1
|
Pinto J, Balarezo-Cisneros LN, Delneri D. Exploring adaptation routes to cold temperatures in the Saccharomyces genus. PLoS Genet 2025; 21:e1011199. [PMID: 39970180 PMCID: PMC11875353 DOI: 10.1371/journal.pgen.1011199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The identification of traits that affect adaptation of microbial species to external abiotic factors, such as temperature, is key for our understanding of how biodiversity originates and can be maintained in a constantly changing environment. The Saccharomyces genus, which includes eight species with different thermotolerant profiles, represent an ideal experimental platform to study the impact of adaptive alleles in different genetic backgrounds. Previous studies identified a group of adaptive genes for maintenance of growth at lower temperatures. Here, we carried out a genus-wide assessment of the role of genes partially responsible for cold-adaptation in all eight Saccharomyces species for six candidate genes. We showed that the cold tolerance trait of S. kudriavzevii and S. eubayanus is likely to have evolved from different routes, involving genes important for the conservation of redox-balance, and for the long-chain fatty acid metabolism, respectively. For several loci, temperature- and species-dependent epistasis was detected, underscoring the plasticity and complexity of the genetic interactions. The natural isolates of S. kudriavzevii, S. jurei and S. mikatae had a significantly higher expression of the genes involved in the redox balance compared to S. cerevisiae, suggesting a role at transcriptional level. To distinguish the effects of gene expression from allelic variation, we independently replaced either the promoters or the coding sequences (CDS) of two genes in four yeast species with those derived from S. kudriavzevii. Our data consistently showed a significant fitness improvement at cold temperatures in the strains carrying the S. kudriavzevii promoter, while growth was lower upon CDS swapping. These results suggest that transcriptional strength plays a bigger role in growth maintenance at cold temperatures over the CDS and supports a model of adaptation centred on stochastic tuning of the expression network.
Collapse
Affiliation(s)
- Javier Pinto
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Laura Natalia Balarezo-Cisneros
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Martiniuk JT, Hamilton J, Dodsworth T, Measday V. Grape-associated fungal community patterns persist from berry to wine on a fine geographical scale. FEMS Yeast Res 2023; 23:6967134. [PMID: 36592956 PMCID: PMC9876423 DOI: 10.1093/femsyr/foac067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Wine grape fungal community composition is influenced by abiotic factors including geography and vintage. Compositional differences may correlate with different wine metabolite composition and sensory profiles, suggesting a microbial role in the shaping of a wine's terroir, or regional character. While grape and wine-associated fungal community composition has been studied extensively at a regional and sub-regional scale, it has not been explored in detail on fine geographical scales over multiple harvests. Over two years, we examined the fungal communities on Vitis Vinifera cv. Pinot noir grape berry surfaces, in crushed grapes, and in lab spontaneous fermentations from three vineyards within a < 1 km radius in Canada's Okanagan Valley wine region. We also evaluated the effect of winery environment exposure on fungal community composition by sampling grapes crushed and fermented in the winery at commercial scale. Spatiotemporal community structure was evident among grape berry surface, crushed grape and fermentation samples, with each vineyard exhibiting a distinct fungal community signature. Crushed grape fungal populations were richer in fermentative yeast species compared to grape berry surface fungal populations. Our study suggests that, as on a regional level, fungal populations may contribute to fine-scale -terroir,' with significant implications for single-vineyard wines.
Collapse
Affiliation(s)
- Jonathan T Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas Dodsworth
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vivien Measday
- Corresponding author: Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada. E-mail:
| |
Collapse
|
3
|
Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. FERMENTATION 2022. [DOI: 10.3390/fermentation8050224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The relation between regional yeast biota and the organoleptic characteristics of wines has attracted growing attention among winemakers. In this work, the dynamics of a native Saccharomyces cerevisiae population was investigated in an organic winery. In this regard, the occurrence and the persistence of native S. cerevisiae were evaluated in the vineyard and winery and during spontaneous fermentation of two nonconsecutive vintages. From a total of 98 strains, nine different S. cerevisiae biotypes were identified that were distributed through the whole winemaking process, and five of them persisted in both vintages. The results of the oenological characterization of the dominant biotypes (I and II) show a fermentation behavior comparable to that exhibited by three common commercial starter strains, exhibiting specific aromatic profiles. Biotype I was characterized by some fruity aroma compounds, such as isoamyl acetate and ethyl octanoate, while biotype II was differentiated by ethyl hexanoate, nerol, and β-damascenone production also in relation to the fermentation temperature. These results indicate that the specificity of these resident strains should be used as starter cultures to obtain wines with distinctive aromatic profiles.
Collapse
|
4
|
Bai FY, Han DY, Duan SF, Wang QM. The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes (Basel) 2022; 13:230. [PMID: 35205274 PMCID: PMC8871604 DOI: 10.3390/genes13020230] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
The baker's yeast Saccharomyces cerevisiae has become a powerful model in ecology and evolutionary biology. A global effort on field survey and population genetics and genomics of S. cerevisiae in past decades has shown that the yeast distributes ubiquitously in nature with clearly structured populations. The global genetic diversity of S. cerevisiae is mainly contributed by strains from Far East Asia, and the ancient basal lineages of the species have been found only in China, supporting an 'out-of-China' origin hypothesis. The wild and domesticated populations are clearly separated in phylogeny and exhibit hallmark differences in sexuality, heterozygosity, gene copy number variation (CNV), horizontal gene transfer (HGT) and introgression events, and maltose utilization ability. The domesticated strains from different niches generally form distinct lineages and harbor lineage-specific CNVs, HGTs and introgressions, which contribute to their adaptations to specific fermentation environments. However, whether the domesticated lineages originated from a single, or multiple domestication events is still hotly debated and the mechanism causing the diversification of the wild lineages remains to be illuminated. Further worldwide investigations on both wild and domesticated S. cerevisiae, especially in Africa and West Asia, will be helpful for a better understanding of the natural and domestication histories and evolution of S. cerevisiae.
Collapse
Affiliation(s)
- Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China;
| |
Collapse
|
5
|
Spurley WJ, Fisher KJ, Langdon QK, Buh KV, Jarzyna M, Haase MAB, Sylvester K, Moriarty RV, Rodriguez D, Sheddan A, Wright S, Sorlie L, Hulfachor AB, Opulente DA, Hittinger CT. Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates. Yeast 2022; 39:55-68. [PMID: 34741351 PMCID: PMC8881392 DOI: 10.1002/yea.3679] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here, we used environmental sampling and isolation to assemble a dataset of 1962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the USA, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon-substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and isolation temperature associations reflect the ecological diversity of and niche partitioning by yeast taxa.
Collapse
Affiliation(s)
| | | | | | - Kelly V. Buh
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Max A. B. Haase
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Kayla Sylvester
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; Dept. of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Ryan V. Moriarty
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Daniel Rodriguez
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Angela Sheddan
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; West Carroll High School, Savannah, IL 61074, USA
| | - Sarah Wright
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; EAGLE School of Madison, Fitchburg, WI 53711, USA
| | - Lisa Sorlie
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; School District of Bonduel, Bonduel, WI 54107, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | | | | |
Collapse
|
6
|
Pereira PR, Freitas CS, Paschoalin VMF. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: Evaluating potential proteins as a source of antimicrobial peptides. Compr Rev Food Sci Food Saf 2021; 20:4450-4479. [PMID: 34378312 DOI: 10.1111/1541-4337.12798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Saccharomyces cerevisiae is the main biotechnological tool for the production of Baker's or Brewer's biomasses, largely applied in beverage and fermented-food production. Through its gene expression reprogramming and production of compounds that inactivate the growth of other microorganisms, S. cerevisiae is able to grow in adverse environments and in complex microbial consortia, as in fruit pulps and root flour fermentations. The distinct set of up-regulated genes throughout yeast biomass propagation includes those involved in sugar fermentation, ethanol metabolization, and in protective responses against abiotic stresses. These high abundant proteins are precursors of several peptides with promising health-beneficial activities such as antihypertensive, antioxidant, antimicrobial, immunomodulatory, anti-obesity, antidiabetes, and mitogenic properties. An in silico investigation of these S. cerevisiae derived peptides produced during yeast biomass propagation or induced by physicochemical treatments were performed using four algorithms to predict antimicrobial candidates encrypted in abundantly expressed stress-related proteins encoded by different genes like AHP1, TSA1, HSP26, SOD1, HSP10, and UTR2, or metabolic enzymes involved in carbon source utilization, like ENO1/2, TDH1/2/3, ADH1/2, FBA1, and PDC1. Glyceraldehyde-3-phosphate dehydrogenase and enolase II are noteworthy precursor proteins, since they exhibited the highest scores concerning the release of antimicrobial peptide candidates. Considering the set of genes upregulated during biomass propagation, we conclude that S. cerevisiae biomass, a food-grade product consumed and marketed worldwide, should be considered a safe and nonseasonal source for designing next-generation bioactive agents, especially protein encrypting antimicrobial peptides that display broad spectra activity and could reduce the emergence of microbial resistance while also avoiding cytotoxicity.
Collapse
Affiliation(s)
- Patricia R Pereira
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, Brazil
| | - Cyntia S Freitas
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, Brazil
| | - Vania M F Paschoalin
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, Brazil
| |
Collapse
|
7
|
Oenological Potential of Autochthonous Saccharomyces cerevisiae Yeast Strains from the Greek Varieties of Agiorgitiko and Moschofilero. BEVERAGES 2021. [DOI: 10.3390/beverages7020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.
Collapse
|
8
|
Han DY, Han PJ, Rumbold K, Koricha AD, Duan SF, Song L, Shi JY, Li K, Wang QM, Bai FY. Adaptive Gene Content and Allele Distribution Variations in the Wild and Domesticated Populations of Saccharomyces cerevisiae. Front Microbiol 2021; 12:631250. [PMID: 33679656 PMCID: PMC7925643 DOI: 10.3389/fmicb.2021.631250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies on population genomics of Saccharomyces cerevisiae have substantially improved our understanding of the genetic diversity and domestication history of the yeast. However, the origin of the domesticated population of S. cerevisiae and the genomic changes responsible for ecological adaption of different populations and lineages remain to be fully revealed. Here we sequenced 64 African strains from various indigenous fermented foods and forests in different African countries and performed a population genomic analysis on them combined with a set of previously sequenced worldwide S. cerevisiae strains representing the maximum genetic diversity of the species documented so far. The result supports the previous observations that the wild and domesticated populations of S. cerevisiae are clearly separated and that the domesticated population diverges into two distinct groups associated with solid- and liquid-state fermentations from a single ancestor. African strains are mostly located in basal lineages of the two domesticated groups, implying a long domestication history of yeast in Africa. We identified genes that mainly or exclusively occur in specific groups or lineages and genes that exhibit evident group or lineage specific allele distribution patterns. Notably, we show that the homing endonuclease VDE is generally absent in the wild but commonly present in the domesticated lineages of S. cerevisiae. The genes with group specific allele distribution patterns are mostly enriched in functionally similar or related fundamental metabolism processes, including the evolutionary conserved TOR signaling pathway.
Collapse
Affiliation(s)
- Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anbessa Dabassa Koricha
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Abstract
The genus Saccharomyces is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, Saccharomyces species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among Saccharomyces species. These mechanisms have caused the evolution of diverse Saccharomyces species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating Saccharomyces species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus Saccharomyces and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6AA, UK; ,
| | - Duncan Greig
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6AA, UK; ,
| | - Primrose J Boynton
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6AA, UK; ,
| |
Collapse
|
10
|
Jiang L, Su W, Mu Y, Mu Y. Major Metabolites and Microbial Community of Fermented Black Glutinous Rice Wine With Different Starters. Front Microbiol 2020; 11:593. [PMID: 32362879 PMCID: PMC7180510 DOI: 10.3389/fmicb.2020.00593] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Black glutinous rice wine (BGRW) is a traditional Chinese rice wine that is brewed using multiple strains. However, the roles of these microorganisms, particularly their contributions to aroma formation, are poorly understood. Accordingly, the main goal of this study was to determine the microbial communities and major metabolites of different traditional fermentation starters. Anshun (AS) starter and Xingyi (XY) starter were used for BGRW to provide insight into their potential contributions to the variation in flavor and aroma. High-throughput sequencing of the microbial community using the Illumina MiSeq platform revealed significant differences during fermentation between the two starter groups. Pediococcus, Leuconostoc, and Bacillus were the dominant bacterial genera in the AS group, whereas Leuconostoc, Pediococcus, and Gluconobacter were the dominant genera in the XY group. In addition, Rhizopus, Saccharomyces, and Saccharomycopsis were the predominant fungal genera detected in both samples. The major metabolites in the two groups were identified by high-performance liquid chromatography and headspace-solid-phase microextraction gas chromatography–mass spectrometry. A total of seven organic acids along with 47 (AS) and 43 (XY) volatile metabolites were detected, among which lactic acid was the primary organic acid, and esters were the largest group in both types of wine. Principal components analysis further revealed significant differences in the dynamic succession of metabolites between the two samples. Correlation analysis showed that 22 and 17 microorganisms were strongly correlated with the production of major metabolites in AS and XY, respectively. Among them, Pediococcus, Leuconostoc, Lactobacillus, Lactococcus, and Streptococcus were shown to play crucial roles in metabolite synthesis. Overall, this study can provide a valuable resource for the further development and utilization of starters to improve the aromatic quality of BGRW.
Collapse
Affiliation(s)
- Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Fermentation Engineering and Biopharmaceuticals, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Fermentation Engineering and Biopharmaceuticals, Guizhou University, Guiyang, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Fermentation Engineering and Biopharmaceuticals, Guizhou University, Guiyang, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Ramírez M, López-Piñeiro A, Velázquez R, Muñoz A, Regodón JA. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Res Int 2020; 129:108845. [DOI: 10.1016/j.foodres.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
|
12
|
de Celis M, Ruiz J, Martín-Santamaría M, Alonso A, Marquina D, Navascués E, Gómez-Flechoso MÁ, Belda I, Santos A. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett Appl Microbiol 2019; 68:580-588. [PMID: 30929264 DOI: 10.1111/lam.13155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/26/2022]
Abstract
The use of commercial yeast strains is a common practice in winemaking leading to a predictable quality in wine production, avoiding stuck or sluggish fermentations. However, the use of commercial yeasts leads to a consequent reduction in autochthonous microbial diversity. In this study, 1047 isolates from three Spanish appellations of origin were checked for fingerprinting on interdelta polymorphisms and the strain composition and diversity analysed using an extensible open-source platform for processing and analysis of an in-house polymorphism database developed for this study. Ancient vineyards managed with organic practices showed intermediate to low levels of strains diversity indicating the existence of stable populations of Saccharomyces cerevisiae strains. A drastic reduction in the number of different S. cerevisiae strains was observed in vineyards with cellars using a selected autochthonous S. cerevisiae strain for winemaking. Contrary, the use of allochthonous commercial strains in wineries did not seem to affect the native S. cerevisiae strain composition and diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: The aim of this study was to compare different viticulture and oenological practices to determine their influence on the composition and diversity of Saccharomyces cerevisiae strains in wine fermentations. The study shows that the use of autochthonous strains of S. cerevisiae as starters for wine fermentation could have an important incidence on S. cerevisiae strains diversity in surrounding vineyards. The use of autochthonous strains of S. cerevisiae reduced the detected number of S. cerevisiae strains, a fact that was not observed when allochthonous commercial strains were used. Furthermore, vineyards managed with organic practices showed intermediate to low levels of S. cerevisiae strain diversity, whereas conventional practices showed higher levels.
Collapse
Affiliation(s)
- M de Celis
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - J Ruiz
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - M Martín-Santamaría
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - A Alonso
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - D Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - E Navascués
- Pago de Carraovejas, S.L. Camino de Carraovejas, Peñafiel, Valladolid, Spain
| | - M Á Gómez-Flechoso
- Department of Biodiversity, Ecology and Evolution, Unit of Biomathematics, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - I Belda
- Department of Biology, Geology, Physics & Inorganic Chemistry, Unit of Biodiversity and Conservation, Rey Juan Carlos University, Móstoles, Spain.,Science Department, Biome Makers Spain, Valladolid, Spain
| | - A Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Perpète P, Van Cutsem P, Boutte C, Colson-Corbisier AM, Collin S. Amplified Fragment-Length Polymorphism, a New Method for the Analysis of Brewer's Yeast DNA Polymorphism. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-59-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Philippe Perpète
- Unité de Brasserie et des Industries Alimentaires, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Pierre Van Cutsem
- Unité de Recherche en Biologie Végétale, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | - Christophe Boutte
- Unité de Recherche en Biologie Végétale, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | - Anne-Marie Colson-Corbisier
- Unité de Microbiologie, Mycothèque de L'UCL, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Brysch-Herzberg M, Seidel M. Distribution patterns of Saccharomyces species in cultural landscapes of Germany. FEMS Yeast Res 2017; 17:3829890. [DOI: 10.1093/femsyr/fox033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022] Open
|
15
|
Xia W, Nielly-Thibault L, Charron G, Landry CR, Kasimer D, Anderson JB, Kohn LM. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. Mol Ecol 2017; 26:995-1007. [PMID: 27988980 DOI: 10.1111/mec.13954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/28/2016] [Indexed: 12/23/2022]
Abstract
Genetic diversity in experimental, domesticated and wild populations of the related yeasts, Saccharomyces cerevisiae and Saccharomyces paradoxus, has been well described at the global scale. We investigated the population genomics of a local population on a small spatial scale to address two main questions. First, is there genomic variation in a S. paradoxus population at a spatial scale spanning centimetres (microsites) to tens of metres? Second, does the distribution of genomic variants persist over time? Our sample consisted of 42 S. paradoxus strains from 2014 and 43 strains from 2015 collected from the same 72 microsites around four host trees (Quercus rubra and Quercus alba) within 1 km2 in a mixed hardwood forest in southern Ontario. Six additional S. paradoxus strains recovered from adjacent maple and beech trees in 2015 are also included in the sample. Whole-genome sequencing and genomic SNP analysis revealed five differentiated groups (clades) within the sampled area. The signal of persistence of genotypes in their microsites from 2014 to 2015 was highly significant. Isolates from the same tree tended to be more related than strains from different trees, with limited evidence of dispersal between trees. In growth assays, one genotype had a significantly longer lag phase than the other strains. Our results indicate that different clades coexist at fine spatial scale and that population structure persists over at least a one-year interval in these wild yeasts, suggesting the efficacy of yearly sampling to follow longer term genetic dynamics in future studies.
Collapse
Affiliation(s)
- Wenjing Xia
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Lou Nielly-Thibault
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Guillaume Charron
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Christian R Landry
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Dahlia Kasimer
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - James B Anderson
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Linda M Kohn
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
16
|
Bora SS, Keot J, Das S, Sarma K, Barooah M. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India. 3 Biotech 2016; 6:153. [PMID: 28330225 PMCID: PMC4947050 DOI: 10.1007/s13205-016-0471-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq® System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Jyotshna Keot
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Saurav Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kishore Sarma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India.
| |
Collapse
|
17
|
Kowallik V, Greig D. A systematic forest survey showing an association of Saccharomyces paradoxus with oak leaf litter. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:833-841. [PMID: 27481438 DOI: 10.1111/1758-2229.12446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Although we understand the genetics of the laboratory model yeast Saccharomyces cerevisiae very well, we know little about the natural ecology and environment that shaped its genome. Most isolates of Saccharomyces paradoxus, the wild relative of S. cerevisiae, come from oak trees, but it is not known whether this is because oak is their primary habitat. We surveyed leaf litter in a forest in Northern Germany and found a strong correlation between isolation success of wild Saccharomyces and the proximity of the nearest oak. We compared the four most common tree genera and found Saccharomyces most frequently in oak litter. Interestingly, we show that Saccharomyces is much more abundant in oak leaf litter than on oak bark, suggesting that it grows in litter or soil rather than on the surfaces of oaks themselves. The distribution and abundance of Saccharomyces over the course of a year shows that oak leaf litter provides a stable habitat for the yeast, although there was significant tree-to-tree variation. Taken together, our results suggest that leaf litter rather than tree surfaces provide the better habitat for wild Saccharomyces, with oak being the preferred tree genus. 99.5% of all strains (633/636) isolated were S. paradoxus.
Collapse
Affiliation(s)
- Vienna Kowallik
- Experimental Evolution Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Duncan Greig
- Experimental Evolution Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
18
|
De León-Medina PM, Elizondo-González R, Damas-Buenrostro LC, Geertman JM, Van den Broek M, Galán-Wong LJ, Ortiz-López R, Pereyra-Alférez B. Genome annotation of a Saccharomyces sp. lager brewer's yeast. GENOMICS DATA 2016; 9:25-9. [PMID: 27330999 PMCID: PMC4909825 DOI: 10.1016/j.gdata.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/13/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
Abstract
The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.
Collapse
Affiliation(s)
- Patricia Marcela De León-Medina
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Pedro de Alba y Manuel L. Barragán S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66450, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Avenida Carlos Canseco s/n esquina con Av. Gonzalitos, Mutualismo, Mitras Centro, 64460 Monterrey, Nuevo León, Mexico
- Laboratorio de Investigación y Desarrollo, Cervecería Cuauhtémoc Moctezuma S.A. de C.V., Alfonso Reyes Norte Col, Bella Vista, 2202 Monterrey, Nuevo León, Mexico
| | - Ramiro Elizondo-González
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Pedro de Alba y Manuel L. Barragán S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66450, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Avenida Carlos Canseco s/n esquina con Av. Gonzalitos, Mutualismo, Mitras Centro, 64460 Monterrey, Nuevo León, Mexico
- Laboratorio de Investigación y Desarrollo, Cervecería Cuauhtémoc Moctezuma S.A. de C.V., Alfonso Reyes Norte Col, Bella Vista, 2202 Monterrey, Nuevo León, Mexico
| | - Luis Cástulo Damas-Buenrostro
- Laboratorio de Investigación y Desarrollo, Cervecería Cuauhtémoc Moctezuma S.A. de C.V., Alfonso Reyes Norte Col, Bella Vista, 2202 Monterrey, Nuevo León, Mexico
| | - Jan-Maarten Geertman
- Heineken Supply Chain, Global Research & Development, 2382 PH Zoeterwoude, The Netherlands
| | - Marcel Van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Luis Jesús Galán-Wong
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Pedro de Alba y Manuel L. Barragán S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Rocío Ortiz-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Avenida Carlos Canseco s/n esquina con Av. Gonzalitos, Mutualismo, Mitras Centro, 64460 Monterrey, Nuevo León, Mexico
| | - Benito Pereyra-Alférez
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Pedro de Alba y Manuel L. Barragán S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66450, Mexico
- Corresponding author at: Pedro de Alba y Manuel L. Barragán S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66450, Mexico.Pedro de Alba y Manuel L. Barragán S/N, Ciudad UniversitariaSan Nicolás de los GarzaNuevo León66450Mexico
| |
Collapse
|
19
|
Sipiczki M. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines. Front Microbiol 2016; 7:212. [PMID: 26973603 PMCID: PMC4770031 DOI: 10.3389/fmicb.2016.00212] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/09/2016] [Indexed: 11/13/2022] Open
Abstract
The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology turned out to belong to Aureobasidium subglaciale, Kabatiella microsticta, or Columnosphaeria fagi. The ascomyceteous isolates grew at high concentrations of sugars with Wickerhamomyces anomalus being the most tolerant species. Complex interactions including antagonism (growth inhibition, contact inhibition, competition for nutrients) and synergism (crossfeeding) among the isolates and with Botrytis cinerea shape the composition of the overwintering communities.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen Debrecen, Hungary
| |
Collapse
|
20
|
Barbosa R, Almeida P, Safar SVB, Santos RO, Morais PB, Nielly-Thibault L, Leducq JB, Landry CR, Gonçalves P, Rosa CA, Sampaio JP. Evidence of Natural Hybridization in Brazilian Wild Lineages of Saccharomyces cerevisiae. Genome Biol Evol 2016; 8:317-29. [PMID: 26782936 PMCID: PMC4779607 DOI: 10.1093/gbe/evv263] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The natural biology of Saccharomyces cerevisiae, the best known unicellular model eukaryote, remains poorly documented and understood although recent progress has started to change this situation. Studies carried out recently in the Northern Hemisphere revealed the existence of wild populations associated with oak trees in North America, Asia, and in the Mediterranean region. However, in spite of these advances, the global distribution of natural populations of S. cerevisiae, especially in regions were oaks and other members of the Fagaceae are absent, is not well understood. Here we investigate the occurrence of S. cerevisiae in Brazil, a tropical region where oaks and other Fagaceae are absent. We report a candidate natural habitat of S. cerevisiae in South America and, using whole-genome data, we uncover new lineages that appear to have as closest relatives the wild populations found in North America and Japan. A population structure analysis revealed the penetration of the wine genotype into the wild Brazilian population, a first observation of the impact of domesticated microbe lineages on the genetic structure of wild populations. Unexpectedly, the Brazilian population shows conspicuous evidence of hybridization with an American population of Saccharomyces paradoxus. Introgressions from S. paradoxus were significantly enriched in genes encoding secondary active transmembrane transporters. We hypothesize that hybridization in tropical wild lineages may have facilitated the habitat transition accompanying the colonization of the tropical ecosystem.
Collapse
Affiliation(s)
- Raquel Barbosa
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro Almeida
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Silvana V B Safar
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Oliveira Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Universidade Federal de Tocantins, Palmas, TO, Brazil
| | - Lou Nielly-Thibault
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugènes-Marchand, QC, Canada
| | - Jean-Baptiste Leducq
- Département des Sciences Biologiques, Pavillon Marie-Victorin, 90 Rue Vincent D'indy-Université de Montréal, Montréal, QC, Canada
| | - Christian R Landry
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugènes-Marchand, QC, Canada
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
21
|
Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol 2016; 100:2035-46. [PMID: 26728020 DOI: 10.1007/s00253-015-7255-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.
Collapse
|
22
|
Brysch-Herzberg M, Seidel M. Yeast diversity on grapes in two German wine growing regions. Int J Food Microbiol 2015; 214:137-144. [DOI: 10.1016/j.ijfoodmicro.2015.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 01/19/2023]
|
23
|
Borling Welin J, Lyberg K, Passoth V, Olstorpe M. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium. FRONTIERS IN PLANT SCIENCE 2015; 6:270. [PMID: 25954295 PMCID: PMC4406003 DOI: 10.3389/fpls.2015.00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
This study combined moist airtight storage of moist grain with pig feed fermentation. Starter cultures with the potential to facilitate both technologies were added to airtight stored moist crimped cereal grain, and the impact on storage microflora and the quality of feed fermentations generated from the grain was investigated. Four treatments were compared: three based on moist barley, either un-inoculated (M), inoculated with Wickerhamomyces anomalus (W), or inoculated with W. anomalus and LAB starter culture, containing Pediococcus acidilactici DSM 16243, Pediococcus pentosaceus DSM 12834 and Lactobacillus plantarum DSM 12837 (WLAB); and one treatment based on dried barley (D). After 6 weeks of storage, four feed fermentations FM, FW, FWLAB, and FD, were initiated from M, W, WLAB, and D, respectively, by mixing the grain with water to a dry matter content of 30%. Each treatment was fermented in batch initially for 7 days and then kept in a continuous mode by adding new feed daily with 50% back-slop. During the 6 week storage period, the average water activity decreased in M, W and WLAB from 0.96 to 0.85, and cereal pH decreased from approximately 6.0 at harvest to 4.5. Feed fermentation conferred a further pH decrease to 3.8-4.1. In M, W and WLAB, molds and Enterobacteriaceae were mostly below detection limit, whereas both organism groups were detected in D. In fermented feed, Enterobacteriaceae were below detection limit in almost all conditions. Molds were detected in FD, for most of the fermentation time in FM and at some sampling points in FW and FWLAB. Starter organisms, especially W. anomalus and L. plantarum comprised a considerable proportion of the yeast and LAB populations, respectively, in both stored grain and fermented feed. However, autochthonous Pichia kudriavzevii and Kazachstania exigua partially dominated the yeast populations in stored grain and fermented feed, respectively.
Collapse
Affiliation(s)
- Jenny Borling Welin
- Department of Animal Nutrition and Management, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Karin Lyberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Volkmar Passoth
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Matilda Olstorpe
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural SciencesUppsala, Sweden
| |
Collapse
|
24
|
Liti G. The fascinating and secret wild life of the budding yeast S. cerevisiae. eLife 2015; 4. [PMID: 25807086 PMCID: PMC4373461 DOI: 10.7554/elife.05835] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used in laboratory experiments for over a century and has been instrumental in understanding virtually every aspect of molecular biology and genetics. However, it wasn't until a decade ago that the scientific community started to realise how little was known about this yeast's ecology and natural history, and how this information was vitally important for interpreting its biology. Recent large-scale population genomics studies coupled with intensive field surveys have revealed a previously unappreciated wild lifestyle of S. cerevisiae outside the restrictions of human environments and laboratories. The recent discovery that Chinese isolates harbour almost twice as much genetic variation as isolates from the rest of the world combined suggests that Asia is the likely origin of the modern budding yeast. DOI:http://dx.doi.org/10.7554/eLife.05835.001
Collapse
Affiliation(s)
- Gianni Liti
- Institute for Research on Cancer and Ageing of Nice, CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
25
|
Kowallik V, Miller E, Greig D. The interaction of Saccharomyces paradoxus with its natural competitors on oak bark. Mol Ecol 2015; 24:1596-610. [PMID: 25706044 PMCID: PMC4405091 DOI: 10.1111/mec.13120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
The natural history of the model yeast Saccharomyces cerevisiae is poorly understood and confounded by domestication. In nature, S. cerevisiae and its undomesticated relative S. paradoxus are usually found on the bark of oak trees, a habitat very different from wine or other human fermentations. It is unclear whether the oak trees are really the primary habitat for wild yeast, or whether this apparent association is due to biased sampling. We use culturing and high-throughput environmental sequencing to show that S. paradoxus is a very rare member of the oak bark microbial community. We find that S. paradoxus can grow well on sterile medium made from oak bark, but that its growth is strongly suppressed when the other members of the community are present. We purified a set of twelve common fungal and bacterial species from the oak bark community and tested how each affected the growth of S. paradoxus in direct competition on oak bark medium at summer and winter temperatures, identifying both positive and negative interactions. One Pseudomonas species produces a diffusible toxin that suppresses S. paradoxus as effectively as either the whole set of twelve species together or the complete community present in nonsterilized oak medium. Conversely, one of the twelve species, Mucilaginibacter sp., had the opposite effect and promoted S. paradoxus growth at low temperatures. We conclude that, in its natural oak tree habitat, S. paradoxus is a rare species whose success depends on the much more abundant microbial species surrounding it.
Collapse
Affiliation(s)
- Vienna Kowallik
- Max Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, 24306, Plön, Germany
| | | | | |
Collapse
|
26
|
Boynton PJ, Greig D. The ecology and evolution of non-domesticated Saccharomyces species. Yeast 2014; 31:449-62. [PMID: 25242436 PMCID: PMC4282469 DOI: 10.1002/yea.3040] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution.
Collapse
Affiliation(s)
| | - Duncan Greig
- Max Planck Institute for Evolutionary BiologyPlön, Germany
- Galton Laboratory, Department of Genetics, Evolution and Environment, University College LondonUK
| |
Collapse
|
27
|
Martos MA, Zubreski ER, Combina M, Garro OA, Hours RA. Isolation of a yeast strain able to produce a polygalacturonase with maceration activity of cassava roots. FOOD SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1590/s0101-20612013005000047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Díaz C, Molina AM, Nähring J, Fischer R. Characterization and dynamic behavior of wild yeast during spontaneous wine fermentation in steel tanks and amphorae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:540465. [PMID: 23738327 PMCID: PMC3659642 DOI: 10.1155/2013/540465] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022]
Abstract
We studied the dynamic behavior of wild yeasts during spontaneous wine fermentation at a winery in the Valais region of Switzerland. Wild yeasts in the winery environment were characterized using a PCR-RFLP method. Up to 11 different yeast species were isolated from the vineyard air, whereas only seven were recovered from the grapes surface. We initially investigated a cultureindependent method in pilot-scale steel fermentation tanks and found a greater diversity of yeasts in the musts from two red grape varieties compared to three white grape varieties. We found that the yeasts Metschnikowia pulcherrima, Rhodotorula mucilaginosa, Pichia kluyveri, P. membranifaciens and Saccharomyces cerevisiae remained active at the end of the fermentation. We also studied the dynamic behavior of yeasts in Qvevris for the first time using a novel, highlysensitive quantitative real-time PCR method. We found that non-Saccharomyces yeasts were present during the entire fermentation process, with R. mucilaginosa and P. anomala the most prominent species. We studied the relationship between the predominance of different species and the output of the fermentation process. We identified so-called spoilage yeasts in all the fermentations, but high levels of acetic acid accumulated only in those fermentations with an extended lag phase.
Collapse
Affiliation(s)
- Cecilia Díaz
- Molecular Biology Division, Fraunhofer Institute for Molecular Biology and Applied Ecology, 57392 Schmallenberg, Germany.
| | | | | | | |
Collapse
|
29
|
Wang QM, Liu WQ, Liti G, Wang SA, Bai FY. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 2012; 21:5404-17. [PMID: 22913817 DOI: 10.1111/j.1365-294x.2012.05732.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/06/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022]
Abstract
The budding yeast, Saccharomyces cerevisiae, is a leading system in genetics, genomics and molecular biology and is becoming a powerful tool to illuminate ecological and evolutionary principles. However, little is known of the ecology and population structure of this species in nature. Here, we present a field survey of this yeast at an unprecedented scale and have performed population genetics analysis of Chinese wild isolates with different ecological and geographical origins. We also included a set of worldwide isolates that represent the maximum genetic variation of S. cerevisiae documented so far. We clearly show that S. cerevisiae is a ubiquitous species in nature, occurring in highly diversified substrates from human-associated environments as well as habitats remote from human activity. Chinese isolates of S. cerevisiae exhibited strong population structure with nearly double the combined genetic variation of isolates from the rest of the world. We identified eight new distinct wild lineages (CHN I-VIII) from a set of 99 characterized Chinese isolates. Isolates from primeval forests occur in ancient and significantly diverged basal lineages, while those from human-associated environments generally cluster in less differentiated domestic or mosaic groups. Basal lineages from primeval forests are usually inbred, exhibit lineage-specific karyotypes and are partially reproductively isolated. Our results suggest that greatly diverged populations of wild S. cerevisiae exist independently of and predate domesticated isolates. We find that China harbours a reservoir of natural genetic variation of S. cerevisiae and perhaps gives an indication of the origin of the species.
Collapse
Affiliation(s)
- Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
30
|
Biodiversity of indigenous Saccharomyces populations from old wineries of south-eastern Sicily (Italy): preservation and economic potential. PLoS One 2012; 7:e30428. [PMID: 22393353 PMCID: PMC3290603 DOI: 10.1371/journal.pone.0030428] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 12/20/2011] [Indexed: 11/24/2022] Open
Abstract
In recent years, the preservation of biodiversity has become an important issue. Despite much public discussion, however, current practices in the food industry seldom take account of its potential economic importance: on the contrary, the introduction of industrialized agriculture practices over large areas has often resulted in a dramatic reduction in biodiversity. In this paper, we report on the remarkable degree of biodiversity in the wine yeast populations naturally present in a small area of Sicily (Italy) where traditional (non-industrial) winery practices are still in place. Out of more than 900 Saccharomyces yeast isolates recovered from late spontaneous fermentations, we detected at least 209 strains. Most interestingly, when evaluated at the fermentation and technological level, a number of isolates were found to be superior to industrial yeast strains. Out of a selected group, isolates from two strains were used for experimental fermentations in a winery environment and the quality of the wines produced was assessed at the technological, quality and sensory levels. Given that the characteristics of the wines produced were found to be industrially appealing, the study demonstrated the economic potential of preserving the patrimony of Sicilian yeast biodiversity and highlighted the importance of maintaining traditional wine making practices.
Collapse
|
31
|
Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 2012; 22:908-24. [PMID: 22369888 PMCID: PMC3337436 DOI: 10.1101/gr.130310.111] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species--i.e., its "pan-genome"--has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes-plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae.
Collapse
Affiliation(s)
- Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | | | | | | |
Collapse
|
32
|
Yeast culture collections of the world: meeting the needs of industrial researchers. J Ind Microbiol Biotechnol 2012; 39:673-80. [PMID: 22231720 DOI: 10.1007/s10295-011-1078-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
The importance of selecting optimal yeast strains for research or industrial applications is often underestimated. For example, utilizing a strain background that already provides the desired stress tolerance or nutrient utilization profile can eliminate costly strain optimization. Yeast culture collections can provide not only the yeast strains but also data and curator expertise to help narrow the search for the optimal strain. While some collections are known for a broad range of cultures and services, other "boutique" collections can provide a broader selection of strains of certain categories, a surprising amount of characterization data, and assistance in selecting strains. This article provides information on dozens of yeast collections of the world, profiles of selected yeast culture collections, and the services that they provide: e.g., strain preservation for patent or safe deposit purposes, species identification service, training workshops, and consulting on yeast identification and physiology. Utilization of these services can save industrial researchers valuable time and resources.
Collapse
|
33
|
Barata A, Malfeito-Ferreira M, Loureiro V. The microbial ecology of wine grape berries. Int J Food Microbiol 2011; 153:243-59. [PMID: 22189021 DOI: 10.1016/j.ijfoodmicro.2011.11.025] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/28/2011] [Accepted: 11/27/2011] [Indexed: 11/29/2022]
Abstract
Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp., Burkholderia spp., Serratia spp., Staphylococcus spp., among others, have been isolated from grapes but do not have the ability to grow in wines. Saprophytic moulds, like Botrytis cinerea, causing grey rot, or Aspergillus spp., possibly producing ochratoxin, are only active in the vineyard, although their metabolites may affect wine quality during grape processing. The impact of damaged grapes in yeast ecology has been underestimated mostly because of inaccurate grape sampling. Injured berries hidden in apparently sound bunches explain the recovery of a higher number of species when whole bunches are picked. Grape health status is the main factor affecting the microbial ecology of grapes, increasing both microbial numbers and species diversity. Therefore, the influence of abiotic (e.g. climate, rain, hail), biotic (e.g. insects, birds, phytopathogenic and saprophytic moulds) and viticultural (e.g. fungicides) factors is dependent on their primary damaging effect.
Collapse
Affiliation(s)
- A Barata
- Laboratório de Microbiologia, Centro de Botânica Aplicada à Agricultura, Technical University of Lisbon, 1349-017 Lisbon, Portugal.
| | | | | |
Collapse
|
34
|
Péter G, Dlauchy D, Szűcs E, Tornai-Lehoczki J. Enrichment in methanol-containing broth — A simple method for the isolation ofSaccharomycesfrom grapes. ACTA ALIMENTARIA 2011. [DOI: 10.1556/aalim.40.2011.3.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Cordero-Bueso G, Arroyo T, Serrano A, Valero E. Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. Int J Food Microbiol 2011; 148:23-9. [DOI: 10.1016/j.ijfoodmicro.2011.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 11/29/2022]
|
36
|
Abstract
Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes.
Collapse
|
37
|
Presence of enological microorganisms in the grapes and the air of a vineyard during the ripening period. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1528-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Gonçalves P, Valério E, Correia C, de Almeida JMGCF, Sampaio JP. Evidence for divergent evolution of growth temperature preference in sympatric Saccharomyces species. PLoS One 2011; 6:e20739. [PMID: 21674061 PMCID: PMC3107239 DOI: 10.1371/journal.pone.0020739] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/09/2011] [Indexed: 01/17/2023] Open
Abstract
The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces.
Collapse
Affiliation(s)
- Paula Gonçalves
- Departamento de Ciências da Vida, Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | | | | | | | | |
Collapse
|
39
|
Past, present and future research directions with Pichia anomala. Antonie van Leeuwenhoek 2010; 99:121-5. [DOI: 10.1007/s10482-010-9508-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
|
40
|
Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Yasokawa D, Iwahashi H. Toxicogenomics using yeast DNA microarrays. J Biosci Bioeng 2010; 110:511-22. [PMID: 20624688 DOI: 10.1016/j.jbiosc.2010.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 02/03/2023]
Abstract
Development of genomics and bioinformatics enable us to analyze the global gene expression profiles of cells by DNA microarray. Changes in gene expression patterns indicate changes in its physiological conditions. Following the exposure of an organism or cell to toxic chemicals or other environmental stresses, the global genetic responses can be expeditiously and easily analyzed. Baker's yeast, Saccharomyces cerevisiae, is one of the most studied and useful model eukaryotes. The biggest advantage of yeast genomics is the available functional information for each gene and a considerable number of data are accumulating in the field of toxicity assessment using yeast DNA microarray. In this review, we discuss the toxicogenomics of metal ions, alcohols and aldehydes, and other chemicals.
Collapse
Affiliation(s)
- Daisuke Yasokawa
- Hokkaido Food Processing Research Center, Department of Food Development, 589-4 Bunkyodai Midorimachi, Ebetsu, Hokkaido 0690836, Japan.
| | | |
Collapse
|
42
|
Ocón E, Gutiérrez AR, Garijo P, López R, Santamaría P. Presence of non-Saccharomyces yeasts in cellar equipment and grape juice during harvest time. Food Microbiol 2010; 27:1023-7. [PMID: 20832680 DOI: 10.1016/j.fm.2010.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/15/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to analyze the presence of different yeasts in the facilities of four wineries from the D.O.Ca. Rioja region in Spain. The study was conducted through the identification of the yeasts via the PCR-RFLP technique of the ITS region of rDNA. The diversity of non-Saccharomyces yeasts found in wineries has previously only been studied to a limited extent, despite the fact that these yeasts take part both in the start of spontaneous fermentation and in the changes which occur in the wines during their subsequent conservation. Most earlier studies carried out on cellar ecosystems have focussed on the clonal diversity of Saccharomyces cerevisiae. The results obtained in this study indicated that the presence of non-Saccharomyces yeasts in facilities is higher than that of the S. cerevisiae, with percentages of over 60% in all the wineries analyzed. Yeasts belonging to 10 genera and 18 species were isolated, but the only genera present in all four wineries were Cryptococcus, Pichia, and Saccharomyces. The Zygosaccharomyces bailii yeast responsible for taint was detected in one cleaned winery, in both the winemaking equipment and the fermenting must. It was also noted that the quantity and type of yeasts present in the facilities are related to the product used for cleaning them. It is also necessary to point out that the cleaning of the cellars prior to the reception of the grapes does not completely eliminate the yeasts present, so that these can subsequently become part of the vinification process.
Collapse
Affiliation(s)
- E Ocón
- ICVV, Instituto de Ciencias de la Vid y el Vino, Universidad de La Rioja, CSIC, Logroño, Spain.
| | | | | | | | | |
Collapse
|
43
|
Quantitative and qualitative analysis of non-Saccharomyces yeasts in spontaneous alcoholic fermentations. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1233-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Abstract
Yeasts used in the production of lagers belong to the genus Saccharomyces pastorianus. Species within this genus arose from a natural hybridization event between two yeast species that appear to be closely related to Saccharomyces cerevisiae and Saccharomyces bayanus. The resultant hybrids contain complex allopolyploid genomes and retain genetic characteristics of both parental species. Recent genome analysis using both whole genome sequencing and competitive genomic hybridization techniques has revealed the underlying composition of lager yeasts genomes. There appear to be at least 36 unique chromosomes, many of which are lager specific, resulting from recombination events between the homeologous parental chromosomes. The recombination events are limited to a defined set of genetic loci, which are highly conserved within strains of lager yeasts. In addition to the hybrid chromosomes, several non-reciprocal chromosomal translocations and inversions are also observed. Remarkably, in response to exposure to environmental stresses such as high temperatures and high osmotic pressure, the genomes appear to be highly dynamic and undergo recombination events at defined loci and alterations in the telomeric regions. The ability of environmental stress to alter the structure and composition of the genomes of lager yeasts may point to mechanisms of adaptive evolution in these species.
Collapse
Affiliation(s)
- Ursula Bond
- School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
45
|
Romancino DP, Di Maio S, Muriella R, Oliva D. Analysis of non-Saccharomyces yeast populations isolated from grape musts from Sicily (Italy). J Appl Microbiol 2009; 105:2248-54. [PMID: 19120668 DOI: 10.1111/j.1365-2672.2008.03894.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to identify the non-Saccharomyces yeast populations present in the grape must microflora from wineries from different areas around the island of Sicily. METHODS AND RESULTS Yeasts identification was conducted on 2575 colonies isolated from six musts, characterized using Wallerstein Laboratory (WL) nutrient agar, restriction analysis of the amplified 5.8S-internal transcribed spacer region and restriction profiles of amplified 26S rDNA. In those colonies, we identified 11 different yeast species originating from wine musts from two different geographical areas of the island of Sicily. CONCLUSIONS We isolated non-Saccharomyces yeasts and described the microflora in grape musts from different areas of Sicily. Moreover, we discovered two new colony morphologies for yeasts on WL agar never previously described. SIGNIFICANCE AND IMPACT OF THE STUDY This investigation is a first step in understanding the distribution of non-Saccharomyces yeasts in grape musts from Sicily. The contribution is important as a tool for monitoring the microflora in grape musts and for establishing a new non-Saccharomyces yeast collection; in the future, this collection will be used for understanding the significance of these yeasts in oenology.
Collapse
Affiliation(s)
- D P Romancino
- Istituto di Biomedicina ed Immunologia Molecolare, CNR, Palermo, Italy.
| | | | | | | |
Collapse
|
46
|
Diezmann S, Dietrich FS. Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS One 2009; 4:e5317. [PMID: 19390633 PMCID: PMC2669729 DOI: 10.1371/journal.pone.0005317] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/25/2009] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. METHODOLOGY/PRINCIPAL FINDINGS DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. CONCLUSIONS/SIGNIFICANCE Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups.
Collapse
Affiliation(s)
- Stephanie Diezmann
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | |
Collapse
|
47
|
|
48
|
Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Int J Food Microbiol 2008; 128:268-73. [DOI: 10.1016/j.ijfoodmicro.2008.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/03/2008] [Accepted: 08/28/2008] [Indexed: 11/23/2022]
|
49
|
Sampaio JP, Gonçalves P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 2008; 74:2144-52. [PMID: 18281431 PMCID: PMC2292605 DOI: 10.1128/aem.02396-07] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/05/2008] [Indexed: 11/20/2022] Open
Abstract
Here we report the isolation of four Saccharomyces species (former Saccharomyces sensu stricto group) from tree bark. The employment of two temperatures (10 degrees C in addition to the more commonly used 30 degrees C) resulted in the isolation of S. kudriavzevii and S. uvarum, two species that grow at low temperatures, in addition to S. cerevisiae and S. paradoxus. A clear bias was found toward the bark of certain trees, particularly certain oak species. Very often, more than one Saccharomyces species was found in one locality and occasionally even in the same bark sample. Our evidence strongly suggests that (markedly) different growth temperature preferences play a fundamental role in the sympatric associations of Saccharomyces species uncovered in this survey. S. kudriavzevii was isolated at most of the sites sampled in Portugal, indicating that the geographic distribution of this species is wider than the distribution assumed thus far. However, the Portuguese S. kudriavzevii population exhibited important genetic differences compared to the type strain of the species that represents a Japanese population. In this study, S. kudriavzevii stands out as the species that copes better with low temperatures.
Collapse
Affiliation(s)
- José Paulo Sampaio
- Centro de Recursos Microbiológicos, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
50
|
Sangorrín MP, Lopes CA, Giraudo MR, Caballero AC. Diversity and killer behaviour of indigenous yeasts isolated from the fermentation vat surfaces in four Patagonian wineries. Int J Food Microbiol 2007; 119:351-7. [PMID: 17531343 DOI: 10.1016/j.ijfoodmicro.2007.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 03/17/2007] [Indexed: 11/17/2022]
Abstract
The diversity and killer behaviour of the yeast biota associated with surfaces of four Patagonian wineries were analyzed in the present study. These wineries were different in their technological and ecological features. Following liquid enrichment of samples from fermentation vat surfaces yeast isolates were identified by pheno- and genotyping and characterized using killer sensitivity patterns. Out of 92 isolated yeasts, 25% were Saccharomyces cerevisiae; 18% were Kloeckera apiculata and 11% were Pichia anomala; other six species representing a low percentage were also found. A particular biota composed mainly by S. cerevisiae (57%) and P. anomala (37%) was found in the winery located far from the other three wineries. As a whole, the wineries using spontaneous fermentation showed a major percentage of S. cerevisiae and a minor percentage of K. apiculata. The present study showed a pronounced heterogeneity in killer behaviour: killer, 35%, neutral, 25% and sensitive, 40%. In particular, S. cerevisiae isolates showed a higher sensitivity to killer reference yeasts than non-Saccharomyces isolates. On the other hand, most of the non-Saccharomyces yeasts isolated from fermentation vats were resistant to Saccharomyces toxins.
Collapse
Affiliation(s)
- Marcela Paula Sangorrín
- Departamento de Química, Laboratorio de Microbiología y Biotecnología, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires, Neuquén, Argentina
| | | | | | | |
Collapse
|