1
|
Guan Y, Nguyen M, Robert A, Liu Y, Meunier B. Copper selective 8-aminoquinoline based tetradentate chelators as anticancer agents. RSC Med Chem 2024; 15:3048-3056. [PMID: 39309357 PMCID: PMC11411617 DOI: 10.1039/d4md00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/02/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer cell proliferation and metastasis are known to be dependent on angiogenesis which is regulated by several parameters including copper availability. Tetradentate monoquinoline (TDMQ) ligands constitute a series of chelators tailored to regulate copper homeostasis due to their specificity for copper(ii) with respect to Cu(i) or other biometals like iron or zinc. One of these chelators, TDMQ20 efficiently inhibits both proliferation and migration of several human cancer cell lines, better than the reference drug 5-fluorouracil, and with higher selectivity indexes with respect to non-cancer human cells. The biological activity of TDMQ20 may be driven by the coordination chemistry of copper, and the ability of this chelator to restore copper homeostasis and its subsequent redox properties. The anticancer mechanism of action of TDMQ20 involves intracellular production of reactive oxygen species, drastic mitochondrial damages and induction of tumor cell apoptosis. These data support the selection of TDMQ20 as drug-candidate against several human cancers.
Collapse
Affiliation(s)
- Yingzhen Guan
- School of Chemical Engineering and Light Industry, Higher Education Mega Center, Guangdong University of Technology (GDUT) Guangzhou 510006 P. R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Higher Education Mega Center, Guangdong University of Technology (GDUT) Guangzhou 510006 P. R. China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Higher Education Mega Center, Guangdong University of Technology (GDUT) Guangzhou 510006 P. R. China
- Laboratoire de Chimie de Coordination du CNRS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| |
Collapse
|
2
|
El Oirdi M. Plumbagin's Antiproliferative Mechanism in Human Cancer Cells: A Copper-Dependent Cytotoxic Approach. Chem Biol Drug Des 2024; 104:e14606. [PMID: 39147940 DOI: 10.1111/cbdd.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a serious global health problem, causing the loss of millions of lives each year. Plumbagin, a compound derived from the medicinal plant Plumbago zeylanica, has shown promise in stopping the growth of tumor cells both in laboratory settings and in living organisms. Many plant-based compounds exert their effects through copper's ability to produce reactive oxygen species (ROS). This study aimed to understand how plumbagin, dependent on copper, induces cell death (apoptosis) in human cancer cells through various experiments. The results demonstrate that plumbagin hinders the growth of pancreatic cancer cells PNAC-1 and MIA PaCa-2 by utilizing the copper naturally present in the cells. Unlike metal chelators that remove iron and zinc (desferrioxamine mesylate and histidine), a specific copper chelator called neocuproine lessens the cell death caused by plumbagin. When ROS scavengers are used, plumbagin-induced apoptosis is inhibited, indicating that ROS plays a role in initiating cell death. The study also proves that plumbagin prevents copper from leaving cancer cells by suppressing the expression of specific genes (CTR1 and ATP7A). It is confirmed that plumbagin targets the nuclear copper, leading to signals that promote oxidative stress and, ultimately, cell death. These findings provide valuable insights into the potential of plumbagin as a substance to combat cancer, highlighting the importance of understanding how copper behaves within cancer cells.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Duan J, Zhang X, Xu J, Liu J, Zhao H. Unveiling a cuproptosis-related risk model and the role of FARSB in hepatocellular carcinoma. Heliyon 2024; 10:e32289. [PMID: 38975141 PMCID: PMC11226817 DOI: 10.1016/j.heliyon.2024.e32289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Background Cuproptosis, a type of regulated cell death that was recently identified, has been linked to the development of a variety of diseases, among them being cancers. Nevertheless, the prognostic significance and therapeutic implications of the cuproptosis potential index in hepatocellular carcinoma (HCC) remain uncertain. Methods Single-sample gene set enrichment analysis (ssGSEA) and Weighted Gene Co-expression Network Analysis (WGCNA) methodology was conducted to ascertain the identification of modular genes that are closely linked to cuproptosis. In addition, the gene signature indicative of prognosis was formulated by employing univariate Cox regression analysis in conjunction with a random forest algorithm. The efficacy of this gene signature in predicting outcomes was confirmed through validation in both The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. Furthermore, a study was undertaken to evaluate the association between the risk score and various clinical-pathological characteristics, explore the biological processes linked to the gene signature, and analyze tumor mutational burden and somatic mutations. Lastly, potential drugs targeting the identified gene signature were identified through screening. Results The results of our comprehensive analysis across multiple cancer types demonstrated a positive correlation between an elevated cuproptosis potential index (CPI) and an accelerated rate of tumor progression. Furthermore, employing the WGCNA technique, we successfully identified 640 genes associated with cuproptosis. Among these genes, we meticulously screened and validated a seven-gene signature (TCOF1, NOP58, TMEM69, FARSB, DHX37, SLC16A3, and CBX2) that exhibited substantial prognostic significance. Using the median risk score, the division of HCC patients into cohorts with high- and low-risk highlighted significant disparities in survival results, wherein the group with higher risk exhibited a less favorable overall survival. The risk score exhibited commendable predictive efficacy. Moreover, the in vitro knockdown of FARSB significantly hindered cell viability, induced G1 phase arrest, increased apoptosis, and impaired migration in HepG2 and Huh7 cells. Conclusion Our research has successfully identified a strong seven-gene signature linked to cuproptosis, which could be utilized for prognostic evaluation and risk stratification in patients with HCC. Furthermore, the discovered gene signature, coupled with the functional analysis of FARSB, presents promising prospects as potential targets for therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Junlin Duan
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, Navy NO.905 Hospital, Navy Medical University, Shanghai, China
| | - Jingyu Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jun Liu
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Hetong Zhao
- Department of Traditional Chinese Medicine, Navy NO.905 Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
4
|
Wang J, Li B, Cooper RC, Huang D, Yang H. Localized Sustained Release of Copper Enhances Antitumor Effects of Disulfiram in Head and Neck Cancer. Biomacromolecules 2024; 25:2770-2779. [PMID: 38687975 PMCID: PMC11143945 DOI: 10.1021/acs.biomac.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Drug repurposing uses approved drugs as candidate anticancer therapeutics, harnesses previous research and development efforts, and benefits from available clinically suitable formulations and evidence of patient tolerability. In this work, the drug used clinically to treat chronic alcoholism, disulfiram (DSF), was studied for its antitumor efficacy in a copper-dependent manner. The combination of DSF and copper could achieve a tumor cell growth inhibition effect comparable to those of 5-fluorouracil and taxol on head and neck cancer cells. Both bulk dendrimer hydrogel and microsized dendrimer hydrogel particles were utilized for the localized sustained release of copper in the tumor site. The localized sustained release of copper facilitated the tumor inhibition effect following intratumoral injection in a mouse's head and neck cancer model.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
5
|
Hu K, Guo J, Zeng J, Shao Y, Wu B, Mo J, Mo G. Current state of research on copper complexes in the treatment of breast cancer. Open Life Sci 2024; 19:20220840. [PMID: 38585632 PMCID: PMC10997149 DOI: 10.1515/biol-2022-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer, a malignancy originating from the epithelium or ductal epithelium of the breast, is not only highly prevalent in women but is also the leading cause of cancer-related deaths in women worldwide. Research has indicated that breast cancer incidence is increasing in younger women, prompting significant interest from scientists actively researching breast cancer treatment. Copper is highly accumulated in breast cancer cells, leading to the development of copper complexes that cause immunogenic cell death, apoptosis, oxidative stress, redox-mediated cell death, and autophagy by regulating the expression of key cell death proteins or assisting in the onset of cell death. However, they have not yet been applied to clinical therapy due to their solubility in physiological buffers and their different and unpredictable mechanisms of action. Herein, we review existing relevant studies, summarize the detailed mechanisms by which they exert anti-breast cancer effects, and propose a potential mechanism by which copper complexes may exert antitumor effects by causing copper death in breast cancer cells. Since copper death in breast cancer is closely related to prognosis and immune infiltration, further copper complex research may provide an opportunity to mitigate the high incidence and mortality rates associated with breast cancer.
Collapse
Affiliation(s)
- Kui Hu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingna Guo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiemin Zeng
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yunhao Shao
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Binhua Wu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jian Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Guixi Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
6
|
Qin Z, Yang B, Jin X, Zhao H, Liu N. Cuproptosis in glioblastoma: unveiling a novel prognostic model and therapeutic potential. Front Oncol 2024; 14:1359778. [PMID: 38606090 PMCID: PMC11007140 DOI: 10.3389/fonc.2024.1359778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma, a notably aggressive brain tumor, is characterized by a brief survival period and resistance to conventional therapeutic approaches. With the recent identification of "Cuproptosis," a copper-dependent apoptosis mechanism, this study aimed to explore its role in glioblastoma prognosis and potential therapeutic implications. A comprehensive methodology was employed, starting with the identification and analysis of 65 cuproptosis-related genes. These genes were subjected to differential expression analyses between glioblastoma tissues and normal counterparts. A novel metric, the "CP-score," was devised to quantify the cuproptosis response in glioblastoma patients. Building on this, a prognostic model, the CP-model, was developed using Cox regression techniques, designed to operate on both bulk and single-cell data. The differential expression analysis revealed 31 genes with distinct expression patterns in glioblastoma. The CP-score was markedly elevated in glioblastoma patients, suggesting an intensified cuproptosis response. The CP-model adeptly stratified patients into distinct risk categories, unveiling intricate associations between glioblastoma prognosis, immune response pathways, and the tumor's immunological environment. Further analyses indicated that high-risk patients, as per the CP-model, exhibited heightened expression of certain immune checkpoints, suggesting potential therapeutic targets. Additionally, the model hinted at the possibility of personalized therapeutic strategies, with certain drugs showing increased efficacy in high-risk patients. The CP-model offers a promising tool for glioblastoma prognosis and therapeutic strategy development, emphasizing the potential of Cuproptosis in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Naijie Liu
- Neurosurgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Baberwal P, Sonavane S, Vimalnath KV, Chakravarty R, Chakraborty S, Basu S. Normal physiological distribution and tumor localization of 64 CuCl 2 in different human malignancies along with semiquantitative scoring: a comparative evaluation with 18 Fluorodeoxyglucose ( 18 FDG) PET-CT. Nucl Med Commun 2024; 45:211-220. [PMID: 38165163 DOI: 10.1097/mnm.0000000000001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aimed to explore 64-Copper-Chloride ( 64 CuCl 2 ) PET-CT in various malignancies and demonstrate a head-to-head comparison of uptake on 64 CuCl 2 PET/computed tomography (CT) and 18 fluorodeoxyglucose ( 18 FDG)-PET/CT scans for different malignancies, with an emphasis on 18 FDG nonavid malignancies. METHODS Fifty-three patients diagnosed with various biopsy-proven malignancies (except prostate cancer) were recruited in this prospective study. All the patients underwent both 64 CuCl 2 PET/CT and 18 FDG-PET/CT. 64 CuCl 2 PET/CT was acquired at 1, 3 and 24 h time points. We studied the physiological biodistribution of 64 CuCl 2 in the various organs, corroborated the uptake of 64 CuCl 2 with various types of malignancies and comparison of their uptake with 18 FDG-PET/CT and their correlation with each other in various lesions. RESULTS The biodistribution study showed that the liver concentrated 64 CuCl 2 the most out of all the organs, followed by the pancreas and large intestine. Liver and intestinal activity increased subsequently with delayed imaging, and the washout of 64 CuCl 2 was noted in the pancreas in delayed images and followed a hepatobiliary excretion of tracer over a period of time. In lesion-wise analysis, it was noted that the primary neuroendocrine tumor, melanoma and renal/urothelial malignancy group showed more uptake of 64 CuCl 2 , than that in metastasis and vice-versa was noted in lung and soft tissue malignancies. Comparing it with 18 FDG, it was seen that FDG showed more uptake in lesions and showed no significant correlation (Kappa value: 0.089) with the uptake of 64 CuCl 2 in the lesion-wise comparison. CONCLUSION 64 CuCl 2 PET/CT did not show any added advantage over 18 FDG-PET/CT in the evaluation of the studied malignancies, both primary and their metastasis. Biodistribution studies showed the liver as the organ with maximum uptake, which implies it may hinder the detection of abdominal or hepatic involvement of the disease.
Collapse
Affiliation(s)
- Parth Baberwal
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai
- Homi Bhabha National Institute, Mumbai, India
| | - Sunita Sonavane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai
- Homi Bhabha National Institute, Mumbai, India
| | - K V Vimalnath
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Rubel Chakravarty
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
9
|
Zhang N, Yu X, Sun H, Zhao Y, Wu J, Liu G. A prognostic and immunotherapy effectiveness model for pancreatic adenocarcinoma based on cuproptosis-related lncRNAs signature. Medicine (Baltimore) 2023; 102:e35167. [PMID: 37861553 PMCID: PMC10589590 DOI: 10.1097/md.0000000000035167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) results in one of the deadliest solid tumors with discouraging clinical outcomes. Growing evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in altering the growth, prognosis, migration, and invasion of pancreatic cancer cells. Cuproptosis is a novel type of cell death induced by copper (Cu) and is associated with mitochondrial respiration during the tricarboxylic acid cycle. However, the relationship between lncRNAs related to cuproptosis and PAAD is poorly studied. In this study, we investigated the association between a signature of cuproptosis-related lncRNAs and the diagnosis of PAAD. Genomic data and clinical information were obtained using the TCGA dataset, while cuproptosis-related genes (CRGs) from previous studies. Co-expression analysis was utilized to identify lncRNAs associated with cuproptosis. We developed and verified a prognostic risk model following a classification of patients into high- and low-risk categories. The prediction capacity of the risk model was assessed using a number of methods including Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, nomograms, and principal component analysis (PCA). Furthermore, differentially expressed genes (DEGs) were used to perform functional enrichment analyses, and to examine the behaviors of various risk groups in terms of immune-related activities and medication sensitivity. We identified 7 cuproptosis-related lncRNA signatures, including CASC19, FAM83A-AS1, AC074099.1, AC007292.2, AC026462.3, AL358944.1, and AC009019.1, as overall survival (OS) predictors. OS and progression-free survival (PFS) showed significant differences among patients in different risk groups. Independent prognostic analysis revealed that the cuproptosis-related lncRNA signatures can independently achieve patient prognosis. The risk model demonstrated strong predictive ability for patient outcomes, as evidenced by ROC curves, nomograms, and PCA. Higher tumor mutation burden (TMB) and lower tumor immune dysfunction and exclusion (TIDE) scores were observed in the high-risk group. Additionally, the low-risk group was hypersensitive to 3 anti-cancer medications, whereas the high-risk group was hypersensitive to one. A prognostic risk model with a good predictive ability based on cuproptosis-related lncRNAs was developed, providing a theoretical basis for personalized treatment and immunotherapeutic responses in pancreatic cancer.
Collapse
Affiliation(s)
- Ning Zhang
- Graduate College, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xuehua Yu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
- College of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China
| | - Hui Sun
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunhong Zhao
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jing Wu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Luo Q, Zhuang J, Zheng D, Miao C, Luo H, Peng J, Zheng C, Qin C, Lan C, Chen M, Xia Y, Huang D, Chen Z. IGFBP2 from a novel copper metabolism-associated biomarker promoted glioma progression and response to immunotherapy. Front Immunol 2023; 14:1282734. [PMID: 37928523 PMCID: PMC10620745 DOI: 10.3389/fimmu.2023.1282734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Copper metabolism encompasses all cellular metabolic processes involving copper ions and plays a significant role in the pathogenesis of diseases, including cancer. Furthermore, copper is intricately involved in various processes related to nucleotide metabolism. However, a comprehensive analysis of copper metabolism in gliomas remains lacking despite its importance. Methods To address this gap, glioma patients were stratified based on the expression levels of copper metabolism-related genes. By utilizing machine learning techniques, a novel copper metabolism-associated biomarker was developed. The potential of this biomarker in prognosis, mutation analysis, and predicting immunotherapy response efficiency in gliomas was systematically investigated. Results Notably, IGFBP2, identified as a glioma tumor promoter, was found to promote disease progression and influence immunotherapy response. Additionally, glioma-derived IGFBP2 was observed to enhance microglial migration. High IGFBP2 expression in GBM cells facilitated macrophage interactions through the EGFR, CD63, ITGB1, and CD44 signaling pathways. Discussion: Overall, the copper metabolism-associated biomarker shows promising potential to enhance the clinical management of gliomas, offering valuable insights into disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Qisheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Junhong Zhuang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Dandan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Changfeng Miao
- Department of Laboratory Medicine, Neurosurgery Second Branche, Hunan Provincial People’s Hospital (The First affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hongcheng Luo
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jun Peng
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Chuanhua Zheng
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chengjian Qin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chuanliu Lan
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meiqin Chen
- Department of Radiation Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Deyou Huang
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zigui Chen
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| |
Collapse
|
11
|
Farhan M, El Oirdi M, Aatif M, Nahvi I, Muteeb G, Alam MW. Soy Isoflavones Induce Cell Death by Copper-Mediated Mechanism: Understanding Its Anticancer Properties. Molecules 2023; 28:molecules28072925. [PMID: 37049690 PMCID: PMC10095714 DOI: 10.3390/molecules28072925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
12
|
Zheng Y, Wei K, Gao Y, Zhou Z, Zheng X, Li J, Qi J. Comparative evaluation of the structure and antitumor mechanism of mononuclear and trinucleated thiosemicarbazone Cu(II) complexes. J Inorg Biochem 2023; 240:112116. [PMID: 36592511 DOI: 10.1016/j.jinorgbio.2022.112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The ratio of ligand to Cu(II) ions has an essential effect on the geometrical configuration and anti-tumour activity of metal-based complexes. In this work, we synthesised two Cu(II) thiosemicarbazone complexes, namely, [Cu(L)(Cl)] (C1) and [Cu3(L)2(Cl)4] (C2), by controlling the ratio of Cu(II) ion to ligand, to evaluate their anti-tumour activity. The ability of C1 to catalyze hydrogen peroxide to produce reactive oxygen species (ROS) was significantly higher than that of Cu(II) ion. Moreover, the bridge of Cu(II) and two molecules generated a new complex (C2), which, in contrast to C1, enhanced the generation of Fenton-like-triggered ROS. Consequently, the produced ROS depleted reduced glutathione, caused oxidative cell stress and promoted apoptosis through mitochondrial apoptotic pathways. In addition, C2 exhibited better tumour suppression than C1 in a nude mouse tumour xenograft model.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Kai Wei
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ziyan Zhou
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiuling Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
13
|
Güngör Ö, Demircioğlu Z, Gölcü A. The new dimeric copper(II) complex from anticancer drug cytosine arabinoside. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Kudva AK, Raghu SV, Achar PK, Rao S, Suresh S, Shrinath Baliga M. Study of Serum Zinc and Copper Levels and Tumor Pathology: A Pilot Study in People Affected with Head and Neck Cancers. Indian J Otolaryngol Head Neck Surg 2022; 74:6007-6015. [PMID: 36742902 PMCID: PMC9895224 DOI: 10.1007/s12070-021-02589-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to determine understanding the role of serum copper, zinc and copper/zinc ratio with tumor staging in people newly diagnosed to be affected with Head and Neck cancer and by comparing with age matched health individuals devoid of any orodental maladies. The study included patients confirmed to be affected with HN cancer with histological diagnosis of Head and Neck cancer (60) and age matched healthy volunteers (N = 23). The demographic details like age, domicile, menopausal status and pathological details (like tumor stage, number of lymph node involvement, tumor size) were collected from the patient's hospital data file. The serum levels of zinc and copper assayed as per standard procedures and the zinc/copper was calculated for the cancer patients and controls. The data were subjected to unpaired "t" test and ANOVA with Bonferroni's multiple comparisons. The association between zinc and copper levels with pathological details between the variables was ascertained using the Pearson correlation coefficient(r). A statistical value of p < 0.05 was considered to be significant in agreeance to the accepted norms. Results: This result of the study indicates that when compared to the healthy individuals, the serum levels of copper, and zinc, and copper/zinc ratio were high in patients with H&N cancer. Also when compared with controls, the levels of zinc decreased, while that of copper and copper/zinc ratio increased in people affected with H&N cancer (p = 0.017 to 0.0001) and with the stage of the tumor (p = 0.03 to 0.001). The results of the study suggest that levels of serum zinc were significantly lower and that of copper higher in H&N cancer patients than that in controls and also that it was dependent on the tumor stage. When analyzed cumulatively the results hint that zinc and copper, due to their role in free radical generation and prevention have an important role in cancer progression and possible prevention by judicious intervention.
Collapse
Affiliation(s)
- Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199 India
| | - Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199 India
| | - Pavan Kumar Achar
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka 575002 India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002 India
| | - Sucharitha Suresh
- Community Medicine, Father Muller Medical College, Mangalore, Karnataka 575002 India
| | | |
Collapse
|
15
|
Maity M, Pramanik U, Hathwar VR, Brandao P, Mukherjee S, Maity S, Maity R, Maity T, Chandra Samanta B. Biophysical insights into the binding capability of Cu(II) schiff base complex with BSA protein and cytotoxicity studies against SiHa. Heliyon 2022; 8:e11345. [DOI: 10.1016/j.heliyon.2022.e11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
|
16
|
Farhan M, Rizvi A, Ali F, Ahmad A, Aatif M, Malik A, Alam MW, Muteeb G, Ahmad S, Noor A, Siddiqui FA. Pomegranate juice anthocyanidins induce cell death in human cancer cells by mobilizing intracellular copper ions and producing reactive oxygen species. Front Oncol 2022; 12:998346. [PMID: 36147917 PMCID: PMC9487716 DOI: 10.3389/fonc.2022.998346] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Anthocyanidins are the most abundant polyphenols in pomegranate juice. This class of molecules includes Delphinidin (Del), Cyanidin (Cya), and Pelargonidin (Pel). Using prostate, breast and pancreatic cancer cell lines PC3, MDA-MB-231, BxPC-3 and MiaPaCa-2, we show that anthocyanidins inhibit cell proliferation (measured by MTT assay) and induce apoptosis like cell death (measured by DNA/Histone ELISA). Copper chelator neocuproine and reactive oxygen species scavengers (thiourea for hydroxyl radical and superoxide dismutase for superoxide anion) significantly inhibit this reaction thus demonstrating that intracellular copper reacts with anthocyanidins in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitizes normal breast epithelial cells (MCF-10A) to Del-mediated growth inhibition as determined by decreased cell proliferation. Copper supplementation results in increased expression of copper transporters Ctr1 and ATP7A in MCF-10A cells, which is attenuated by the addition of Del in the medium. We propose that the copper mediated, ROS-induced mechanism of selective cell death of cancer cells may in part explain the anticancer effects of anthocyanidins.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, Saudi Arabia,*Correspondence: Mohd Farhan,
| | - Asim Rizvi
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Ferasat Ali
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Awal Noor
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Al Ahsa, Saudi Arabia
| |
Collapse
|
17
|
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 2022; 148:105924. [PMID: 35964468 DOI: 10.1016/j.compbiomed.2022.105924] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
Collapse
|
18
|
Haşimoğlu Z, Erbayraktar Z, Özer E, Erbayraktar S, Erkmen T. Quantitative Analysis of Serum Zinc Levels in Primary Brain Tumor Patients. Biol Trace Elem Res 2022; 200:568-573. [PMID: 33826072 DOI: 10.1007/s12011-021-02698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Although the close relationships between most of the trace elements and tumor formation mechanisms are very well-defined, studies on some elements such as zinc are still ongoing. When examining studies on brain tumors, it was observed that studies investigating the role played by serum zinc levels on tumor etiology and prognosis have gained momentum. In this study, we investigate the relationship between different brain tumor types and serum zinc levels by quantitatively analyzing serum zinc levels in patients with primary brain tumors. In this study, we measured serum zinc levels of 33 brain tumor patients as well as 35 healthy individuals serving as a control group. Metal concentrations were measured using atomic absorption spectrophotometry. Serum zinc levels were lower in patients with primary brain tumors compared to control group (p < 0.05). Additionally, patients' serum zinc levels were significantly different according to their brain tumor types and also according to their age (p < 0.05). Our findings suggest that brain tumor patients' serum zinc levels may play a role in tumor etiology, typology, and prognosis.
Collapse
Affiliation(s)
- Zeynep Haşimoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | - Zübeyde Erbayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Erdener Özer
- Department of Medical Pathology, Dokuz Eylül University Hospital, Izmir, Turkey
| | - Serhat Erbayraktar
- Department of Neurosurgery, Dokuz Eylül University Hospital, Izmir, Turkey
| | - Tuğba Erkmen
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
19
|
Rodríguez-Tomàs E, Baiges-Gaya G, Castañé H, Arenas M, Camps J, Joven J. Trace elements under the spotlight: A powerful nutritional tool in cancer. J Trace Elem Med Biol 2021; 68:126858. [PMID: 34537473 DOI: 10.1016/j.jtemb.2021.126858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023]
Abstract
Cancer is the second leading cause of death worldwide. Research on the relationships between trace elements (TE) and the development of cancer or its prevention is a field that is gaining increasing relevance. This review provides an evaluation of the effects of TE (As, Al, B, Cd, Cr, Cu, F, I, Pb, Li, Mn, Hg, Mo, Ni, Se, Si, Sn, V and Zn) intake and supplementation in cancer risk and prevention, as well as their interactions with oncology treatments. Advancements in the knowledge of TE, their dietary interactions and their main food sources can provide patients with choices that will help them to improve their quality of life and therapy outcomes. This approach could open new opportunities for treatments based on the integration of conventional therapies (chemotherapy, radiotherapy, and immunotherapy) and dietary interventions that provide advanced personalized treatments.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain; Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain; Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| |
Collapse
|
20
|
Satapathi D, Das M, Rajak K, Laha S, Islam MM, Choudhuri I, Bhattacharyya N, Das S, Samanta BC, Maity T. Development of DNA intercalative, HSA binder pyridine‐based novel Schiff base Cu(II), Ni(II) complexes with effective anticancer property: A combined experimental and theoretical approach. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Manik Das
- Department of Chemistry Prabhat Kumar College Contai West Bengal India
| | - Karunamoy Rajak
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | | | - Md. Maidul Islam
- Department of Chemistry Aliah University Kolkata West Bengal India
| | | | | | - Sinjan Das
- Department of Chemistry Jadavpur University Kolkata West Bengal India
| | | | - Tithi Maity
- Department of Chemistry Prabhat Kumar College Contai West Bengal India
| |
Collapse
|
21
|
Zn and Cu complexes of o-van-gly Schiff base: Syntheses, crystal structures, fluorescence sensing and anticancer properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Planeta K, Setkowicz Z, Janik-Olchawa N, Matusiak K, Ryszawy D, Drozdz A, Janeczko K, Ostachowicz B, Chwiej J. Comparison of Elemental Anomalies Following Implantation of Different Cell Lines of Glioblastoma Multiforme in the Rat Brain: A Total Reflection X-ray Fluorescence Spectroscopy Study. ACS Chem Neurosci 2020; 11:4447-4459. [PMID: 33205959 PMCID: PMC7747222 DOI: 10.1021/acschemneuro.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.
Collapse
Affiliation(s)
- Karolina Planeta
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Zuzanna Setkowicz
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Natalia Janik-Olchawa
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Katarzyna Matusiak
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Damian Ryszawy
- Jagiellonian
University, Faculty of Biochemistry,
Biophysics, and Biotechnology, Krakow 31-007, Poland
| | - Agnieszka Drozdz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Krzysztof Janeczko
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Beata Ostachowicz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Joanna Chwiej
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| |
Collapse
|
23
|
Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers (Basel) 2020; 12:E3594. [PMID: 33271772 PMCID: PMC7760327 DOI: 10.3390/cancers12123594] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
In the human body, copper (Cu) is a major and essential player in a large number of cellular mechanisms and signaling pathways. The involvement of Cu in oxidation-reduction reactions requires close regulation of copper metabolism in order to avoid toxic effects. In many types of cancer, variations in copper protein levels have been demonstrated. These variations result in increased concentrations of intratumoral Cu and alterations in the systemic distribution of copper. Such alterations in Cu homeostasis may promote tumor growth or invasiveness or may even confer resistance to treatments. Once characterized, the dysregulated Cu metabolism is pinpointing several promising biomarkers for clinical use with prognostic or predictive capabilities. The altered Cu metabolism in cancer cells and the different responses of tumor cells to Cu are strongly supporting the development of treatments to disrupt, deplete, or increase Cu levels in tumors. The metallic nature of Cu as a chemical element is key for the development of anticancer agents via the synthesis of nanoparticles or copper-based complexes with antineoplastic properties for therapy. Finally, some of these new therapeutic strategies such as chelators or ionophores have shown promising results in a preclinical setting, and others are already in the clinic.
Collapse
Affiliation(s)
- Pierre Lelièvre
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Benoit Busser
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
- Department of Clinical Biochemistry, Grenoble Alpes University Hospital, 38043 Grenoble, France
| |
Collapse
|
24
|
Shi H, Suo Y, Zhang Z, Liu R, Liu H, Cheng Z. Copper(II)-disulfiram loaded melanin-dots for cancer theranostics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102340. [PMID: 33227540 DOI: 10.1016/j.nano.2020.102340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Copper(II) diethyldithiocarbamate complex (CuET), the metabolite of disulfiram complexed with copper, is the component responsible for cancer treatment efficacy of disulfiram. But the hydrophobic property of CuET limits its use in vivo, and an appropriate drug delivery system needs to be developed. Ultrasmall melanin nanoparticle (M-Dot) with excellent biosafety and biocompatibility properties has been synthesized in our previous studies. Herein we prepared CuET loaded with M-Dots through hydrophobic interaction, which could enhance the water solubility significantly. After the administration of M-Dots-CuET in mice tumor models, the nanoparticles showed good tumor accumulation as evidenced by the enhanced photoacoustic signal in tumor regions. M-Dots-CuET also displayed excellent tumor inhibition capability, and the tumor growth inhibition value (TGI) was 45.1%. When combined with photothermal therapy, the TGI reached up to 78.6%. In summary, M-Dots-CuET provide a new potential strategy for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongkuan Suo
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhiling Zhang
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ruiqi Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
25
|
Faghih Z, Neshat A, Mastrorilli P, Gallo V, Faghih Z, Gilanchi S. Cu(II), Ni(II) and Co(II) complexes with homoscorpionate Bis(2-Mercaptobenzimidazolyl) and Bis(2-Mercaptobenzothiazolyl)borate ligands: Synthesis and in vitro cytotoxicity studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
|
27
|
Nanni V, Di Marco G, Sacchetti G, Canini A, Gismondi A. Oregano Phytocomplex Induces Programmed Cell Death in Melanoma Lines via Mitochondria and DNA Damage. Foods 2020; 9:E1486. [PMID: 33080917 PMCID: PMC7603152 DOI: 10.3390/foods9101486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Plant secondary metabolites possess chemopreventive and antineoplastic properties, but the lack of information about their exact mechanism of action in mammalian cells hinders the translation of these compounds in suitable therapies. In light of this, firstly, Origanum vulgare L. hydroalcoholic extract was chemically characterized by spectrophotometric and chromatographic analyses; then, the molecular bases underlying its antitumor activity on B16-F10 and A375 melanoma cells were investigated. Oregano extract induced oxidative stress and inhibited melanogenesis and tumor cell proliferation, triggering programmed cell death pathways (both apoptosis and necroptosis) through mitochondria and DNA damage. By contrast, oregano extract was safe on healthy tissues, revealing no cytotoxicity and mutagenicity on C2C12 myoblasts, considered as non-tumor proliferating cell model system, and on Salmonella strains, by the Ames test. All these data provide scientific evidence about the potential application of this food plant as an anticancer agent in in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Valentina Nanni
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| | - Gabriele Di Marco
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| | - Gianni Sacchetti
- Terra&Acqua Tech-Research Unit 7, Pharmaceutical Biology Lab, Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini 3, 44123 Ferrara, Italy;
| | - Antonella Canini
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| | - Angelo Gismondi
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| |
Collapse
|
28
|
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem 2020; 20:123-133. [PMID: 31648635 DOI: 10.2174/1389557519666191018112756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.
Collapse
Affiliation(s)
- Yutao Xie
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunlong Wang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wei Xiang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Qiaoying Wang
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yajun Cao
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| |
Collapse
|
29
|
Qu Y, Sun X, Ma L, Li C, Xu Z, Ma W, Zhou Y, Zhao Z, Ma D. Therapeutic effect of disulfiram inclusion complex embedded in hydroxypropyl-β-cyclodextrin on intracranial glioma-bearing male rats via intranasal route. Eur J Pharm Sci 2020; 156:105590. [PMID: 33065226 DOI: 10.1016/j.ejps.2020.105590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
The unique environment of brain poses a huge challenge for drug development aimed at combatting glioblastoma (GBM) due to poor organ targeting. Intranasal administration is often considered as an attractive route directly into brain by not only circumventing the blood brain barrier and but also avoiding the hepatic first-pass effect. Disulfiram (DSF) is an old alcohol-aversion drug that has anti-tumor activities against diverse cancer types such as GBM in preclinical studies, especially when it is combined with cupper ion (Cu). In this study, DSF was embedded in hydroxypropyl-β-cyclodextrin (HP-β-CD) to prepare a DSF inclusion complex with the enhanced solubility, anti-GBM activity and high safety in vitro. The highest fluorescence signal of Cy5.5/HP-β-CD in the male rat brains showed the strong brain-targeting of nose-to-brain drug delivery. Therapeutic effects of DSF/HP-β-CD combined with Cu (DSF/HP-β-CD/Cu) on intracranial glioma-bearing male rats via different drug delivery routes were then investigated. DSF/HP-β-CD/Cu administrated by the intranasal route effectively inhibited tumor growth and migration, promoted apoptosis, and achieved 36.8% and 18.2% prolonged median survival time comparing to those of model rats by oral and intravenous administrations, respectively. Moreover, no obvious histopathological damage to normal tissues was observed by H&E staining. Overall, DSF/HP-β-CD/Cu could be a promising intranasal formulation for the effective GBM treatment.
Collapse
Affiliation(s)
- Ying Qu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xiao Sun
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Long Ma
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, 14 Shanshidong Road, Jinan, Shandong, 250100, China
| | - Chunyan Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zixuan Xu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Wenqing Ma
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China.
| | - Dedong Ma
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| |
Collapse
|
30
|
Bolzati C, Duatti A. The emerging value of 64Cu for molecular imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:329-337. [PMID: 33026210 DOI: 10.23736/s1824-4785.20.03292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, β- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.
Collapse
Affiliation(s)
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
31
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
32
|
Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. J Inorg Biochem 2020; 210:111134. [DOI: 10.1016/j.jinorgbio.2020.111134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
|
33
|
Redox cycling of copper by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated modulation of redox scavengers, DNA damage and cell death in diethylnitrosamine induced hepatocellular carcinoma. Bioorg Chem 2020; 99:103818. [PMID: 32276135 DOI: 10.1016/j.bioorg.2020.103818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Targeted therapy is a new strategy for cancer treatment that targets chemical entities specific to cancer cells than normal ones. One of the features associated with malignancy is the elevated copper which plays an integral role in angiogenesis. Work is in progress in our lab to identify new copper chelators to target elevated copper under targeted therapy for the killing of cancer cells. Recently, a coumarin-based copper chelator, di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) has been synthesized by us, and also studied its copper-dependent macromolecular damage response in copper overloaded lymphocytes. The present study investigates the anticancer activity of ligand-L and its mode of action in rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma. It has been found that liver tissue has a marked increase in copper levels in DEN induced hepatocellular carcinoma. Ex vivo results showed that ligand-L inhibited cell viability, induced reactive oxygen species (ROS) generation, DNA damage, loss of mitochondrial membrane potential and caspase-3 activation in isolated hepatocellular carcinoma cells (HCC). All these effects induced by ligand-L were abrogated by neocuproine and N-acetylcysteine (ROS scavenger). Further, ligand-L treatment of animals bearing hepatocellular carcinoma results in an increment in the cellular redox scavengers, lipid peroxidation and DNA breakage in malignant hepatocytes. In vivo studies using ligand-L also showed that ligand-L possesses anticancer properties as evidenced by improvement in liver marker enzymes and liver surface morphology, and reduced alpha-fetoprotein in the treated group compared to untreated cancer-induced group. Overall, this study suggests that copper-ligand-L interaction leads to ROS generation which caused DNA damage and apoptosis in malignant cells. This study provides enough support to establish ligand-L as a clinically relevant lead molecule for the treatment of different malignancies.
Collapse
|
34
|
Hou B, Li Z, Zhang Q, Chen P, Liu J. Novel water-soluble Cu( ii) complexes based on acylhydrazone porphyrin ligands for DNA binding and in vitro anticancer activity as potential therapeutic targeting candidates. NEW J CHEM 2020. [DOI: 10.1039/d0nj02842h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three novel water-soluble Cu(ii) complexes featuring miscellaneous acylhydrazone tricationic porphyrin ligands (named Cu-Por1, Cu-Por2 and Cu-Por3) were successfully prepared and isolated.
Collapse
Affiliation(s)
- Bingjie Hou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Zhenzhen Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qian Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peiyu Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jiacheng Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
35
|
Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7286737. [PMID: 31934267 PMCID: PMC6942884 DOI: 10.1155/2019/7286737] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Vitamin C is an antioxidant that may scavenge reactive oxygen species preventing DNA damage and other effects important in cancer transformation. Dietary vitamin C from natural sources is taken with other compounds affecting its bioavailability and biological effects. High pharmacological doses of vitamin C may induce prooxidant effects, detrimental for cancer cells. An oxidized form of vitamin C, dehydroascorbate, is transported through glucose transporters, and cancer cells switch from oxidative phosphorylation to glycolysis in energy production so an excess of vitamin C may limit glucose transport and ATP production resulting in energetic crisis and cell death. Vitamin C may change the metabolomic and epigenetic profiles of cancer cells, and activation of ten-eleven translocation (TET) proteins and downregulation of pluripotency factors by the vitamin may eradicate cancer stem cells. Metastasis, the main reason of cancer-related deaths, requires breakage of anatomical barriers containing collagen, whose synthesis is promoted by vitamin C. Vitamin C induces degradation of hypoxia-inducible factor, HIF-1, essential for the survival of tumor cells in hypoxic conditions. Dietary vitamin C may stimulate the immune system through activation of NK and T cells and monocytes. Pharmacological doses of vitamin C may inhibit cancer transformation in several pathways, but further studies are needed to address both mechanistic and clinical aspects of this effect.
Collapse
|
36
|
Krawczyk M, Pastuch-Gawołek G, Pluta A, Erfurt K, Domiński A, Kurcok P. 8-Hydroxyquinoline Glycoconjugates: Modifications in the Linker Structure and Their Effect on the Cytotoxicity of the Obtained Compounds. Molecules 2019; 24:E4181. [PMID: 31752188 PMCID: PMC6891455 DOI: 10.3390/molecules24224181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Small molecule nitrogen heterocycles are very important structures, widely used in the design of potential pharmaceuticals. Particularly, derivatives of 8-hydroxyquinoline (8-HQ) are successfully used to design promising anti-cancer agents. Conjugating 8-HQ derivatives with sugar derivatives, molecules with better bioavailability, selectivity, and solubility are obtained. In this study, 8-HQ derivatives were functionalized at the 8-OH position and connected with sugar derivatives (D-glucose or D-galactose) substituted with different groups at the anomeric position, using copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC). Glycoconjugates were tested for inhibition of the proliferation of cancer cell lines (HCT 116 and MCF-7) and inhibition of β-1,4-galactosyltransferase activity, which overexpression is associated with cancer progression. All glycoconjugates in protected form have a cytotoxic effect on cancer cells in the tested concentration range. The presence of additional amide groups in the linker structure improves the activity of glycoconjugates, probably due to the ability to chelate metal ions present in many types of cancers. The study of metal complexing properties confirmed that the obtained glycoconjugates are capable of chelating copper ions, which increases their anti-cancer potential.
Collapse
Affiliation(s)
- Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Aleksandra Pluta
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (A.D.); (P.K.)
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (A.D.); (P.K.)
| |
Collapse
|
37
|
Li X, Shao F, Sun J, Du K, Sun Y, Feng F. Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41935-41945. [PMID: 31644262 DOI: 10.1021/acsami.9b14849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current treatment of recurrent glioblastoma multiforme (GBM) demands dose-intense temozolomide (TMZ), a prodrug of 5-(3-methyltriazen-1-yl) imidazole-4-carboxamide (MTIC), based on the spontaneous hydrolysis of TMZ at basic pH. However, how to control the activity of MTIC remains unknown, which poses a particular challenge to search a reliable MTIC receptor. We reported that copper, for the first time, is found to recognize and bind MTIC in the process of TMZ degradation, which means copper can play an important role in enhancing the bioavailability of MTIC derived from TMZ. Using apoferritin as a model copper-bound protein, we studied the copper-TMZ interaction in protein and observed efficient MTIC immobilization with high binding efficiency (up to 92.9% based on original TMZ) and capacity (up to 185 MTIC moieties per protein). The system was stable against both alkaline and acidic pH and could be activated by glutathione to liberate MTIC, which paves a way to deliver a DNA-alkylating agent for both TMZ-sensitive and TMZ-resistant GBM chemotherapy. Our study provides a new insight for understanding the potential relationship between the special GBM microenvironment (specific copper accumulation) and the therapeutic effect of TMZ.
Collapse
|
38
|
New macrocyclic Cu(II) complex with bridge terephthalate: Synthesis, spectral properties, in vitro cytotoxic and antimicrobial activity. Comparison with related complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Zafar A, Singh S, Ahmad S, Khan S, Imran Siddiqi M, Naseem I. Interaction of C20-substituted derivative of pregnenolone acetate with copper (II) leads to ROS generation, DNA cleavage and apoptosis in cervical cancer cells: Therapeutic potential of copper chelation for cancer treatment. Bioorg Chem 2019; 87:276-290. [PMID: 30908970 DOI: 10.1016/j.bioorg.2019.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 11/27/2022]
Abstract
Cervical cancer is a leading cause of cancer-related deaths among women in developing countries. Therefore, development of new chemotherapeutic agents is required. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. In this work, a copper chelator pregnenolone acetate nucleus-based tetrazole derivative (ligand-L) was synthesized and characterized by elemental analysis, ESI-MS, 1H NMR and 13C NMR. DNA binding ability of ligand-L was studied using UV-Vis and fluorescence spectroscopy. Fluorescence spectroscopy studies reveal that quenching constant of ligand-l-DNA and ligand-L-Cu(II) were found to be 7.4 × 103 M-1 and 8.8 × 103 M-1, respectively. In vitro toxicity of ligand-L was studied on human cervical cancer C33A cancer cells. Results showed that ligand-L exhibit significant cytotoxic activity against cervical cancer C33A cells with IC50 value 5.0 ± 1.8 µM. Further, it was found that ligand-L cytotoxicity is due to redox cycling of copper to generate ROS which leads to DNA damage and apoptosis. In conclusion, this is the report where we synthesized pregnenolone acetate-based tetrazole derivative against C33A cells that targets cellular copper to induce pro-oxidant death in cancer cells. These findings will provide significant insights into the development of new chemical molecules with better copper chelating and pro-oxidant properties against cancer cells.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Swarnendra Singh
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Sabahuddin Ahmad
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
40
|
Sepehri Z, Arefi D, Mirzaei N, Afshari A, Kiani Z, Sargazi A, Panahi Mishkar A, Oskoee HO, Masjedi MR, Sargazi A, Ghavami S. Changes in serum level of trace elements in pulmonary tuberculosis patients during anti-tuberculosis treatment. J Trace Elem Med Biol 2018; 50:161-166. [PMID: 30262275 DOI: 10.1016/j.jtemb.2018.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTIONS Tuberculosis is spreading throughout the globe, while it is a crucial cause of death in developing countries. In this study, trace elements concentrations and their alterations were determined in TB patients during anti-tuberculosis treatment period. MATERIALS AND METHODS We have collected blood samples from a total of 180 TB patients with pulmonary Tuberculosis, and 180 healthy controls in Sistan, Iran. The serum iron, copper, lead, calcium, arsenic and selenium concentrations were detected at the beginning of anti-TB chemotherapy, at the end of 2nd, 4th and 6th month after treatment initiation. Data were then analyzed using SPSS version 20. RESULTS AND DISCUSSIONS Although Ca, Pb, and As levels did not change during the treatment period, serum concentrations of Fe, Zn, Cu, and Se were diminished in TB patients significantly during treatment in comparison with controls (P < 0.001).We also found that there was a significant difference in the Cu/Se and Cu/Zn ratios in tuberculosis patients in comparison with healthy individuals (P < 0.001). CONCLUSIONS Trace elements serum concentrations are affected by TB infection and anti-TB therapy. Their serum levels were strongly perturbed during infection as well as anti-TB treatment.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Donya Arefi
- Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Mirzaei
- Zabol University of Medical Sciences, Zabol, Iran; Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Kiani
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran; Students Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Sargazi
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Hamid Owaysee Oskoee
- Department of Infectious Disease, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Masjedi
- Telemedicine Research Center, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| | - Aliyeh Sargazi
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| |
Collapse
|
41
|
Naletova I, Satriano C, Curci A, Margiotta N, Natile G, Arena G, La Mendola D, Nicoletti VG, Rizzarelli E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018; 9:36289-36316. [PMID: 30555630 PMCID: PMC6284747 DOI: 10.18632/oncotarget.26346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Copper homeostasis is generally investigated focusing on a single component of the metallostasis network. Here we address several of the factors controlling the metallostasis for neuroblastoma cells (SH-SY5Y) upon treatment with 2,9-dimethyl-1,10-phenanthroline-5,6-dione (phendione) and 2,9-dimethyl-1,10-phenanthroline (cuproindione). These compounds bind and transport copper inside cells, exert their cytotoxic activity through the induction of oxidative stress, causing apoptosis and alteration of the cellular redox and copper homeostasis network. The intracellular pathway ensured by copper transporters (Ctr1, ATP7A), chaperones (CCS, ATOX, COX 17, Sco1, Sco2), small molecules (GSH) and transcription factors (p53) is scrutinised.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Alessandra Curci
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Nicola Margiotta
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giovanni Natile
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Giuseppe Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| |
Collapse
|
42
|
Khan S, Zafar A, Naseem I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem Biol Interact 2018; 290:64-76. [PMID: 29803612 DOI: 10.1016/j.cbi.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/15/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Coumarin is an important bioactive pharmacophore. It is found in plants as a secondary metabolite and exhibits diverse pharmacological properties including anticancer effects against different malignancies. Therapeutic efficacy of coumarin derivatives depends on the pattern of substitution and conjugation with different moieties. Cancer cells contain elevated copper as compared to normal cells that plays a role in angiogenesis. Thus, targeting copper in malignant cells via copper chelators can serve as an attractive targeted anticancer strategy. Our previous efforts led to the synthesis of di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) endowed with DNA/Cu(II) binding properties, and ROS generation ability in the presence of copper ions. In the present study, we aimed to validate copper-dependent cytotoxic action of ligand-L against malignant cells. For this, we used a cellular model system of copper (Cu) overloaded lymphocytes (CuOLs) to simulate malignancy-like condition. In CuOLs, lipid peroxidation/protein carbonylation, ROS generation, DNA fragmentation and apoptosis were investigated in the presence of ligand-L. Results showed that ligand-L-Cu(II) interaction leads to ROS generation, lipid peroxidation/protein carbonylation (oxidative stress parameters), DNA damage, up-regulation of p53 and mitochondrial-mediated apoptosis in treated lymphocytes. Further, pre-incubation with neocuproine (membrane permeable copper chelator) and ROS scavengers attenuated the DNA damage and apoptosis. These results suggest that cellular copper acts as molecular target for ligand-L to propagate redox cycling and generation of ROS via Fenton-like reaction leading to DNA damage and apoptosis. Further, we showed that ligand-L targets elevated copper in breast cancer MCF-7 and colon cancer HCT116 cells leading to a pro-oxidant inhibition of proliferation of cancer cells. In conclusion, we propose copper-dependent ROS-mediated mechanism for the cytotoxic action of ligand-L in malignant cells. Thus, targeting elevated copper represents an effective therapeutic strategy for selective cytotoxicity against malignant cells.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
43
|
Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int J Biol Macromol 2018; 106:569-578. [DOI: 10.1016/j.ijbiomac.2017.08.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 12/19/2022]
|
44
|
Tadi K, Alshanski I, Mervinetsky E, Marx G, Petrou P, Dimitrios KM, Gilon C, Hurevich M, Yitzchaik S. Oxytocin-Monolayer-Based Impedimetric Biosensor for Zinc and Copper Ions. ACS OMEGA 2017; 2:8770-8778. [PMID: 29302631 PMCID: PMC5748277 DOI: 10.1021/acsomega.7b01404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Zinc and copper are essential metal ions for numerous biological processes. Their levels are tightly maintained in all body organs. Impairment of the Zn2+ to Cu2+ ratio in serum was found to correlate with many disease states, including immunological and inflammatory disorders. Oxytocin (OT) is a neuropeptide, and its activity is modulated by zinc and copper ion binding. Harnessing the intrinsic properties of OT is one of the attractive ways to develop valuable metal ion sensors. Here, we report for the first time an OT-based metal ion sensor prepared by immobilizing the neuropeptide onto a glassy carbon electrode. The developed impedimetric biosensor was ultrasensitive to Zn2+ and Cu2+ ions at physiological pH and not to other biologically relevant ions. Interestingly, the electrochemical impedance signal of two hemicircle systems was recorded after the attachment of OT to the surface. These two semicircles suggest two capacitive regions that result from two different domains in the OT monolayer. Moreover, the change in the charge-transfer resistance of either Zn2+ or Cu2+ was not similar in response to binding. This suggests that the metal-dependent conformational changes of OT can be translated to distinct impedimetric data. Selective masking of Zn2+ and Cu2+ was used to allow for the simultaneous determination of zinc to copper ions ratio by the OT sensor. The OT sensor was able to distinguish between healthy control and multiple sclerosis patients diluted sera samples by determining the Zn/Cu ratio similar to the state-of-the-art techniques. The OT sensor presented herein is likely to have numerous applications in biomedical research and pave the way to other types of neuropeptide-derived sensors.
Collapse
Affiliation(s)
- Kiran
Kumar Tadi
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Israel Alshanski
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Evgeniy Mervinetsky
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Panayiota Petrou
- Department
of Neurology, Hadassah-Hebrew University
Hospital, Ein Kerem, Jerusalem 91120, Israel
| | - Karussis M. Dimitrios
- Department
of Neurology, Hadassah-Hebrew University
Hospital, Ein Kerem, Jerusalem 91120, Israel
| | - Chaim Gilon
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mattan Hurevich
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shlomo Yitzchaik
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
45
|
Rizvi A, Furkan M, Naseem I. Physiological serum copper concentrations found in malignancies cause unfolding induced aggregation of human serum albumin in vitro. Arch Biochem Biophys 2017; 636:71-78. [PMID: 29122590 DOI: 10.1016/j.abb.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022]
Abstract
Malignancies are characterized by several drastic metabolic changes, one of which is a progressive rise in the levels of serum copper. This rise in serum copper is documented across all malignancies and across malignancies in several species. This study aims to explore in vitro the effect of increased copper levels on the structure of the blood protein human serum albumin. Exposure of human serum albumin to physiologically relevant copper concentrations for 21 days resulted in structural modifications in the protein which were evident by changes in the intrinsic florescence. A loss of the predominantly alpha helical structure of human serum albumin was recorded along with a tendency to form protein aggregates. This aggregation was characterized by Thioflavin T and Congo Red assays. Rayleigh light scattering and turbidity assays confirmed aggregation. The aggregates were visually confirmed using transmission electron microscopy. This is the first report implicating increased copper levels as a cause of aggregation of blood proteins in malignancies. The physiological and biochemical implications of this phenomenon are discussed.
Collapse
Affiliation(s)
- Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India
| | - Mohd Furkan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
46
|
Zafar A, Singh S, Satija YK, Saluja D, Naseem I. Deciphering the molecular mechanism underlying anticancer activity of coumestrol in triple-negative breast cancer cells. Toxicol In Vitro 2017; 46:19-28. [PMID: 28986287 DOI: 10.1016/j.tiv.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/13/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
Abstract
Triple-negative breast cancer (TNBC) represents the highly aggressive subgroup of breast cancers with poor prognosis due to absence of estrogen receptor (ER). Therefore, alternative targeted therapies are required against ER-negative breast cancers. Coumestrol, a phytoestrogen inhibits cell growth of ER-negative breast cancer MDA-MB-231 cells; the exact mechanism has not yet been reported. Unlike normal cells, cancer cells contain elevated copper which play an integral role in angiogenesis. The current focus of the work was to identify any possible role of copper in coumestrol cytotoxic action against breast cancer MDA-MB-231 cells. Results demonstrated that coumestrol inhibited cell viability, induced ROS generation, DNA damage, G1/S cell cycle arrest, up-regulation of Bax and apoptosis induction via caspase-dependent mitochondrial mediated pathway in MDA-MB-231 cells. Further, addition of copper chelator, neocuproine and ROS scavenger, N-acetyl cysteine were ineffective in abrogating coumestrol-mediated apoptosis. This suggests non-involvement of copper and ROS in coumestrol-induced apoptosis. To account for coumestrol-mediated up-regulation of Bax and apoptosis induction, direct binding potential between coumestrol and Bax/Bcl-2 was studied using in silico molecular docking studies. We propose that coumestrol directly enters cells and combines with Bax/Bcl-2 to alter their structures, thereby causing Bax binding to the outer mitochondrial membrane and Bcl-2 release from the mitochondria to initiate apoptosis. Thus, non-copper targeted ROS independent DNA damage is the central mechanism of coumestrol in ER-negative MDA-MB-231 cells. These findings will be useful in better understanding of anticancer mechanisms of coumestrol and establishing it as a lead molecule for TNBC treatment.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Swarnendra Singh
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Yatendra Kumar Satija
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Daman Saluja
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
47
|
Abstract
Background There is extraordinary interest in developing angiosuppressive agents for cancer treatment. Several new agents appear promising for the treatment of a variety of human cancers. Current concepts and new agents in clinical trials are the focus of this article. In particular, the introduction of a new treatment for human brain tumors is presented in detail, using an antiangiogenic agent, penicillamine, and depletion of an obligatory cofactor of angiogenesis, copper. Methods The explosive increase in literature on antiangiogenesis is reviewed using computerized search, findings presented at the recent national cancer and angiogenesis meetings. A specific protocol, NABTT 97-04, “Penicillamine and Copper Reduction for Newly Diagnosed Glioblastoma,” is presented as an example of angiotherapeutic drug discovery. Results A number of promising molecular approaches are being introduced to suppress tumor angiogenesis. Major categories of angiogenesis antagonists include protease inhibitors, direct inhibitors of endothelial cell proliferation and migration, suppression of angiogenic growth factors, inhibition of endothelial-specific integrin/survival signaling, chelators of copper, and inhibitors with specific other mechanisms. The preliminary results of early trials offer a glimpse into how antiangiogenesis therapy will be integrated into future care of the patient with cancer. Conclusions Thirty-five antiangiogenesis therapies are currently being evaluated in clinical trials. As we learn more about the fundamental mechanisms of angiogenesis, eg, the role of copper in growth factor activation, effective methods of cancer control will be implemented.
Collapse
Affiliation(s)
- Steven Brem
- Departments of Neurosurgery and Pharmacology of the University of South Florida, and the Neurooncology Program of the H. Lee Moffitt Cancer Center & Research Center, Tampa, FL
| |
Collapse
|
48
|
Khan S, Malla AM, Zafar A, Naseem I. Synthesis of novel coumarin nucleus-based DPA drug-like molecular entity: In vitro DNA/Cu(II) binding, DNA cleavage and pro-oxidant mechanism for anticancer action. PLoS One 2017; 12:e0181783. [PMID: 28763458 PMCID: PMC5538679 DOI: 10.1371/journal.pone.0181783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Despite substantial research on cancer therapeutics, systemic toxicity and drug-resistance limits the clinical application of many drugs like cisplatin. Therefore, new chemotherapeutic strategies against different malignancies are needed. Targeted cancer therapy is a new paradigm for cancer therapeutics which targets pathways or chemical entities specific to cancer cells than normal ones. Unlike normal cells, cancer cells contain elevated copper which plays an integral role in angiogenesis. Copper is an important metal ion associated with chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as an effective anticancer strategy. New pharmacophore di(2-picolyl)amine (DPA)-3(bromoacetyl) coumarin (ligand-L) was synthesized and characterized by IR, ESI-MS, 1H- and 13C-NMR. Binding ability of ligand-L to DNA/Cu(II) was evaluated using a plethora of biophysical techniques which revealed ligand-L-DNA and ligand-L-Cu(II) interaction. Competitive displacement assay and docking confirmed non-intercalative binding mode of ligand-L with ctDNA. Cyclic voltammetry confirmed ligand-L causes quasi reversible Cu(II)/Cu(I) conversion. Further, acute toxicity studies revealed no toxic effects of ligand-L on mice. To evaluate the chemotherapeutic potential and anticancer mechanism of ligand-L, DNA damage via pBR322 cleavage assay and reactive oxygen species (ROS) generation were studied. Results demonstrate that ligand-L causes DNA cleavage involving ROS generation in the presence of Cu(II). In conclusion, ligand-L causes redox cycling of Cu(II) to generate ROS which leads to oxidative DNA damage and pro-oxidant cancer cell death. These findings will establish ligand-L as a lead molecule to synthesize new molecules with better copper chelating and pro-oxidant properties against different malignancies.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ali Mohammed Malla
- Department of Chemistry, Government Degree College, Sopore, Kashmir, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
49
|
Antitumor activity of resveratrol is independent of Cu(II) complex formation in MCF-7 cell line. Bioorg Med Chem Lett 2017. [PMID: 28647350 DOI: 10.1016/j.bmcl.2017.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resveratrol (Rsv) is widely reported to possess anticarcinogenic properties in a plethora of cellular and animal models having limited toxicity toward normal cells. In the molecular level, Rsv can act as a suppressive agent for several impaired signaling pathways on cancer cells. However, Fukuhara and Miyata have shown a non-proteic reaction of Rsv, which can act as a prooxidant agent in the presence of copper (Cu), causing cellular oxidative stress accompanied of DNA damage. After this discovery, the complex Rsv-Cu was broadly explored as an antitumor mechanism in multiples tumor cell lines. The aim of the study is to explore the anticarcinogenic behavior of resveratrol-Cu(II) complex in MCF-7 cell line. Selectivity of Rsv binding to Cu ions was analyzed by HPLC and UV-VIS. The cells were enriched with concentrations of 10 and 50µM CuSO4 solution and treated with 25µM of Rsv. Copper uptake after enrichment of cells, as its intracellular distribution in MCF-7 line, was scanned by ICP-MS and TEM-EDS. Cell death and intracellular ROS production were determined by flow cytometry. Different from the extracellular model, no relationship of synergy between Rsv-Cu(II) and reactive oxidative species (ROS) production was detected in vitro. ICP-MS revealed intracellular copper accumulation to both chosen concentrations (0.33±0.09 and 1.18±0.13ppb) but there is no promotion of cell death by Rsv-Cu(II) complex. In addition, significant attenuation of ROS production was detected when cells were exposed to CuSO4 after Rsv treatment, falling from 7.54% of ROS production when treated only with Rsv to 3.07 and 2.72% with CuSO4. Based on these findings antitumor activity of resveratrol when in copper ions presence, is not mediated by Rsv-Cu complex formation in MCF-7 human cell line, suggesting that the antitumoral reaction is dependent of a cancer cellular model.
Collapse
|
50
|
Zhao D, Wang T, Nahan K, Guo X, Zhang Z, Dong Z, Chen S, Chou DT, Hong D, Kumta PN, Heineman WR. In vivo characterization of magnesium alloy biodegradation using electrochemical H 2 monitoring, ICP-MS, and XPS. Acta Biomater 2017; 50:556-565. [PMID: 28069511 DOI: 10.1016/j.actbio.2017.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H2 with an electrochemical H2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH)2, MgO, MgCO3 and Mg3(PO4)2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. STATEMENT OF SIGNIFICANCE Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby avoid the need for subsequent removal by surgery if complications arise. In vivo biodegradation rate is one of the crucial parameters for the development of these alloys. Promising alloys are first evaluated in vivo by being implanted subcutaneously in mice for 1month. Here, we evaluated several magnesium alloys with widely varying corrosion rates in vivo using multiple characterization techniques. Since the alloys biodegrade by reacting with water forming H2 gas, we used a recently demonstrated, simple, fast and noninvasive method to monitor the biodegradation process by just pressing the tip of a H2 sensor against the skin above the implant. The analysis of 9 organs (intestine, kidney, spleen, lung, heart, liver, skin, brain and skull) for accumulation of Mg and Zn revealed no significant accumulation of magnesium in these organs. Zinc accumulation in intestine, kidney and lung was observed for the faster corroding implant ZJ41. The surfaces of explanted alloys were analyzed to determine the composition of the insoluble biodegradation products. The results suggest that these tested alloys are potential candidates for biodegradable implant applications.
Collapse
Affiliation(s)
- Daoli Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Tingting Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Keaton Nahan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xuefei Guo
- Medpace, Bioanalytical Laboratories, Cincinnati, OH 45227, USA
| | | | - Zhongyun Dong
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shuna Chen
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Da-Tren Chou
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daeho Hong
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prashant N Kumta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|