1
|
Matar RH, Abu Dayyeh BK. Advances in Endoscopic Bariatric and Metabolic Therapies. Gastroenterol Clin North Am 2024; 53:731-745. [PMID: 39489584 DOI: 10.1016/j.gtc.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This article presents an overview of endoscopic bariatric and metabolic therapies (EBMTs) as emerging minimally invasive interventions for obesity and its related comorbidities. It explores various gastric and small-bowel endoscopic procedures, including their mechanisms, clinical outcomes, and safety profiles.
Collapse
Affiliation(s)
- Reem H Matar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA.
| |
Collapse
|
2
|
Kueh MTW, Chong MC, Miras AD, le Roux CW. Oxyntomodulin physiology and its therapeutic development in obesity and associated complications. J Physiol 2024. [PMID: 39495024 DOI: 10.1113/jp287407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Incretins, such as glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), have advanced the treatment landscape of obesity to a new pinnacle. As opposed to singular incretin effects, oxyntomodulin (OXM) activates glucagon receptors (GCGR) and glucagon-like peptide-1 receptors (GLP1R), demonstrating a more dynamic range of effects that are more likely to align with evolving 'health gains' goals in obesity care. Here, we will review the molecular insights from their inception to recent developments and challenges. This review will discuss the physiological actions of OXM, primarily appetite regulation, energy expenditure, and glucose homeostasis. Finally, we will shed light on the development of OXM-based therapies for obesity and associated complications, and outline important considerations for more translational efforts.
Collapse
Affiliation(s)
- Martin T W Kueh
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Royal College of Surgeons in Ireland and University College Dublin Malaysia Campus, Malaysia
| | | | | | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland
| |
Collapse
|
3
|
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int J Mol Sci 2024; 25:8202. [PMID: 39125772 PMCID: PMC11311839 DOI: 10.3390/ijms25158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease caused primarily by the imbalance between the amount of calories supplied to the body and energy expenditure. Not only does it deteriorate the quality of life, but most importantly it increases the risk of cardiovascular diseases and the development of type 2 diabetes mellitus, leading to reduced life expectancy. In this review, we would like to present the molecular pathomechanisms underlying obesity, which constitute the target points for the action of anti-obesity medications. These include the central nervous system, brain-gut-microbiome axis, gastrointestinal motility, and energy expenditure. A significant part of this article is dedicated to incretin-based drugs such as GLP-1 receptor agonists (e.g., liraglutide and semaglutide), as well as the brand new dual GLP-1 and GIP receptor agonist tirzepatide, all of which have become "block-buster" drugs due to their effectiveness in reducing body weight and beneficial effects on the patient's metabolic profile. Finally, this review article highlights newly designed molecules with the potential for future obesity management that are the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | |
Collapse
|
4
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Abstract
In 1993, my laboratory published an article in Digestive Diseases and Sciences that clearly demonstrated the pronounced effects of the newly discovered intestinal hormone, glucagon-like peptide-1 (GLP-1), on a number of gastrointestinal functions, including gastric emptying rate, gastric acid secretion, and pancreatic enzyme secretion. The gut hormone is released in response to nutrient intake, and in further experiments, its release from the ileum paralleled inhibition of both gastric and pancreatic secretions. Based on these studies, it was concluded that GLP-1 is an important regulator of the so-called ileal brake, a term given for the observation that ileal perfusion of lipids delayed gastric emptying, reduced food intake, and induced satiety Welch et al. (1985), in addition to its functions as an incretin hormone. GLP-1 was subsequently identified as a physiological inhibitor of appetite and food intake, and based on these actions, the GLP-1 receptor agonists are today considered among the most powerful and effective antiobesity and antidiabetic agents available, with the added benefits of reducing the risk of the cardiovascular and renal complications associated with these conditions.
Collapse
|
6
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
7
|
Hope DCD, Vincent ML, Tan TMM. Striking the Balance: GLP-1/Glucagon Co-Agonism as a Treatment Strategy for Obesity. Front Endocrinol (Lausanne) 2021; 12:735019. [PMID: 34566894 PMCID: PMC8457634 DOI: 10.3389/fendo.2021.735019] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity and Type 2 diabetes represent global health challenges, and there is an unmet need for long-lasting and effective pharmacotherapies. Although long-acting glucagon-like peptide-1 (GLP-1) analogues are now in routine use for diabetes and are now being utilised for obesity per se, the need for ever better treatments has driven the development of co-agonists, with the theoretical advantages of improved efficacy by targeting multiple pathways and reduced adverse effects. In this review, we highlight the past and present progress in our understanding and development of treatments based on GLP-1/glucagon co-agonism. We also reflect on the divergent effects of varying the GLP-1:glucagon activity and ratio in the context of pre-clinical and human clinical trial findings. In particular, the multiple metabolic actions of glucagon highlight the importance of understanding the contributions of individual hormone action to inform the safe, effective and tailored use of GLP-1/glucagon co-agonists to target weight loss and metabolic disease in the future.
Collapse
Affiliation(s)
| | | | - Tricia M. M. Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Petrov MS. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs 2021; 30:737-747. [PMID: 33993813 DOI: 10.1080/13543784.2021.1931118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Post-pancreatitis diabetes mellitus is one of the most common types of secondary diabetes. The pharmaceutical armamentarium in the field of diabetology can be broadened if the design of novel drugs is informed by pathogenetic insights from studies on post-pancreatitis diabetes mellitus.Areas covered: The article provides an overview of preclinical and clinical studies of compounds selectively antagonizing the gastric inhibitory peptide receptor, simultaneously stimulating both the glucagon-like peptide-1 and glucagon receptors, and activating ketogenesis.Expert opinion: The current pharmacotherapy for post-pancreatitis diabetes mellitus is relatively ineffective. This type of diabetes represents a unique platform for rigorous, efficient, and practical search for glucose-lowering therapeutic candidates. Various methods of gastric inhibitory peptide receptor (expressed in the pancreas) antagonism have undergone extensive preclinical testing in diabetes, with promising compounds being trialed in man. Molecular mimicry with oxyntomodulin ─ an extra-pancreatic hormone homologous with pancreatic hormone glucagon and involved in the regulation of exocrine pancreatic function ─ could be harnessed. The emerging findings of a salutary effect of ketosis mimetics in people with prediabetes set the stage for a novel approach to preventing diabetes.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Gastric Sensory and Motor Functions and Energy Intake in Health and Obesity-Therapeutic Implications. Nutrients 2021; 13:nu13041158. [PMID: 33915747 PMCID: PMC8065811 DOI: 10.3390/nu13041158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023] Open
Abstract
Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.
Collapse
|
10
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
El-Salhy M. Possible role of intestinal stem cells in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2020; 26:1427-1438. [PMID: 32308344 PMCID: PMC7152517 DOI: 10.3748/wjg.v26.i13.1427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is not completely understood. However, several factors are known to play a role in pathophysiology of IBS such as genetics, diet, gut microbiota, gut endocrine cells, stress and low-grade inflammation. Understanding the pathophysiology of IBS may open the way for new treatment approaches. Low density of intestinal stem cells and low differentiation toward enteroendocrine cells has been reported recently in patients with IBS. These abnormalities are believed to be the cause of the low density of enteroendocrine cells seen in patients with IBS. Enteroendocrine cells regulate gastrointestinal motility, secretion, absorption and visceral sensitivity. Gastrointestinal dysmotility, abnormal absorption/secretion and visceral hypersensitivity are all seen in patients with IBS and haven been attributed to the low density the intestinal enteroendocrine cells in these patients. The present review conducted a literature search in Medline (PubMed) covering the last ten years until November 2019, where articles in English were included. Articles about the intestinal stem cells and their possible role in the pathophysiology of IBS are discussed in the present review. The present review discusses the assumption that intestinal stem cells play a central role in the pathophysiology of IBS and that the other factors known to contribute to the pathophysiology of IBS such as genetics, diet gut microbiota, stress, and low-grade inflammation exert their effects through affecting the intestinal stem cells. It reports further the data that support this assumption on genetics, diet, gut microbiota, stress with depletion of glutamine, and inflammation.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord 54 09, Norway
- Department of Clinical Medicine, University of Bergen, Bergen 50 21, Norway
| |
Collapse
|
12
|
Sanches E, Timmermans M, Topal B, Celik A, Sundbom M, Ribeiro R, Parmar C, Ugale S, Proczko M, Stepaniak PS, Pujol Rafols J, Mahawar K, Buise MP, Neimark A, Severin R, Pouwels S. Cardiac remodeling in obesity and after bariatric and metabolic surgery; is there a role for gastro-intestinal hormones? Expert Rev Cardiovasc Ther 2019; 17:771-790. [PMID: 31746657 DOI: 10.1080/14779072.2019.1690991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Obesity is associated with various diseases such as type 2 diabetes, hypertension, obstructive sleep apnea syndrome (OSAS), metabolic syndrome, and cardiovascular diseases. It affects several organ systems, including the pulmonary and cardiac systems. Furthermore, it induces pulmonary and cardiac changes that can result in right and/or left heart failure.Areas covered: In this review, authors provide an overview of obesity and cardiovascular remodeling, the individual actions of the gut hormones (like GLP-1 and PYY), the effects after bariatric/metabolic surgery and its influence on cardiac remodeling. In this review, we focussed and searched for literature in Pubmed and The Cochrane library (from the earliest date until April 2019), regarding cardiac function changes before and after bariatric surgery and literature regarding changes in gastrointestinal hormones.Expert opinion: Regarding the surgical treatment of obesity and metabolic diseases there is recognition of the importance of both weight loss (bariatric surgery) and improvement in metabolic milieu (metabolic surgery). A growing body of evidence further suggests that bariatric surgical procedures [like the Sleeve Gastrectomy (SG), Roux-en Y Gastric Bypass (RYGB), or One Anastomosis Gastric Bypass (OAGB)] have can improve outcomes of patients suffering from a number of cardiovascular diseases, including heart failure.
Collapse
Affiliation(s)
- Elijah Sanches
- Department of Surgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Marieke Timmermans
- Department of Surgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Besir Topal
- Department of Cardiothoracic Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Alper Celik
- Department of Bariatric and Metabolic Surgery, Metabolic Surgery Clinic, Sisli, Turkey
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Rui Ribeiro
- Centro Multidisciplinar da Doença Metabólica, Clínica de Santo António, Lisbon, Portugal
| | - Chetan Parmar
- Department of Surgery, Whittington Hospital, London, UK
| | - Surendra Ugale
- Bariatric & Metabolic Surgery Clinic, Kirloskar Hospital, Hyderabad, India
| | - Monika Proczko
- Department of General, Endocrine and Transplant Surgery, University Medical Center, Gdansk University, Gdansk, Poland
| | - Pieter S Stepaniak
- Department of Operating Rooms, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Kamal Mahawar
- Bariatric Unit, Sunderland Royal Hospital, Sunderland, UK
| | - Marc P Buise
- Department of Anesthesiology, Intensive Care and Pain Medicine, Catharina Hospital, Eindhoven, The Netherlands
| | - Aleksandr Neimark
- Department of Surgery, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Rich Severin
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Doctor of Physical Therapy Program, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Sjaak Pouwels
- Department of Surgery, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
13
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review examines the hormonal regulation of gastric emptying, a topic of increasing relevance, given the fact that medications that are analogs of some of these hormones or act as agonists at the hormonal receptors, are used in clinical practice for optimizing metabolic control in the treatment of type 2 diabetes and in obesity. RECENT FINDINGS The major effects on gastric emptying result from actions of incretins, particularly gastric inhibitory polypeptide, glucagon-like peptide-1, and peptide tyrosine-tyrosine, the duodenal and pancreatic hormones, motilin, glucagon, and amylin, and the gastric orexigenic hormones, ghrelin and motilin. All of these hormones delay gastric emptying, except for ghrelin and motilin which accelerate gastric emptying. These effects on gastric emptying parallel the effects of the hormones on satiation (by those retarding emptying) and increase appetite by those that accelerate emptying. Indeed, in addition to the effects of these hormones on hypothalamic appetite centers and glycemic control, there is evidence that some of their biological effects are mediated through actions on the stomach, particularly with the glucagon-like peptide-1 analogs or agonists used in treating obesity. SUMMARY Effects of gastrointestinal hormones on gastric emptying are increasingly recognized as important mediators of satiation and postprandial glycemic control.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Tillner J, Posch MG, Wagner F, Teichert L, Hijazi Y, Einig C, Keil S, Haack T, Wagner M, Bossart M, Larsen PJ. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: Results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes Metab 2019; 21:120-128. [PMID: 30091218 DOI: 10.1111/dom.13494] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
AIMS To evaluate the safety, pharmacokinetics and pharmacodynamics of SAR425899, a novel polypeptide, active as an agonist at both the glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCR), in healthy volunteers and in overweight/obese patients with type 2 diabetes (T2D). METHODS Subcutaneous administrations of SAR425899 were tested in two randomized, placebo-controlled, double-blind clinical trials. In the first trial, healthy overweight volunteers (body mass index [BMI] 25-30 kg/m2 ; n = 32) received single-ascending doses (0.01-0.1 mg) of SAR425899 or placebo. In the second, a multiple-ascending-dose trial (NCT02411825), healthy normal- to overweight volunteers (BMI 20-30 kg/m2 ; n = 40) and overweight/obese patients with T2D (BMI 28-42 kg/m2 ; n = 36) received daily doses of SAR425899 or placebo over 21 or 28 days, respectively. RESULTS The most frequently reported adverse events were gastrointestinal; gastrointestinal side effects were less pronounced in patients with T2D compared with healthy volunteers. SAR425899 significantly reduced levels of fasting plasma glucose (P < 0.05 vs. placebo) and glycated haemoglobin (P < 0.001 versus placebo) in patients with T2D. Additionally, SAR425899 led to reductions in body weight, with a maximal reduction of 5.32 kg in healthy volunteers and 5.46 kg in patients with T2D (P < 0.001 vs. placebo) at end of treatment. CONCLUSIONS SAR425899 was well tolerated and led to favourable glycaemic effects in patients with T2D and weight reduction in both healthy volunteers and patients. Whether dual GLP-1R/GCR agonism represents a treatment method that is superior to pure GLP-1R agonists for obesity and diabetes treatment remains to be confirmed.
Collapse
Affiliation(s)
| | | | - Frank Wagner
- Charité Research Organisation GmbH, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Central Modulation of Energy Homeostasis and Cognitive Performance After Bariatric Surgery. ADVANCES IN NEUROBIOLOGY 2018; 19:213-236. [PMID: 28933067 DOI: 10.1007/978-3-319-63260-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In moderately or morbidly obese patients, bariatric surgery has been proven to be an effective therapeutic approach to control body weight and comorbidities. Surgery-mediated modulation of brain function via modified postoperative secretion of gut peptides and vagal nerve stimulation was identified as an underlying mechanism in weight loss and improvement of weight-related diseases. Increased basal and postprandial plasma levels of gastrointestinal hormones like glucagon-like peptide 1 and peptide YY that act on specific areas of the hypothalamus to reduce food intake, either directly or mediated by the vagus nerve, are observed after surgery while suppression of meal-induced ghrelin release is increased. Hormones released from the adipose tissue like leptin and adiponectin are also affected and leptin plasma levels are reduced in treated patients. Besides homeostatic control of body weight, surgery also changes hedonistic behavior in regard to food intake and cognitive performance involving the limbic system and prefrontal areas.
Collapse
|
17
|
Neuroendocrinology of Adipose Tissue and Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2018; 19:49-70. [PMID: 28933061 DOI: 10.1007/978-3-319-63260-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Food intake and energy expenditure are closely regulated by several mechanisms which involve peripheral organs and nervous system, in order to maintain energy homeostasis.Short-term and long-term signals express the size and composition of ingested nutrients and the amount of body fat, respectively. Ingested nutrients trigger mechanical forces and gastrointestinal peptide secretion which provide signals to the brain through neuronal and endocrine pathways. Pancreatic hormones also play a role in energy balance exerting a short-acting control regulating the start, end, and composition of a meal. In addition, insulin and leptin derived from adipose tissue are involved in long-acting adiposity signals and regulate body weigh as well as the amount of energy stored as fat over time.This chapter focuses on the gastrointestinal-, pancreatic-, and adipose tissue-derived signals which are integrated in selective orexigenic and anorexigenic brain areas that, in turn, regulate food intake, energy expenditure, and peripheral metabolism.
Collapse
|
18
|
Holst JJ, Albrechtsen NJW, Gabe MBN, Rosenkilde MM. Oxyntomodulin: Actions and role in diabetes. Peptides 2018; 100:48-53. [PMID: 29412831 DOI: 10.1016/j.peptides.2017.09.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
Oxyntomodulin is a product of the glucagon precursor, proglucagon, produced and released from the endocrine L-cells of the gut after enzymatic processing by the precursor prohormone convertase 1/3. It corresponds to the proglucagon sequence 33-69 and thus contains the entire glucagon sequence plus a C-terminal octapeptide, comprising in total 37 amino acids. As might have been expected, it has glucagon-like bioactivity, but also and more surprisingly also activates the receptor for GLP-1. This has given the molecule an interesting status as a glucagon-GLP-1 co-agonist, which is currently attracting considerable interest for its potential in the treatment of diabetes and obesity. Here, we provide an update on oxyntomodulin with a focus on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
20
|
|
21
|
Chung H. Endoscopic Accessories Used for More Advanced Endoluminal Therapeutic Procedures. Clin Endosc 2017; 50:234-241. [PMID: 28609821 PMCID: PMC5475515 DOI: 10.5946/ce.2017.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
Endoscopic accessories describe an extensive variety of auxiliary instruments used for diagnostic and therapeutic endoscopy. Various endoscopic accessories have been developed over the previous few decades and are mostly used for treating neoplastic lesions, such as early gastrointestinal (GI) carcinomas and premalignant lesions. Because of extensive research on natural orifice endoluminal surgery (NOTES) in the early 2000s and recent technological developments, new devices have been developed for various advanced endoluminal therapeutic procedures. In particular, a remarkable development of endoscopic management was achieved in the field of gastroesophageal reflux disease (GERD) and obesity. In both conditions, there is treatment gap between medical and surgical therapy. A large proportion of the patients who do not respond to medical treatment and lifestyle modification, still hesitate to directly undergo surgical treatment. To bridge this gap, endoscopic management has been receiving increasing attention. In this article, I review endoscopic and/or endoluminal devices used for the treatment of GERD and obesity with proposed mechanisms of their function.
Collapse
Affiliation(s)
- Hyunsoo Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Abstract
UNLABELLED Obesity and its related complications remain a major threat to public health. Efforts to reduce the prevalence of obesity are of paramount importance in improving population health. Through these efforts, our appreciation of the role of gut-derived hormones in the management of body weight has evolved and manipulation of this system serves as the basis for our most effective obesity interventions. PURPOSE OF THE REVIEW We review current understanding of the enteroendocrine regulation of food intake and body weight, focusing on therapies that have successfully embraced the physiology of this system to enable weight loss. RECENT FINDINGS In addition to the role of gut hormones in the regulation of energy homeostasis, our understanding of the potential influence of enteroendocrine peptides in food reward pathways is evolving. So too is the role of gut derived hormones on energy expenditure. Gut-derived hormones have the ability to alter feeding behavior. Certain obesity therapies already manipulate this system; however, our evolving understanding of the effects of enteroendocrine signals on hedonic aspects of feeding and energy expenditure may be crucial in identifying future obesity therapies.
Collapse
|
23
|
Jirapinyo P, Thompson CC. Endoscopic Bariatric and Metabolic Therapies: Surgical Analogues and Mechanisms of Action. Clin Gastroenterol Hepatol 2017; 15:619-630. [PMID: 27989851 PMCID: PMC5444453 DOI: 10.1016/j.cgh.2016.10.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
Obesity is a worsening pandemic with numerous related comorbid illnesses. Conservative management including lifestyle modification and medications have limited efficacy. In contradistinction, bariatric surgery is effective, however, with substantial cost and non-negligible morbidity and mortality. As such, a small percentage of eligible patients undergo surgery. Over the past decade, endoscopic bariatric and metabolic therapies have been introduced as a less invasive option for the treatment of obesity and its related comorbid illnesses. This article reviews major endoscopic bariatric and metabolic therapies, their surgical analogues, and proposed mechanisms of action. Clinical trial data for each device also are discussed.
Collapse
|
24
|
El-Salhy M, Umezawa K, Hatlebakk JG, Gilja OH. Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis. Mol Med Rep 2017; 15:2106-2112. [PMID: 28259987 PMCID: PMC5364957 DOI: 10.3892/mmr.2017.6266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine whether there is an association between abnormalities in enteroendocrine cells in dextran sulfate sodium (DSS)-induced colitis and the clonogenic and/or proliferative activities of stem cells. A total of 48 male Wistar rats were divided into four groups. Animals in the control group were provided with normal drinking water, whereas DSS colitis was induced in the remaining three groups. The rats with DSS-induced colitis were randomized into the following three groups: i) DSS group, which received 0.5 ml 0.5% carboxymethyl cellulose (CMC; vehicle); ii) DSS-G group, which was treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide at 20 mg/kg body weight in 0.5% CMC; and iii) DSS-Q group, which was treated with dehydroxymethylepoxyquinomicin at 15 mg/kg body weight in 0.5% CMC. Treatments were administered intraperitoneally twice daily for 5 days in all groups. Subsequently, tissue samples from the colon were stained with hematoxylin-eosin, or immunostained for chromogranin A (CgA), Musashi 1 (Msi1), Math-1, neurogenin 3 (Neurog3) and neurogenic differentiation D1 (NeuroD1). The densities of CgA, Msi1-, Math-1-, Neurog3- and NeuroD1-immunoreactive cells were determined. DTCM-G, and DHMEQ ameliorated the inflammation in DSS-induced colitis. The density of CgA-, Neurog3- and NeuroD1-immunoreactive cells was significantly higher in the DSS group compared with in the control group, and the density of CgA cells was correlated with the densities of Neurog3- and NeuroD1-immunoreactive cells. There were no significant differences in the densities of Msi1- and Math-1-immunoreactive cells among the four experimental groups. The elevated densities of enteroendocrine cells detected in DSS-induced colitis may be due to the increased differentiation of early enteroendocrine progenitors during secretory lineage. It is probable that the DSS-induced inflammatory processes trigger certain signaling pathways, which control differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5409 Stord, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, School of Medicine, Nagakute, Aichi 480‑1195, Japan
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
25
|
Hutchinson JA, Burholt S, Hamley IW. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J Pept Sci 2017; 23:82-94. [PMID: 28127868 PMCID: PMC5324658 DOI: 10.1002/psc.2954] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/18/2022]
Abstract
This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J A Hutchinson
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - S Burholt
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - I W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
26
|
Elliott JA, Reynolds JV, le Roux CW, Docherty NG. Physiology, pathophysiology and therapeutic implications of enteroendocrine control of food intake. Expert Rev Endocrinol Metab 2016; 11:475-499. [PMID: 30058920 DOI: 10.1080/17446651.2016.1245140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of obesity and its associated comorbidities, strides to improve treatment strategies have enhanced our understanding of the function of the gut in the regulation of food intake. The most successful intervention for obesity to date, bariatric surgery effectively manipulates enteroendocrine physiology to enhance satiety and reduce hunger. Areas covered: In the present article, we provide a detailed overview of the physiology of enteroendocrine control of food intake, and discuss its pathophysiologic correlates and therapeutic implications in both obesity and gastrointestinal disease. Expert commentary: Ongoing research in the field of nutrient sensing by L-cells, as well as understanding the role of the microbiome and bile acid signaling may facilitate the development of novel strategies to combat the rising population health threat associated with obesity. Further refinement of post-prandial satiety gut hormone based therapies, including the development of chimeric peptides exploiting the pleiotropic nature of the gut hormone response, and identification of novel methods of delivery may hold the key to optimization of therapeutic modulation of gut hormone physiology in obesity.
Collapse
Affiliation(s)
- Jessie A Elliott
- a Diabetes Complications Research Centre, Conway Institute of Biomedical and Biomolecular Research , University College Dublin , Dublin , Ireland
- b Department of Surgery, Trinity Centre for Health Sciences , Trinity College Dublin and St. James's Hospital , Dublin , Ireland
| | - John V Reynolds
- b Department of Surgery, Trinity Centre for Health Sciences , Trinity College Dublin and St. James's Hospital , Dublin , Ireland
| | - Carel W le Roux
- a Diabetes Complications Research Centre, Conway Institute of Biomedical and Biomolecular Research , University College Dublin , Dublin , Ireland
- c Gastrosurgical Laboratory, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Neil G Docherty
- a Diabetes Complications Research Centre, Conway Institute of Biomedical and Biomolecular Research , University College Dublin , Dublin , Ireland
- c Gastrosurgical Laboratory, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
27
|
Abstract
The symptom-based diagnosis of irritable bowel syndrome (IBS) has not been established in everyday clinical practice, and the diagnosis of this disorder remains one of exclusion. It has been demonstrated that the densities of duodenal chromogranin A, rectal peptide YY and somatostatin cells are good biomarkers for the diagnosis of sporadic IBS, and low-grade mucosal inflammation is a promising biomarker for the diagnosis of postinfectious IBS. Genetic markers are not useful as biomarkers for IBS since the potential risk genes have yet to be validated, and the intestinal microbiota cannot be used because of the lack of an association between a specific bacterial species and IBS. Furthermore, gastrointestinal dysmotility and visceral hypersensitivity tests produce results that are too nonconsistent and noncharacteristic to be used in the diagnosis of IBS. A combination of symptom-based assessment, exclusion of overlapping gastrointestinal diseases and positive biomarkers appears to be the best way to diagnose IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway
| |
Collapse
|
28
|
El-Salhy M, Mazzawi T, Hausken T, Hatlebakk JG. Interaction between diet and gastrointestinal endocrine cells. Biomed Rep 2016; 4:651-656. [PMID: 27284402 PMCID: PMC4887949 DOI: 10.3892/br.2016.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal endocrine cells are essential for life. They regulate the gastrointestinal motility, secretion, visceral sensitivity, absorption, local immune defense, cell proliferation and appetite. These cells act as sensory cells with specialized microvilli that project into the lumen that sense the gut contents (mostly nutrients and/or bacteria byproducts), and respond to luminal stimuli by releasing hormones into the lamina propria. These released hormones exert their actions by entering the circulating blood and reaching distant targets (endocrine mode), nearby structures (paracrine mode) or via afferent and efferent synaptic transmission. The mature intestinal endocrine cells are capable of expressing several hormones. A change in diet not only affects the release of gastrointestinal hormones, but also alters the densities of the gut endocrine cells. The interaction between ingested foodstuffs and the gastrointestinal endocrine cells can be utilized for the clinical management of gastrointestinal and metabolic diseases, such as irritable bowel syndrome, obesity and diabetes.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, 5409 Stord, Norway; Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tarek Mazzawi
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
29
|
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder that is characterized by intermittent abdominal pain/discomfort, altered bowel habits and abdominal bloating/distension. This review aimed at presenting the recent developments concerning the role of diet in the pathophysiology and management of IBS. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, and there is no evidence that gluten causes the debated new diagnosis of non-coeliac gluten sensitivity (NCGS). The component in wheat that triggers symptoms in NCGS appears to be the carbohydrates. Patients with NCGS appear to be IBS patients who are self-diagnosed and self-treated with a gluten-free diet. IBS symptoms are triggered by the consumption of the poorly absorbed fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) and insoluble fibre. On reaching the distal small intestine and colon, FODMAPS and insoluble fibre increase the osmotic pressure in the large-intestine lumen and provide a substrate for bacterial fermentation, with consequent gas production, abdominal distension and abdominal pain or discomfort. Poor FODMAPS and insoluble fibres diet reduces the symptom and improve the quality of life in IBS patients. Moreover, it changes favourably the intestinal microbiota and restores the abnormalities in the gastrointestinal endocrine cells. Five gastrointestinal endocrine cell types that produce hormones regulating appetite and food intake are abnormal in IBS patients. Based on these hormonal abnormalities, one would expect that IBS patients to have increased food intake and body weight gain. However, the link between obesity and IBS is not fully studied. Individual dietary guidance for intake of poor FODMAPs and insoluble fibres diet in combination with probiotics intake and regular exercise is to be recommended for IBS patients.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway. .,Department of Clinical Medicine, Section for Gastroenterology, University of Bergen, Box 4000, 54 09, Stord, Norway. .,Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway.
| | - Doris Gundersen
- Department of Research, Helse-Fonna, Haugesund Hospital, Haugesund, Norway.
| |
Collapse
|
30
|
Abstract
Glucagon-like peptide 1 (GLP-1) is a cleavage product of the pre-proglucagon gene which is expressed in the α-cells of the pancreas, the L-cells of the intestine, and neurons located in the caudal brainstem and hypothalamus. GLP-1 is of relevance to appetite and weight maintenance because it has actions on the gastrointestinal tract as well as the direct regulation of appetite. It delays gastric emptying and gut motility in humans. In addition, interventricular injections of GLP-1 inhibit food intake, independent of the presence of food in the stomach or gastric emptying. Peripherally administered GLP-1 also affects the central regulation of feeding. It is therefore the synergistic actions of GLP-1 in the gut and brain, acting on both central and peripheral receptors that seem responsible for the effects of the hormone on satiety.
Collapse
Affiliation(s)
- Meera Shah
- Division of Endocrinology & Metabolism Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Adrian Vella
- Division of Endocrinology & Metabolism Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| |
Collapse
|
31
|
EL-SALHY MAGDY, GILJA ODDHELGE, GUNDERSEN DORIS, HATLEBAKK JANG, HAUSKEN TRYGVE. Interaction between ingested nutrients and gut endocrine cells in patients with irritable bowel syndrome (review). Int J Mol Med 2014; 34:363-71. [PMID: 24939595 PMCID: PMC4094590 DOI: 10.3892/ijmm.2014.1811] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Several endocrine cell abnormalities have been reported in different segments of the gastrointestinal tract of patients with irritable bowel syndrome (IBS). These cells have specialized microvilli that project into the lumen; they function as sensors for the gut contents and respond to luminal stimuli (mostly ingested nutrients) by releasing hormones into the lamina propria, where they exert their effects via a paracrine/endocrine mode of action. Certain food items trigger the symptoms experienced by IBS patients, including those rich in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs). In this review, we present the argument that the effects of both FODMAPs and the proportional intake of proteins, fats and carbohydrates on IBS symptoms may be caused by an interaction with the gut endocrine cells. Since the gut hormones control and regulate gastrointestinal motility and sensation, this interaction may be responsible for abnormal gastrointestinal motility and the visceral hypersensitivity observed in these patients. There is no consistent evidence that IBS patients suffer from food allergy. The role of gluten intolerance in the development of IBS symptoms in these patients remains a matter of controversy. Individual guidance on food management, which includes restrictions in the intake of FODMAP-rich foods and testing diets with different proportions of proteins, fats and carbohydrates has been found to reduce the symptoms, improve the quality of life, and make the habitual diet of IBS patients more healthy.
Collapse
Affiliation(s)
- MAGDY EL-SALHY
- Section of Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, University of Bergen, Bergen, Norway
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - ODD HELGE GILJA
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - JAN G. HATLEBAKK
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - TRYGVE HAUSKEN
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Abstract
Oxyntomodulin (OXM) is a peptide hormone released from the gut in post-prandial state that activates both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in superior body weight lowering to selective GLP1R agonists. OXM reduces food intake and increases energy expenditure in humans. While activation of the GCGR increases glucose production posing a hyperglycemic risk, the simultaneous activation of the GLP1R counteracts this effect. Acute OXM infusion improves glucose tolerance in T2DM patients making dual agonists of the GCGR and GLP1R new promising treatments for diabetes and obesity with the potential for weight loss and glucose lowering superior to that of GLP1R agonists.
Collapse
Affiliation(s)
- Alessandro Pocai
- Janssen Research and Devolopment, Cardiovascular and Metabolic Disease, 1516 Welsh and McKean Roads, Spring House, PA 19477, USA
| |
Collapse
|
33
|
El-Salhy M, Gundersen D, Hatlebakk JG, Gilja OH, Hausken T. Abnormal rectal endocrine cells in patients with irritable bowel syndrome. REGULATORY PEPTIDES 2014; 188:60-5. [PMID: 24316398 DOI: 10.1016/j.regpep.2013.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder. In a previous study the total number of endocrine cells in the rectum of IBS patients, as detected by chromogranin A, did not differ from that of healthy controls. While the total endocrine cell content of the rectum appears to be unchanged in IBS patients, changes in particular endocrine cells cannot be excluded. This study was undertaken, therefore, to investigate the cell density of different rectal endocrine cell types in (IBS) patients. Fifty patients with IBS (41 females and 9 males) were included in the study. Thirty patients had diarrhoea (IBS-D) and 20 had constipation (IBS-C) as the predominant symptom. Twenty-seven subjects were included as controls (19 females and 8 males). Rectal biopsy specimens were immunostained using the avidin-biotin-complex method for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), and oxyntomodulin and somatostatin cells. The cell densities were quantified by computerised image analysis. The serotonin cell density did not differ significantly, although a type II statistical error cannot be excluded, due to the small size of the sample. The densities of PYY and Oxyntomodulin cells were significantly lower and that of somatostatin were significantly higher in IBS patients than controls. These abnormalities were observed in both IBS-D and IBS-C patients. The abnormalities in the endocrine cells observed in this study in the rectum differed considerably from those seen in the colon of IBS patients. This indicates that caution in using the rectum to represent the large intestine in these patients. These abnormalities could be primary (genetic) or secondary to changes in the gut hormones found in other segments of the gut and/or other pathological processes. Although the-cause-and effect relationship of the abnormalities found in rectal endocrine cells is difficult to elucidate, they might contribute to the symptoms associated with IBS. The densities of PYY and somatostatin cells are potential biomarkers with good sensitivity and specificity for the diagnosis of IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Norway; Section for Gastroenterology, Medicine, University of Bergen, Norway.
| | | | - Jan G Hatlebakk
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| | - Odd Helge Gilja
- Section for Gastroenterology, Medicine, University of Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| |
Collapse
|
34
|
Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis 2014; 5:4-14. [PMID: 24381724 PMCID: PMC3871274 DOI: 10.1177/2040622313506730] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The obesity pandemic presents a significant burden, both in terms of healthcare and economic outcomes, and current medical therapies are inadequate to deal with this challenge. Bariatric surgery is currently the only therapy available for obesity which results in long-term, sustained weight loss. The favourable effects of this surgery are thought, at least in part, to be mediated via the changes of gut hormones such as GLP-1, PYY, PP and oxyntomodulin seen following the procedure. These hormones have subsequently become attractive novel targets for the development of obesity therapies. Here, we review the development of these gut peptides as current and emerging therapies in the treatment of obesity.
Collapse
Affiliation(s)
- Rachel C Troke
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M Tan
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Steve R Bloom
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 6th Floor, Commonwealth Building, London W12 0HS, UK
| |
Collapse
|
35
|
Quercia I, Dutia R, Kotler DP, Belsley S, Laferrère B. Gastrointestinal changes after bariatric surgery. DIABETES & METABOLISM 2013; 40:87-94. [PMID: 24359701 DOI: 10.1016/j.diabet.2013.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 12/23/2022]
Abstract
Severe obesity is a preeminent health care problem that impacts overall health and survival. The most effective treatment for severe obesity is bariatric surgery, an intervention that not only maintains long-term weight loss but also is associated with improvement or remission of several comorbidies including type 2 diabetes mellitus. Some weight loss surgeries modify the gastrointestinal anatomy and physiology, including the secretions and actions of gut peptides. This review describes how bariatric surgery alters the patterns of gastrointestinal motility, nutrient digestion and absorption, gut peptide release, bile acids and the gut microflora, and how these changes alter energy homeostasis and glucose metabolism.
Collapse
Affiliation(s)
- I Quercia
- New York Obesity Nutrition Research Center, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, 1111, Amsterdam Avenue, 1034 New York, NY 10025, USA; Department of Medicine, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA
| | - R Dutia
- New York Obesity Nutrition Research Center, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, 1111, Amsterdam Avenue, 1034 New York, NY 10025, USA; Department of Medicine, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA
| | - D P Kotler
- Division of Gastroenterology and Liver Disease, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA; Department of Medicine, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA; Columbia University College of Physicians and Surgeons, New York, NY 10025, USA
| | - S Belsley
- Department of Surgery, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA; Columbia University College of Physicians and Surgeons, New York, NY 10025, USA
| | - B Laferrère
- New York Obesity Nutrition Research Center, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, 1111, Amsterdam Avenue, 1034 New York, NY 10025, USA; Division of Endocrinology, Diabetes and Nutrition, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA; Department of Medicine, St Luke's-Roosevelt Hospital Center, New York, NY 10025, USA; Columbia University College of Physicians and Surgeons, New York, NY 10025, USA.
| |
Collapse
|
36
|
Luttikhold J, de Ruijter FM, van Norren K, Diamant M, Witkamp RF, van Leeuwen PAM, Vermeulen MAR. Review article: the role of gastrointestinal hormones in the treatment of delayed gastric emptying in critically ill patients. Aliment Pharmacol Ther 2013; 38:573-83. [PMID: 23879699 DOI: 10.1111/apt.12421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/27/2012] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Delayed gastric emptying limits the administration of enteral nutrition, leading to malnutrition, which is associated with higher mortality and morbidity. Currently available prokinetics have limitations in terms of sustained efficacy and side effects. AIM To summarise the mechanisms of action and to discuss the possible utility of gastrointestinal hormones to prevent or treat delayed gastric emptying in critically ill patients. METHODS We searched PubMed for articles discussing 'delayed gastric emptying', 'enteral nutrition', 'treatment', 'gastrointestinal hormones', 'prokinetic', 'agonist', 'antagonist' and 'critically ill patients'. RESULTS Motilin and ghrelin receptor agonists initiate the migrating motor complex in the stomach, which accelerates gastric emptying. Cholecystokinin, glucagon-like peptide-1 and peptide YY have an inhibiting effect on gastric emptying; therefore, antagonising these gastrointestinal hormones may have therapeutic potential. Other gastrointestinal hormones appear less promising. CONCLUSIONS Manipulation of endogenous secretion, physiological replacement and administration of gastrointestinal hormones in pharmacological doses is likely to have therapeutic potential in the treatment of delayed gastric emptying. Future challenges in this field will include the search for candidates with improved selectivity and favourable kinetic properties.
Collapse
Affiliation(s)
- J Luttikhold
- Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY(3-36), produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The obesity epidemic over the world has called to attention different ways to manage this development. As bariatric surgery today is the only manner by which rapid and sustained weight control can be achieved, new ways of treating obesity are under investigation. This review focuses on today's knowledge on satiety signaling as a means to combat obesity. RECENT FINDINGS The combined knowledge achieved from obesity surgery with gastric bypass and duodenal switch together with the pharmacological treatment of type 2 diabetes have given us some clues of how to manage obesity. The basis for our understanding is the present research focusing on the gut peptide hormones that are released in response to food intake, and the paucity of satiety signaling seems to prevail in obesity. This means that obese patients experience less activation of higher brain centers in association with a meal and therefore compensate with increased meal size or frequent food intake. SUMMARY Altered satiety signaling primarily emanating from the gastrointestinal tract seems to lead to the development of obesity and type 2 diabetes. Pharmacological tools that enhance the gut hormone signaling are in focus for the upcoming venues of treatment.
Collapse
|
39
|
Tao YX, Yuan ZH, Xie J. G Protein-Coupled Receptors as Regulators of Energy Homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:1-43. [DOI: 10.1016/b978-0-12-386933-3.00001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Abstract
Oxyntomodulin (OXM) is a peptide secreted from the L cells of the gut following nutrient ingestion. OXM is a dual agonist of the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) combining the effects of GLP1 and glucagon to act as a potentially more effective treatment for obesity than GLP1R agonists. Injections of OXM in humans cause a significant reduction in weight and appetite, as well as an increase in energy expenditure. Activation of GCGR is classically associated with an elevation in glucose levels, which would be deleterious in patients with T2DM, but the antidiabetic properties of GLP1R agonism would be expected to counteract this effect. Indeed, OXM administration improved glucose tolerance in diet-induced obese mice. Thus, dual agonists of the GCGR and GLP1R represent a new therapeutic approach for diabetes and obesity with the potential for enhanced weight loss and improvement in glycemic control beyond those of GLP1R agonists.
Collapse
Affiliation(s)
- Alessandro Pocai
- Diabetes and Endocrinology, Merck Research Laboratories, Merck Sharp and Dohme Corp., Rahway, New Jersey 07065, USA.
| |
Collapse
|
41
|
Abstract
Peptide hormones are released from the gastrointestinal tract in response to nutrients and communicate information regarding the current state of energy balance to the brain. These hormones regulate appetite, energy expenditure and glucose homeostasis. They can act either via the circulation at target peripheral tissues, by activation of the vagus nerve or by acting on key brain regions implicated in energy homeostasis such as the hypothalamus and brainstem. This review gives an overview of the main gut hormones implicated in the regulation of food intake and how some of these are being targeted to develop anti obesity treatments.
Collapse
Affiliation(s)
- Gavin A Bewick
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
42
|
Kahleova H, Mari A, Nofrate V, Matoulek M, Kazdova L, Hill M, Pelikanova T. Improvement in β-cell function after diet-induced weight loss is associated with decrease in pancreatic polypeptide in subjects with type 2 diabetes. J Diabetes Complications 2012; 26:442-9. [PMID: 22673566 DOI: 10.1016/j.jdiacomp.2012.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 04/03/2012] [Accepted: 05/02/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of our study was to evaluate the effect of a lifestyle intervention program on β-cell function and to explore the role of gastrointestinal peptides in subjects with T2D. METHODS Subjects with T2D (n=74) received 24 weeks of intervention: 12 weeks of slimming diet (-500 kcal/day) and the subsequent 12 weeks of diet were combined with aerobic exercise. All subjects were examined at weeks 0, 12 and 24. β-cell function was assessed during standard meal tests. Insulin secretory rate (ISR) was calculated by C-peptide deconvolution, and β-cell function was quantified with a mathematical model. Plasma concentrations of gastrointestinal peptides were measured in a fasting state and during hyperinsulinemia induced by hyperinsulinemic isoglycemic clamp. RESULTS Mean weight loss was 5.03±4.38 kg (p<0.001) in weeks 0-12. Weight did not change significantly in weeks 12-24. Both insulin secretion at the reference level and glucose sensitivity increased in weeks 0-12 (by 33%±54% and by 26%±53%, respectively, p<0.001) and remained unchanged in weeks 12-24. Both fasting and hyperinsulinemic plasma concentrations of pancreatic polypeptide (PP) decreased in weeks 0-12 (p<0.05 for both) and did not change significantly in weeks 12-24. Changes in insulin secretion at the reference level correlated negatively with plasma concentrations of PP during hyperinsulinemia (r=-0.36; p<0.001). Changes in glucose sensitivity correlated negatively with changes in plasma concentrations of PP, both in fasting and during hyperinsulinemia (r=-0.2; p=0.01 for both). The correlations remained significant after adjustment for changes in body-mass-index. CONCLUSIONS After diet-induced weight loss, β-cell function improved in T2D subjects and remained unchanged after the addition of exercise. We demonstrate for the first time that these changes are associated with a decrease in PP secretion.
Collapse
Affiliation(s)
- H Kahleova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
43
|
Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:824305. [PMID: 22899902 PMCID: PMC3415214 DOI: 10.1155/2012/824305] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
44
|
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
|
45
|
Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes (Lond) 2012; 37:625-33. [PMID: 22710925 DOI: 10.1038/ijo.2012.93] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the regulation of appetite has improved considerably over the last few decades. Recent work, stimulated by efforts aimed at curbing the current obesity epidemic, has unravelled some of the complex pathways regulating energy homeostasis. Key factors to this progress have been the discovery of leptin and the neuronal circuitry involved in mediating its effects, as well as the identification of gut hormones that have important physiological roles relating to energy homeostasis. Despite these advances in research, there are currently no effective treatments for the growing problem of obesity. In this article, we summarise the regulatory pathways controlling appetite with a special focus on gut hormones. We detail how recent findings have contributed to our knowledge regarding the pathogenesis and treatment of common obesity. A number of barriers still need to be overcome to develop safe and effective anti-obesity treatments. We outline problems highlighted by historical failures and discuss the potential of augmenting natural satiety signals, such as gut hormones, to treat obesity.
Collapse
Affiliation(s)
- S S Hussain
- Department of Diabetes, Endocrinology and Metabolism, Hammersmith Hospital, Imperial College London, London, UK
| | | |
Collapse
|
46
|
Hage MP, Safadi B, Salti I, Nasrallah M. Role of Gut-Related Peptides and Other Hormones in the Amelioration of Type 2 Diabetes after Roux-en-Y Gastric Bypass Surgery. ISRN ENDOCRINOLOGY 2012; 2012:504756. [PMID: 22619730 PMCID: PMC3353119 DOI: 10.5402/2012/504756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Bariatric surgery is currently the most effective and durable therapy for obesity. Roux-en-Y gastric bypass surgery, the most commonly performed procedure worldwide, causes substantial weight loss and improvement in several comorbidities associated with obesity, especially type 2 diabetes. Several mechanisms are proposed to explain the improvement in glucose metabolism after RYGB surgery: the caloric restriction and weight loss per se, the improvement in insulin resistance and beta cell function, and finally the alterations in the various gastrointestinal hormones and adipokines that have been shown to play an important role in glucose homeostasis. However, the timing, exact changes of these hormones, and the relative importance of these changes in the metabolic improvement postbariatric surgery remain to be further clarified. This paper reviews the various changes post-RYGB in adipokines and gut peptides in subjects with T2D.
Collapse
Affiliation(s)
- Mirella P Hage
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut-Medical Center, P.O. Box 11-0236/D23 Riad El-Solh, Beirut 1107 2020, Lebanon
| | | | | | | |
Collapse
|
47
|
Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/brain axis in modulating food intake. Neuropharmacology 2011; 63:46-56. [PMID: 22037149 DOI: 10.1016/j.neuropharm.2011.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 12/12/2022]
Abstract
Peptide hormones released from the gastrointestinal tract communicate information about the current state of energy balance to the brain. These hormones regulate appetite and energy expenditure via the vagus nerve or by acting on key brain regions implicated in energy homeostasis such as the hypothalamus and brainstem. This review gives an overview of the main gut hormones implicated in the regulation of food intake. Research in this area has provided novel targets for the pharmacological treatment of obesity. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- Amir H Sam
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | |
Collapse
|
48
|
Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011; 92:219-31. [PMID: 21518048 DOI: 10.1111/j.1365-2613.2011.00767.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With over thirty different hormones identified as being produced in the gastrointestinal (GI) tract, the gut has been described as 'the largest endocrine organ in the body' (Ann. Oncol., 12, 2003, S63). The classification of these hormones and the cells that produce them, the enteroendocrine cells (EECs), has provided the foundation for digestive physiology. Furthermore, alterations in the composition and function of EEC may influence digestive physiology and thereby associate with GI pathologies. Whilst there is a rapidly increasing body of data on the role and function of EEC in the upper GI tract, there is a less clear-cut understanding of the function of EEC in the lower GI. Nonetheless, their presence and diversity are indicative of a role. This review focuses on the EECs of the lower GI where new evidence also suggests a possible relationship with the development and progression of primary adenocarcinoma.
Collapse
Affiliation(s)
- Ashok R Gunawardene
- Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
49
|
Ali S, Lamont BJ, Charron MJ, Drucker DJ. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Invest 2011; 121:1917-29. [PMID: 21540554 DOI: 10.1172/jci43615] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 02/09/2011] [Indexed: 02/03/2023] Open
Abstract
Disordered glucagon secretion contributes to the symptoms of diabetes, and reduced glucagon action is known to improve glucose homeostasis. In mice, genetic deletion of the glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), which may contribute to the alterations in glucose homeostasis observed in Gcgr-/- mice. Here, we assessed the contribution of GLP-1 receptor (GLP-1R) signaling to the phenotype of Gcgr-/- mice by generating Gcgr-/-Glp1r-/- mice. Although insulin sensitivity was similar in all genotypes, fasting glucose was increased in Gcgr-/-Glp1r-/- mice. Elimination of the Glp1r normalized gastric emptying and impaired intraperitoneal glucose tolerance in Gcgr-/- mice. Unexpectedly, deletion of Glp1r in Gcgr-/- mice did not alter the improved oral glucose tolerance and increased insulin secretion characteristic of that genotype. Although Gcgr-/-Glp1r-/- islets exhibited increased sensitivity to the incretin glucose-dependent insulinotropic polypeptide (GIP), mice lacking both Glp1r and the GIP receptor (Gipr) maintained preservation of the enteroinsular axis following reduction of Gcgr signaling. Moreover, Gcgr-/-Glp1r-/- islets expressed increased levels of the cholecystokinin A receptor (Cckar) and G protein-coupled receptor 119 (Gpr119) mRNA transcripts, and Gcgr-/-Glp1r-/- mice exhibited increased sensitivity to exogenous CCK and the GPR119 agonist AR231453. Our data reveal extensive functional plasticity in the enteroinsular axis via induction of compensatory mechanisms that control nutrient-dependent regulation of insulin secretion.
Collapse
Affiliation(s)
- Safina Ali
- Department of Laboratory Medicine and Pathobiology, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Abstract
Food intake and energy expenditure are tightly regulated by the brain, in a homeostatic process that integrates diverse hormonal, neuronal and metabolic signals. The gastrointestinal tract is an important source of such signals, which include several hormones released by specialized enteroendocrine cells. These hormones exert powerful effects on appetite and energy expenditure. This Review addresses the physiological roles of peptide YY, pancreatic polypeptide, islet amyloid polypeptide, glucagon-like peptide 1, glucagon, oxyntomodulin, cholecystokinin and ghrelin and discusses their potential as targets for the development of novel treatments for obesity.
Collapse
Affiliation(s)
- Benjamin C T Field
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|