection and the numbers of samples analyzed, the prevalence of SIVsmm infection was estimated to be 59% (95% confidence interval, 0.35 to 0.88). Behavioral data collected from this community indicated that SIVsmm infection occurred preferentially in high-ranking females. Phylogenetic analysis of gag and env sequences revealed an extraordinary degree of genetic diversity, including evidence for frequent recombination events in both the recent and distant past. Some sooty mangabeys harbored near-identical viruses (<2% interstrain distance), indicating epidemiologically linked infections. These transmissions were identified by microsatellite analyses to involve both related (mother/daughter) and unrelated individuals, thus providing evidence for vertical and horizontal transmission in the wild. Finally, evolutionary tree analyses revealed significant clustering of the Taï SIVsmm strains with five of the eight recognized groups of HIV-2, including the epidemic groups A and B, thus pointing to a likely geographic origin of these human infections in the eastern part of the sooty mangabey range.
Collapse
Affiliation(s)
- Mario L Santiago
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Apetrei C, Gormus B, Pandrea I, Metzger M, ten Haaft P, Martin LN, Bohm R, Alvarez X, Koopman G, Murphey-Corb M, Veazey RS, Lackner AA, Baskin G, Heeney J, Marx PA. Direct inoculation of simian immunodeficiency virus from sooty mangabeys in black mangabeys (Lophocebus aterrimus): first evidence of AIDS in a heterologous African species and different pathologic outcomes of experimental infection. J Virol 2004; 78:11506-18. [PMID: 15479792 PMCID: PMC523258 DOI: 10.1128/jvi.78.21.11506-11518.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique opportunity for the study of the role of serial passage and cross-species transmission was offered by a series of experiments carried out at the Tulane National Primate Research Center in 1990. To develop an animal model for leprosy, three black mangabeys (BkMs) (Lophocebus aterrimus) were inoculated with lepromatous tissue that had been serially passaged in four sooty mangabeys (SMs) (Cercocebus atys). All three BkMs became infected with simian immunodeficiency virus from SMs (SIVsm) by day 30 postinoculation (p.i.) with lepromatous tissue. One (BkMG140) died 2 years p.i. from causes unrelated to SIV, one (BkMG139) survived for 10 years, whereas the third (BkMG138) was euthanized with AIDS after 5 years. Histopathology revealed a high number of giant cells in tissues from BkMG138, but no SIV-related lesions were found in the remaining two BkMs. Four-color immunofluorescence revealed high levels of SIVsm associated with both giant cells and T lymphocytes in BkMG138 and no detectable SIV in the remaining two. Serum viral load (VL) showed a significant increase (>1 log) during the late stage of the disease in BkMG138, as opposed to a continuous decline in VL in the remaining two BkMs. With the progression to AIDS, neopterin levels increased in BkMG138. This study took on new significance when phylogenetic analysis unexpectedly showed that all four serially inoculated SMs were infected with different SIVsm lineages prior to the beginning of the experiment. Furthermore, the strain infecting the BkMs originated from the last SM in the series. Therefore, the virus infecting BkMs has not been serially passaged. In conclusion, we present the first compelling evidence that direct cross-species transmission of SIV may induce AIDS in heterologous African nonhuman primate (NHP) species. The results showed that cross-species-transmitted SIVsm was well controlled in two of three BkMs for 2 and 10 years, respectively. Finally, this case of AIDS in an African monkey suggests that the dogma of SIV nonpathogenicity in African NHP hosts should be reconsidered.
Collapse
Affiliation(s)
- Cristian Apetrei
- Division of Microbiology and Immunology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ellis BR, Munene E, Elliott D, Robinson J, Otsyula MG, Michael SF. Seroprevalence of simian immunodeficiency virus in wild and captive born Sykes' monkeys (Cercopithecus mitis) in Kenya. Retrovirology 2004; 1:34. [PMID: 15511293 PMCID: PMC535803 DOI: 10.1186/1742-4690-1-34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 10/28/2004] [Indexed: 11/10/2022] Open
Abstract
Background The Sykes' monkey and related forms (Cercopithecus mitis) make up an abundant, widespread and morphologically diverse species complex in eastern Africa that naturally harbors a distinct simian immunodeficiency virus (SIVsyk). We carried out a retrospective serological survey of SIV infection from both wild and captive Sykes' monkeys from Kenya. We compared two commercially available, cross-reactive ELISA tests using HIV antigens with a novel SIVsyk antigen-specific Western blot assay and analyzed the data by origin, subspecies, age and sex. Results The SIVsyk antigen-specific Western blot assay detected more serum samples as positive than either of the cross-reactive ELISA assays. Using this assay, we found that seroprevalence is higher than previously reported, but extremely variable in wild populations (from 0.0 to 90.9%). Females were infected more often than males in both wild and captive populations. Seropositive infants were common. However, no seropositive juveniles were identified. Conclusion We have developed a specific and sensitive Western blot assay for anti-SIVsyk antibody detection. Sykes' monkeys are commonly infected with SIVsyk, but with extremely variable prevalence in the wild. Higher infection prevalence in females suggests predominantly sexual transmission. High infection prevalence in infants, but none in juveniles, suggests maternal antibodies, but little or no vertical transmission.
Collapse
Affiliation(s)
- Brett R Ellis
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Elephas Munene
- Institute of Primate Research, P.O Box 24481, Karen, Nairobi, Kenya
| | - Debra Elliott
- Division of Pediatric Infectious Diseases, Tulane University, New Orleans, LA 70112, USA
| | - James Robinson
- Division of Pediatric Infectious Diseases, Tulane University, New Orleans, LA 70112, USA
| | - Moses G Otsyula
- Institute of Primate Research, P.O Box 24481, Karen, Nairobi, Kenya
| | - Scott F Michael
- Biotechnology Program, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| |
Collapse
|
12
|
Hu J, Switzer WM, Foley BT, Robertson DL, Goeken RM, Korber BT, Hirsch VM, Beer BE. Characterization and comparison of recombinant simian immunodeficiency virus from drill (Mandrillus leucophaeus) and mandrill (Mandrillus sphinx) isolates. J Virol 2003; 77:4867-80. [PMID: 12663793 PMCID: PMC152139 DOI: 10.1128/jvi.77.8.4867-4880.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since simian immunodeficiency virus (SIV) was found to be the source of the human AIDS pandemic, a major goal has been to characterize the diversity of SIV strains in the wild and to assess their potential for crossover into humans. In the present study, SIV was isolated from a seropositive drill (Mandrillus leucophaeus) and three seropositive mandrills (Mandrillus sphinx) by using macaque peripheral blood mononuclear cells (PBMC). Full-length sequences were obtained from a drill and mandrill and designated SIVdrl1FAO and SIVmnd5440, respectively. A 182-bp fragment of the pol genes of the two remaining mandrill SIV isolates was also analyzed. Phylogenetic analyses demonstrated that SIVdrl1FAO formed a monophyletic clade with SIVmnd5440 and SIVmndM14, recently designated SIVmnd type 2. Both the SIVdrl and SIVmnd type 2 genomes carried a vpx gene and appeared to share a common ancestor with SIVrcm in the 5' region of the genome and with SIVmndGB1 (type 1) in the 3' region of the genome. A statistically significant recombination breakpoint was detected at the beginning of envelope, suggesting that the viruses were descendents of the same recombinant. Phylogenetic analysis of vpx and vpr genes demonstrated that the vpx genes formed a monophyletic cluster that grouped with vpr from SIVagm. In addition, both SIVdrl1FAO and SIVmnd5440 replicated in human PBMC and therefore could pose a risk of transmission to the human population.
Collapse
Affiliation(s)
- Jinjie Hu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Beer BE, Bailes E, Goeken R, Dapolito G, Coulibaly C, Norley SG, Kurth R, Gautier JP, Gautier-Hion A, Vallet D, Sharp PM, Hirsch VM. Simian immunodeficiency virus (SIV) from sun-tailed monkeys (Cercopithecus solatus): evidence for host-dependent evolution of SIV within the C. lhoesti superspecies. J Virol 1999; 73:7734-44. [PMID: 10438863 PMCID: PMC104300 DOI: 10.1128/jvi.73.9.7734-7744.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Accepted: 05/27/1999] [Indexed: 11/20/2022] Open
Abstract
Recently we reported the characterization of simian immunodeficiency virus (SIVlhoest) from a central African l'hoest monkey (Cercopithecus lhoesti lhoesti) that revealed a distant relationship to SIV isolated from a mandrill (SIVmnd). The present report describes a novel SIV (SIVsun) isolated from a healthy, wild-caught sun-tailed monkey (Cercopithecus lhoesti solatus), another member of the l'hoest superspecies. SIVsun replicated in a variety of human T-cell lines and in peripheral blood mononuclear cells of macaques (Macaca spp.) and patas monkeys (Erythrocebus patas). A full-length infectious clone of SIVsun was derived, and genetic analysis revealed that SIVsun was most closely related to SIVlhoest, with an amino acid identity of 71% in Gag, 73% in Pol, and 67% in Env. This degree of similarity is reminiscent of that observed between SIVagm isolates from vervet, grivet, and tantalus species of African green monkeys. The close relationship between SIVsun and SIVlhoest, despite their geographically distinct habitats, is consistent with evolution from a common ancestor, providing further evidence for the ancient nature of the primate lentivirus family. In addition, this observation leads us to suggest that the SIVmnd lineage should be designated the SIVlhoest lineage.
Collapse
Affiliation(s)
- B E Beer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Müller-Trutwin MC, Corbet S, Hansen J, Georges-Courbot MC, Diop O, Rigoulet J, Barré-Sinoussi F, Fomsgaard A. Mutations in CCR5-coding sequences are not associated with SIV carrier status in African nonhuman primates. AIDS Res Hum Retroviruses 1999; 15:931-9. [PMID: 10408730 DOI: 10.1089/088922299310647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
African monkeys can be naturally infected with SIV but do not progress to AIDS. Since mutations in the human CCR5 gene have been shown to influence susceptibility to HIV infection and disease progression, we have now investigated whether mutations in CCR5-coding sequences in African nonhuman primates can explain species-specific differences in susceptibility to lentiviral infection. The animals studied comprise chronically infected monkeys corresponding to four natural hosts of SIV (Cercopithecus aethiops, Cercopithecus pygerythrus, Cercopithecus sabaeus, and Cercopithecus tantalus), noninfected animals from three species that are known to be susceptible to SIV infection (Cercopithecus patas, Cercopithecus Ihoesti, and Pan troglodytes), and monkeys of six species that do not carry SIV in the wild (Cercocebus galeritus, Cercocebus aterrimus, Cercopithecus ascanius, Cercopithecus nictitans, Cercopithecus neglectus, and Cercopithecus cephus). We observed a high degree of genetic divergence among the species. The rate of accumulation of amino acid mutations was, however, not higher in SIV carriers than in other nonhuman primates. No homozygous premature stop codons, deletions, or frameshift mutations were detected. In at least two animals, one infected AGM (Cercopithecus tantalus) and one noninfected monkey (Cercocebus aterrimus), the CCR5 alleles identified encode functional proteins, as they were identical in terms of amino acid sequence to that of functional CCR5 reported in the literature. We found no other consistent differences in the genetic variability of CCR5-coding sequences between the nonhuman primates that are carriers of SIV and those that are not.
Collapse
|
15
|
Abstract
The life-cycle of human immunodeficiency virus type 1 (HIV-1) has been studied using several techniques including immunoelectron microscopy and cryomicroscopy. The HIV-1 particle consists of an envelope, a core and the region between the core and the envelope (matrix). Virus particles in the extracellular space are observed as having various profiles: a central or an eccentric round electron-dense core, a bar-shaped electron-dense core, and immature doughnut-shaped particle. HIV-1 particles in the hydrated state were observed by high-resolution electron cryomicroscopy to be spherical and the lipid membrane was clearly resolved as a bilayer. Projections around the circumference were seen to be knob-like. The shapes and sizes of the projections, especially the head parts, were found to vary with each projection. HIV-1 cores were isolated with a mixture of Nonidet P40 and glutaraldehyde, and were confirmed to consist of HIV-1 Gag p24 protein by immunogold labelling. On infection, the HIV-1 virus was found to enter the cell in two ways: membrane fusion and endocytosis. After viral entry, no structures resembling virus particles could be seen in the cytoplasm. In the infected cells, positive reactions by immunolabelling suggest that HIV-1 Gag is produced in membrane-bound structures and transported to the cell surface by the cytoskeletons. A crescent electron-dense layer is then formed underneath the cell membrane. Finally, the virus particle is released from the cell surface and found extracellularly to be a complete virus particle with an electron-dense core. However, several cell clones producing defective mature, doughnut-shaped (immature) or teardrop-shaped particles were found to be produced in the extracellular space. In the doughnut-shaped particles, Gag p17 and p24 proteins exist facing each other against an inner electron-dense ring, suggesting that the inner ring consists of a precursor Gag protein showing a defect at the viral proteinase.
Collapse
Affiliation(s)
- T Goto
- Department of Microbiology, Osaka Medical College, Japan.
| | | | | |
Collapse
|
16
|
Georges-Courbot MC, Lu CY, Makuwa M, Telfer P, Onanga R, Dubreuil G, Chen Z, Smith SM, Georges A, Gao F, Hahn BH, Marx PA. Natural infection of a household pet red-capped mangabey (Cercocebus torquatus torquatus) with a new simian immunodeficiency virus. J Virol 1998; 72:600-8. [PMID: 9420264 PMCID: PMC109413 DOI: 10.1128/jvi.72.1.600-608.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1997] [Accepted: 09/25/1997] [Indexed: 02/05/2023] Open
Abstract
A seroprevalence survey was conducted for simian immunodeficiency virus (SIV) antibody in household pet monkeys in Gabon. Twenty-nine monkeys representing seven species were analyzed. By using human immunodeficiency virus type 2 (HIV-2)/SIVsm, SIVmnd, and SIVagm antigens, one red-capped mangabey (RCM) (Cercocebus torquatus torquatus) was identified as harboring SIV-cross-reactive antibodies. A virus isolate, termed SIVrcm, was subsequently established from this seropositive RCM by cocultivation of its peripheral blood mononuclear cells (PBMC) with PBMC from seronegative humans or RCMs. SIVrcm was also isolated by cocultivation of CD8-depleted RCM PBMC with Molt 4 clone 8 cells but not with CEMx174 cells. The lack of growth in CEMx174 cells distinguished this new SIV from all previously reported sooty mangabey-derived viruses (SIVsm), which grow well in this cell line. SIVrcm was also successfully transmitted (cell free) to human and rhesus PBMC as well as to Molt 4 clone 8 cells. To determine the evolutionary origins of this newly identified virus, subgenomic pol (475 bp) and gag (954 bp) gene fragments were amplified from infected cell culture DNA and sequenced. The position of SIVrcm relative to those of members of the other primate lentivirus lineages was then examined in evolutionary trees constructed from deduced protein sequences. This analysis revealed significantly discordant phylogenetic positions of SIVrcm in the two genomic regions. In trees derived from partial gag sequences, SIVrcm clustered independently from all other HIV and SIV strains, consistent with a new primate lentivirus lineage. However, in trees derived from pol sequences, SIVrcm grouped with the HIV-1/SIVcpz lineage. These findings suggest that the SIVrcm genome is mosaic and possibly is the result of a recombination event involving divergent lentiviruses in the distant past. Further analysis of this and other SIVrcm isolates may shed new light on the origin of HIV-1.
Collapse
|
17
|
Bibollet-Ruche F, Brengues C, Galat-Luong A, Galat G, Pourrut X, Vidal N, Veas F, Durand JP, Cuny G. Genetic diversity of simian immunodeficiency viruses from West African green monkeys: evidence of multiple genotypes within populations from the same geographical locale. J Virol 1997; 71:307-13. [PMID: 8985351 PMCID: PMC191052 DOI: 10.1128/jvi.71.1.307-313.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High simian immunodeficiency virus (SIV) seroprevalence rates have been reported in the different African green monkey (AGM) subspecies. Genetic diversity of these viruses far exceeds the diversity observed in the other lentivirus-infected human and nonhuman primates and is thought to reflect ancient introduction of SIV in the AGM population. We investigate here genetic diversity of SIVagm in wild-living AGM populations from the same geographical locale (i.e., sympatric population) in Senegal. For 11 new strains, we PCR amplified and sequenced two regions of the genome spanning the first tat exon and part of the transmembrane glycoprotein. Phylogenetic analysis of these sequences shows that viruses found in sympatric populations cluster into distinct lineages, with at least two distinct genotypes in each troop. These data strongly suggest an ancient introduction of these divergent viruses in the AGM population.
Collapse
|
18
|
Georges-Courbot MC, Moisson P, Leroy E, Pingard AM, Nerrienet E, Dubreuil G, Wickings EJ, Debels F, Bedjabaga I, Poaty-Mavoungou V, Hahn NT, Georges AJ. Occurrence and frequency of transmission of naturally occurring simian retroviral infections (SIV, STLV, and SRV) at the CIRMF Primate Center, Gabon. J Med Primatol 1996; 25:313-26. [PMID: 9029395 DOI: 10.1111/j.1600-0684.1996.tb00023.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the primates held at the CIRMF Primate Center, Gabon, no serological sign of SIV infection could be demonstrated in 68 cynomolgus monkeys, 60 chimpanzees, nine gorillas, and 12 sun-tailed monkeys, while seven of 102 mandrills and six of 24 vervets were infected with SIV. Six mandrills, seven vervets and ten cynomolgus monkeys exhibited a full HTLV type 1 Western blot profile. The sera of two gorillas and one chimpanzee presented with a positive but not typical HTLV Western blot profile. The sera of the gorillas lacked p24 antibodies, and the chimpanzee had a Western blot profile evocative of HTLV-II. All attempts to amplify viruses from these animals by PCR were unsuccessful. Two other chimpanzees and seven gorillas presented with indeterminate HTLV Western blot profiles. In the mandrill colony, only male animals were STLV seropositive and no sexual transmission to females was observed. SIV infection was also more frequent in male than female mandrills and sexual transmission appeared to be a rare event. No SRV infection was observed in macaques.
Collapse
|
19
|
Chen Z, Telfier P, Gettie A, Reed P, Zhang L, Ho DD, Marx PA. Genetic characterization of new West African simian immunodeficiency virus SIVsm: geographic clustering of household-derived SIV strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J Virol 1996; 70:3617-27. [PMID: 8648696 PMCID: PMC190237 DOI: 10.1128/jvi.70.6.3617-3627.1996] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has been proposed that human immunodeficiency virus type 2 (HIV-2) originated from simian immunodeficiency viruses (SIVs) that are natural infections of sooty mangabeys (Cercocebus torquatus atys). To test this hypothesis, SIVs from eight sooty mangabeys, including six new viruses from West Africa, were genetically characterized. gag and env sequences showed that while the viruses of all eight sooty mangabeys belonged to the SIVsm/HIV-2 family, each was widely divergent from SIVs found earlier in captive monkeys at American primate centers. In two SIVs from sooty mangabeys discovered about 100 miles (ca. 161 Km) from each other in rural West Africa, the amino acids of a conserved gag p17-p26 region differed by 19.3%, a divergence greater than that in four of five clades of HIV-2 and in SIVs found in other African monkey species. Analysis of gag region sequences showed that feral mangabeys in one small troop harbored four distinct SIVs. Three of the newly found viruses were genetically divergent, showing as much genetic distance from each other as from the entire SIVsm/HIV-2 family. Sequencing and heteroduplex analysis of one feral animal-derived SIV showed a mosaic genome containing an env gene that was homologous with other feral SIVsm env genes in the troop but having a gag gene from another, distinct SIV. Surprisingly a gag phylogenetic tree based on nucleotide sequences showed that the African relatives closest to all three household-derived SIVs were HIV-2 subtypes D and E from humans in the same West African areas. In one case, the SIV/HIV-2 cluster was from the same village. The findings support the hypothesis that each HIV-2 subtype in West Africans originated from widely divergent SIVsm strains, transmitted by independent cross-species events in the same geographic locations.
Collapse
Affiliation(s)
- Z Chen
- The Aaron Diamond AIDS Research Center, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sharp PM, Robertson DL, Hahn BH. Cross-species transmission and recombination of 'AIDS' viruses. Philos Trans R Soc Lond B Biol Sci 1995; 349:41-7. [PMID: 8748018 DOI: 10.1098/rstb.1995.0089] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is caused by two different Human Immunodeficiency Viruses, HIV-1 and HIV-2. Closely related viruses (SIVs) are found in many species of non-human primates. Phylogenetic analyses indicate that cross-species transmission events have been quite frequent. Both HIV-1 and HIV-2 appear to have resulted from multiple transfers of lentiviruses naturally infecting other primates; the source of HIV-2 appears to have been sooty mangabeys, whereas for HIV-1 the source may have been chimpanzees. Phylogenetic analyses also provide evidence that recombination has occurred between divergent viruses in vivo. Evolutionary trees based on various regions of the viral genome generally have consistent branching orders. However, some isolates fall into significantly different phylogenetic positions, indicating that their genomes are mosaics of sequences with different evolutionary histories. This implies that co-infection with highly divergent viral strains can occur in HIV-infected humans and SIV-infected primates; this could lead to the generation of hybrid genomes with significantly altered biological properties, and also has important implications for HIV vaccine development programmes.
Collapse
Affiliation(s)
- P M Sharp
- Department of Genetics, University of Nottingham, Queens Medical Centre, U.K
| | | | | |
Collapse
|
21
|
Jin MJ, Rogers J, Phillips-Conroy JE, Allan JS, Desrosiers RC, Shaw GM, Sharp PM, Hahn BH. Infection of a yellow baboon with simian immunodeficiency virus from African green monkeys: evidence for cross-species transmission in the wild. J Virol 1994; 68:8454-60. [PMID: 7966642 PMCID: PMC237322 DOI: 10.1128/jvi.68.12.8454-8460.1994] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many African primates are known to be naturally infected with simian immunodeficiency viruses (SIVs), but only a fraction of these viruses has been molecularly characterized. One primate species for which only serological evidence of SIV infection has been reported is the yellow baboon (Papio hamadryas cynocephalus). Two wild-living baboons with strong SIVAGM seroreactivity were previously identified in a Tanzanian national park where baboons and African green monkeys shared the same habitat (T. Kodama, D. P. Silva, M. D. Daniel, J. E. Phillips-Conroy, C. J. Jolly, J. Rogers, and R. C. Desrosiers, AIDS Res. Hum. Retroviruses 5:337-343, 1989). To determine the genetic identity of the viruses infecting these animals, we used PCR to examine SIV sequences directly in uncultured leukocyte DNA. Targeting two different, nonoverlapping genomic regions, we amplified and sequenced a 673-bp gag gene fragment and a 908-bp env gene fragment from one of the two baboons. Phylo-genetic analyses revealed that this baboon was infected with an SIVAGM strain of the vervet subtype. These results provide the first direct evidence for simian-to-simian cross-species transmission of SIV in the wild.
Collapse
Affiliation(s)
- M J Jin
- Department of Medicine, University of Alabama at Birmingham 35294
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hayami M, Ido E, Miura T. Survey of simian immunodeficiency virus among nonhuman primate populations. Curr Top Microbiol Immunol 1994; 188:1-20. [PMID: 7924421 DOI: 10.1007/978-3-642-78536-8_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Hayami
- Research Center for Immunodeficiency Virus, Kyoto University, Japan
| | | | | |
Collapse
|
23
|
Affiliation(s)
- A A Lackner
- California Regional Primate Research Center, University of California, Davis 95616
| |
Collapse
|