1
|
Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J Neurosci 2018; 39:663-677. [PMID: 30541916 DOI: 10.1523/jneurosci.2272-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
Myelinated axons are constricted at nodes of Ranvier. These constrictions are important physiologically because they increase the speed of saltatory nerve conduction, but they also represent potential bottlenecks for the movement of axonally transported cargoes. One type of cargo are neurofilaments, which are abundant space-filling cytoskeletal polymers that function to increase axon caliber. Neurofilaments move bidirectionally along axons, alternating between rapid movements and prolonged pauses. Strikingly, axon constriction at nodes is accompanied by a reduction in neurofilament number that can be as much as 10-fold in the largest axons. To investigate how neurofilaments navigate these constrictions, we developed a transgenic mouse strain that expresses a photoactivatable fluorescent neurofilament protein in neurons. We used the pulse-escape fluorescence photoactivation technique to analyze neurofilament transport in mature myelinated axons of tibial nerves from male and female mice of this strain ex vivo Fluorescent neurofilaments departed the activated region more rapidly in nodes than in flanking internodes, indicating that neurofilament transport is faster in nodes. By computational modeling, we showed that this nodal acceleration can be explained largely by a local increase in the duty cycle of neurofilament transport (i.e., the proportion of the time that the neurofilaments spend moving). We propose that this transient acceleration functions to maintain a constant neurofilament flux across nodal constrictions, much as the current increases where a river narrows its banks. In this way, neurofilaments are prevented from piling up in the flanking internodes, ensuring a stable neurofilament distribution and uniform axonal morphology across these physiologically important axonal domains.SIGNIFICANCE STATEMENT Myelinated axons are constricted at nodes of Ranvier, resulting in a marked local decrease in neurofilament number. These constrictions are important physiologically because they increase the efficiency of saltatory nerve conduction, but they also represent potential bottlenecks for the axonal transport of neurofilaments, which move along axons in a rapid intermittent manner. Imaging of neurofilament transport in mature myelinated axons ex vivo reveals that neurofilament polymers navigate these nodal axonal constrictions by accelerating transiently, much as the current increases where a river narrows its banks. This local acceleration is necessary to ensure a stable axonal morphology across nodal constrictions, which may explain the vulnerability of nodes of Ranvier to neurofilament accumulations in animal models of neurotoxic neuropathies and neurodegenerative diseases.
Collapse
|
2
|
Greene JJ, McClendon MT, Stephanopoulos N, Álvarez Z, Stupp SI, Richter CP. Electrophysiological assessment of a peptide amphiphile nanofiber nerve graft for facial nerve repair. J Tissue Eng Regen Med 2018; 12:1389-1401. [PMID: 29701919 PMCID: PMC6269104 DOI: 10.1002/term.2669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/01/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022]
Abstract
Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with (1) an intact nerve, (2) following resection of a nerve segment, and following resection and immediate repair with either a (3) autograft (using the resected nerve segment), (4) neurograft, or (5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes whereas nerve compound action potentials (nCAPs) and electromygraphic responses were recorded. After 8 weeks, the proximal buccal branch was surgically reexposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft, and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and transmission electron microscopy confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair.
Collapse
Affiliation(s)
- Jacqueline J Greene
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark T. McClendon
- Simpson Querrey Institute for BioNanotechnology Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, U.S.A
| |
Collapse
|
3
|
Christensen MB, Tresco PA. Differences Exist in the Left and Right Sciatic Nerves of Naïve Rats and Cats. Anat Rec (Hoboken) 2015; 298:1492-501. [PMID: 25857635 DOI: 10.1002/ar.23161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
The sciatic nerve of rats and cats is commonly used in experimental models of peripheral nerve injury and repair, as well as experiments involving peripheral nerve electrode implantation. In such experiments, morphometric parameters from the implanted nerve are commonly evaluated and compared to control values obtained from the contralateral nerves. However, this may not be an appropriate approach as differences may naturally exist in the structure of the two nerves owing to developmental or behavioral asymmetry. Additionally, in the cat, baseline values for standard morphometric parameters are not well established. In this study, we characterized fascicle area, fiber count, fiber density, fiber packing, mean g-ratio, and fiber diameter distributions in the rat and cat, as well as investigated the potential for naturally occurring sided differences in these parameters in both species. We also investigated whether animal age or location along the nerve influenced these parameters. We found that sided or left/right leg differences exist in some parameters in both the rat and the cat, calling into question the validity of using the contralateral nerve as a control. We also found that animal age and location along the nerve can make significant differences in the parameters tested, establishing the importance of using control nerves from age- and behaviorally matched animals whose morphometric parameters are collected and compared from the same location.
Collapse
Affiliation(s)
- Michael B Christensen
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, Utah
| | - Patrick A Tresco
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Saray A. Custom prefabrication of silicone tubes from urinary catheters for experimental peripheral nerve surgery. THE CANADIAN JOURNAL OF PLASTIC SURGERY = JOURNAL CANADIEN DE CHIRURGIE PLASTIQUE 2013; 12:20-2. [PMID: 24115867 DOI: 10.1177/229255030401200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The entubulation principle represents a neurobiological approach to nerve surgery in which the role of the surgeon is limited and intrinsic healing capabilities of the nerve play the primary role. Herein, a technique for fabricating custom-made silicone tubes from a silicone urinary catheter is described. Silicone tubes with varying size and dimensions can be tailored depending on the diameter of the silicone urinary catheter (14 F to 18 F). Tubes crafted from silicone urinary catheters were used either as a nerve conduit to facilitate regeneration or as compressive nerve banding to simulate compressive neuropathy in the rat sciatic nerve. Custom-made silicone tubes have similar pros and cons to the commercially available silicone tubes regarding the capsule and foreign body reaction. It can be concluded that these cost effective tubes can be easily cut and used in experimental peripheral nerve surgery in developing countries where the cost of such materials becomes an important issue for the researchers.
Collapse
Affiliation(s)
- Aydin Saray
- Department of Plastic and Reconstructive Surgery, Kirikkale University Medical School, Kirikkale, Turkey
| |
Collapse
|
5
|
Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity. PLoS One 2012; 7:e31675. [PMID: 22347502 PMCID: PMC3276507 DOI: 10.1371/journal.pone.0031675] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/11/2012] [Indexed: 11/24/2022] Open
Abstract
A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG) cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ) in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05) while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001). Major histocompatibility complex I (MHC I) molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold standard of autologous nerve transplant.
Collapse
|
6
|
Szarek D, Laska J, Jarmundowicz W, Blazewicz S, Tabakow P, Marycz K, Wozniak Z, Mierzwa J. Influence of Alginates on Tube Nerve Grafts of Different Elasticity - Preliminary <i>in Vivo</i> Study. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.31004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Greer R, Daniel J, Uemura E, Kudej R, Chen YS, Chung CH. Use of a Multiple Lumen Cuff for Nerve Regeneration. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-331-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractInitial studies using the rat sciatic nerve demonstrated the ability to adapt a multiple lumen cuff face to a nerve stump repair site. The neurons in the proximal stump grew through the individual conduits of the silicone rubber cuff, crossed a 5 mm gap, and continued into the distal stump. The effect of the cuff design on axonal regeneration was studied by comparing macroscopic and microstructural results for experimental groups of Sprague-Dawley rats with controls at 8, 12, 16, and 24 weeks post-implantation. The several individual nerve bundles which formed within the cuff lumens during these periods maintained their alignment on the distal side of the gap. The use of the multiple lumen system provided suitable scaffolding support and control of orientation and direction for fibers and established a sized, controlled environment for regeneration within each of the separate nerve cuff compartments.
Collapse
|
8
|
Belchior ACG, dos Reis FA, Nicolau RA, Silva IS, Perreira DM, de Carvalho PDTC. Influence of laser (660 nm) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 2009; 24:893-9. [PMID: 19198971 DOI: 10.1007/s10103-008-0642-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 12/23/2008] [Indexed: 12/01/2022]
Abstract
With the aim of accelerating the regenerative processes, the objective was to study the influence of gallium-aluminum-arsenide (GaAlAs) laser (660 nm) on functional and histomorphological recovery of the sciatic nerve in rats. The sciatic nerves of 12 Wistar rats were crushed divided into two groups: control and laser therapy. For the latter, GaAlAs laser was utilized (660 nm, 4 J/cm(2), 26.3 mW and 0.63 cm(2) beam), at three equidistant points on the lesion, for 20 days. Comparison of the sciatic functional index (SFI) showed that there was a significant difference only between the pre-lesion value of the laser therapy group and that after the 21st day in the control group. It was concluded that the parameters and methods utilized demonstrated positive results regarding the SFI over the time period evaluated.
Collapse
|
9
|
Nomura H, Baladie B, Katayama Y, Morshead CM, Shoichet MS, Tator CH. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury. Neurosurgery 2009; 63:127-41; discussion 141-3. [PMID: 18728578 DOI: 10.1227/01.neu.0000335080.47352.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We describe a new strategy to promote axonal regeneration after subacute or chronic spinal cord injury consisting of intramedullary implantation of chitosan guidance channels containing peripheral nerve (PN) grafts. METHODS Chitosan channels filled with PN grafts harvested from green fluorescent protein rats were implanted in the cavity 1 week (subacute) or 4 weeks (chronic) after 50-g clip injury at T8 and were compared with similarly injured animals implanted with either unfilled channels or no channels. Functional recovery was measured weekly for 12 weeks by open-field locomotion, after which histological examination was performed. RESULTS The implanted channels with PN grafts contained a thick tissue bridge containing as many as 35,000 myelinated axons in both the subacute and chronic spinal cord injury groups, with the greatest number of axons in the channels containing PN grafts implanted subacutely. There were numerous green fluorescent protein-positive donor Schwann cells in the tissue bridges in all animals with PN grafts. Moreover, these Schwann cells had high functional capacity in terms of myelination of the axons in the channels. In addition, PN-filled chitosan channels showed excellent biocompatibility with the adjacent neural tissue and no obvious signs of degradation and minimal tissue reaction at 14 weeks after implantation. In control animals that had unfilled chitosan channels implanted, there was minimal axonal regeneration in the channels; in control animals without channels, there were large cavities in the spinal cords, and the bridges contained only a small number of axons and Schwann cells. Despite the large numbers of axons in the chitosan channel-PN graft group, there was no significant difference in functional recovery between treatment and control groups. CONCLUSION Intramedullary implantation of chitosan guidance channels containing PN grafts in the cavity after subacute spinal cord injury resulted in a thicker bridge containing a larger number of myelinated axons compared with chitosan channels alone. A chitosan channel containing PN grafts is a promising strategy for spinal cord repair.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Nomura H, Baladie B, Katayama Y, Morshead CM, Shoichet MS, Tator CH. DELAYED IMPLANTATION OF INTRAMEDULLARY CHITOSAN CHANNELS CONTAINING NERVE GRAFTS PROMOTES EXTENSIVE AXONAL REGENERATION AFTER SPINAL CORD INJURY. Neurosurgery 2008. [DOI: 10.1227/01.neu.0000316443.88403.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Vleggeert-Lankamp CLAM. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. J Neurosurg 2007; 107:1168-89. [DOI: 10.3171/jns-07/12/1168] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
A number of evaluation methods that are currently used to compare peripheral nerve regeneration with alternative repair methods and to judge the outcome of a new paradigm were hypothesized to lack resolving power. This would too often lead to the conclusion that the outcome of a new paradigm could not be discerned from the outcome of the current gold standard, the autograft. As a consequence, the new paradigm would incorrectly be judged as successful.
Methods
An overview of the methods that were used to evaluate peripheral nerve regeneration after grafting of the rat sciatic nerve was prepared. All articles that were published between January 1975 and December 2004 and concerned grafting of the rat sciatic nerve (minimum graft length 5 mm) and in which the experimental method was compared with an untreated or another grafted nerve were included. The author scored the presence of statistically significant differences between paradigms.
Results
Evaluation of nerve fiber count, nerve fiber density, N-ratio, nerve histological success ratio, compound muscle action potential, muscle weight, and muscle tetanic force are methods that were demonstrated to have resolving power.
Conclusions
A number of evaluation methods are not suitable to demonstrate a significant difference between experimental paradigms in peripheral nerve regeneration. It is preferable to apply a combination of evaluation methods with resolving power to evaluate nerve regeneration properly.
Collapse
|
12
|
Inoe AP, Pereira FC, Stopiglia AJ, Da-Silva CF. Pharmacological immunomodulation enhances peripheral nerve regeneration. PESQUISA VETERINÁRIA BRASILEIRA 2007. [DOI: 10.1590/s0100-736x2007000900002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the effect of N-Acetylmuramyl-L-Alanyl-D-Isoglutamine MDP topically administrated on the regenerating peripheral neurons, twelve male C57BL/6J adult mice were equally distributed into three groups. Four mice underwent unilateral sciatic nerve transection and polyethylene tubulization, with a 4mm gap between the proximal and distal nerve stumps and were implanted with collagen + PBS (COL). Other four animals underwent the same surgical procedure but received collagen + MDP (COL/MDP) inside the prosthesis. Four animals were not operated and served as control group (NOR). After 4 weeks, the regenerated nerve cables were processed for total myelinated axon counting and myelinated fiber diameter measurement. The L5 dorsal root ganglion (DRG) was also removed and sectioned for sensory neurons counting and measurement. The results revealed significant difference (p<0.05) in axonal counting among the groups NOR (4,355±32), COL (1,869±289) and COL/MDP (2,430±223). There was a significant reduction in the axonal diameter in the operated groups (COL=3.38µm±1.16 and COL/MDP=3.54µm±1.16) compared to NOR (6.19µm±2.45). No difference was found in the number of DRG neurons between the experimental groups (COL=564±51; COL/MDP=514±56), which presented fewer sensory neurons compared to NOR (1,097±142). Data obtained indicate that locally applied MDP stimulates peripheral nerve regeneration in mice.
Collapse
|
13
|
Lago N, Navarro X. Evaluation of the long-term regenerative potential in an experimental nerve amputee model. J Peripher Nerv Syst 2007; 12:108-20. [PMID: 17565536 DOI: 10.1111/j.1529-8027.2007.00130.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we evaluated the long-term maintenance of regenerated axons in an experimental nerve amputee model. The sciatic nerve of adult rats was transected and repaired with a silicone tube leaving a short gap; the distal nerve segment was again transected 10 mm distally and the distal stump either introduced in a capped silicone chamber (amputee group) or connected to denervated targets (tibial branch into the gastrocnemius muscle and peroneal nerve apposed to skin) (reinnervation group). Morphological studies were performed at 2.5, 6, and 9 months after surgery. In all cases, axons regenerated across the silicone tube and grew in the distal nerve segment. In the amputee group, the morphological results show the expected features of a neuroma that is formed when regenerating axons are prevented from reaching the end organs, with a large number of axonal profiles indicative of regenerative sprouting. The number of myelinated axons counted at the distal nerve was sustained over 9 months follow-up, indicating that regenerated axons are maintained chronically. Immunohistochemical labeling showed maintained expression of choline acetyltransferase, calcitonin gene-related peptide, and growth-related peptides 43 in the distal neuroma at 6 and 9 months. Reconnection of the distal nerve to foreign targets mildly improved the pattern of nerve regeneration, decreasing the number of excessive sprouts. These results indicate that axons regenerated may be eventually interfaced with external input-output systems over long time, even if ending in the absence of distal targets as will occur in amputee limbs.
Collapse
Affiliation(s)
- Natalia Lago
- Group of Neuroplasticity and Regeneration, Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
14
|
Cai J, Peng X, Nelson KD, Eberhart R, Smith GM. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. J Biomed Mater Res A 2005; 75:374-86. [PMID: 16088902 DOI: 10.1002/jbm.a.30432] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Successful peripheral nerve regeneration is still limited in artificial conduits, especially for long lesion gaps. In this study, porous poly(L-lactide-co-DL-lactide, 75:25) (PLA) conduits were manufactured with 16 poly(L-lactide) (PLLA) microfilaments aligned inside the lumen. Fourteen and 18 mm lesion gaps were created in a rat sciatic nerve lesion model. To evaluate the combined effect of permeable PLA conduits and microfilament bundles on axon growth, four types of implants were tested for each lesion gap: PLA conduits with 16 filaments; PLA conduits without filaments; silicone conduits with 16 filaments; and silicone conduits without filaments. Ten weeks following implantation, regeneration within the distal nerve was compared between corresponding groups. Antibodies against the markers S100, calcitonin gene related peptide (CGRP), RMDO95, and P0 were used to identify Schwann cells, unmyelinated axons, myelinated axons, and myelin, respectively. Results demonstrated that the filament scaffold enhanced tissue cable formation and Schwann cell migration in all groups. The filament scaffold enhanced axonal regeneration toward the distal stump, especially across long lesion gaps, but significance was only achieved with PLA conduits. When compared to corresponding silicone conduits, permeable PLA conduits enhanced myelinated axon regeneration across both lesion gaps and achieved significance only in combination with filament scaffolds. Myelin staining indicated PLA conduits supported axon myelination with better myelin quantity and quality when compared to silicone conduits.
Collapse
Affiliation(s)
- Jie Cai
- Department of Physiology, MS 508, Albert B. Chandler Medical Center, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
15
|
Negredo P, Castro J, Lago N, Navarro X, Avendaño C. Differential growth of axons from sensory and motor neurons through a regenerative electrode: A stereological, retrograde tracer, and functional study in the rat. Neuroscience 2004; 128:605-15. [PMID: 15381289 DOI: 10.1016/j.neuroscience.2004.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
Polyimide regenerative electrodes (RE) constitute a promising neural interface to selectively stimulate regenerating fibers in injured nerves. The characteristics of the regeneration through an implanted RE, however, are only beginning to be established. It was recently shown that the number of myelinated fibers distal to the implant reached control values 7 months postimplant; however, the functional recovery remained substantially below normal [J Biomed Mater Res 60 (2002) 517]. In this study we sought to determine the magnitude, and possible selectivity, of axonal regeneration through the RE by counting sensory and motor neurons that were retrogradely labeled from double tracer deposits in the sciatic nerve. Adult rats had their right sciatic nerves transected, and the stumps were placed in silicone tubes; some simply were filled with saline (Tube group), and others held a RE in its center (RE group). Simultaneously, the proximal stump was exposed to Diamidino Yellow. Two months later the nerves were bilaterally excised distal to the implant, and exposed to Fast Blue. Electrophysiological recordings, and skin nociceptive responses confirmed previous findings of partial functional recovery. In controls, an average of 20,000 and 3080 neurons were labeled in L4-L5 dorsal root ganglia (with minor contributions from L3 and/or L6), and in the ventral horn of the lumbar spinal cord, respectively. In the regenerating side, 35% of the DRG neurons were double-labeled, without differences between groups. In contrast, only 7.5% of motoneurons were double-labeled in the RE group, vs. 21% in the Tube group. Moreover, smaller ganglion cells regenerated better than large neurons by a significant 13.8%. These results indicate that the RE is not an obstacle for the re-growth of sensory fibers, but partially hinders fiber regeneration from motoneurons. They also suggest that fine fibers may be at an advantage over large ones to regenerate through the RE.
Collapse
Affiliation(s)
- P Negredo
- Department of Morphology, Autonoma University, Medical School, c/ Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Odaka M, Uchiyama Y, Oka Y, Tamaki T. Evaluation of morphological and functional regeneration of rat nerve-muscle units after temporary and permanent tubulization. Muscle Nerve 2003; 28:194-203. [PMID: 12872324 DOI: 10.1002/mus.10413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We compared the ability of temporary and permanent tubing to achieve morphological and functional recovery of nerve-muscle units, following experimental nerve transection (8-mm gap) in rat tibial nerve. Electrical stimulation of the sciatic nerve was used to analyze tension output, evoked electromyogram and conduction-transmission time (CTT) of denervated nerve-muscle units. Morphological analysis of the nerve and muscle was also performed. Within 6 weeks, the nerve gap had been bridged by a thin nerve trunk, and a few myelinated fibers were observed, although there was still no functional recovery. The rats were divided into two groups: permanent tubing (PT) and temporary tubing (TT; tubing subsequently removed). At 10 weeks after the operation, the TT group showed apparently greater thickness of regenerated nerve trunks, significantly higher tension output of plantar flexors, shorter CTT, and heavier muscle mass. These results were consistent with the presence of myelinated fibers in the regenerated nerve trunks, as shown histologically. Thus, removal of the silicone chamber results in faster and better recovery than tubing left permanently in place.
Collapse
Affiliation(s)
- Mitsuaki Odaka
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | |
Collapse
|
17
|
Yu X, Bellamkonda RV. Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. TISSUE ENGINEERING 2003; 9:421-30. [PMID: 12857410 DOI: 10.1089/107632703322066606] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of autografts for "bridging" peripheral nerve gaps is limited by lack of suitable donor nerve grafts. Using a tissue-engineering approach, we have designed a three-dimensional scaffold that presents laminin 1 (LN-1) and nerve growth factor (NGF) in vivo. Semipermeable polysulfone tubes were used as carriers to introduce the tissue-engineered scaffolds to a 10-mm sciatic nerve gap in adult rats. Two months after implantation, the gross morphology of the regenerated nerve, the success rate of regeneration, and the total number and density of myelinated axons in the tissue-engineered scaffolds matched that observed in autografts. LN-1- and NGF-containing scaffolds performed comparably to autografts when functional measures that include the relative gastrocnemius muscle weight and the sciatic functional index were quantified. Our results demonstrate that tissue-engineered scaffolds match the performance of autografts in an in vivo model of peripheral nerve regeneration, raising the possibility of the scaffolds being used clinically instead of scarce autografts.
Collapse
Affiliation(s)
- Xiaojun Yu
- Biomaterials, Cell and Tissue Engineering Laboratory, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
18
|
McDonald DS, Zochodne DW. An injectable nerve regeneration chamber for studies of unstable soluble growth factors. J Neurosci Methods 2003; 122:171-8. [PMID: 12573476 DOI: 10.1016/s0165-0270(02)00319-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modern surgical techniques cannot guarantee functional recovery following peripheral nerve injuries. Research into factors that may influence nerve regeneration has therefore assumed a prominent potential therapeutic role. We report here on the development of an approach to allow for direct manipulation of the microenvironment of regenerating peripheral nerve axons. We show that solutions can be delivered directly to this local milieu in vivo and that such a delivery can be performed multiple times over an extended period, potentially facilitating studies of multiple molecular players that act locally. We also demonstrate that the bundle of regenerated axons are amenable to morphological analysis by 21 days and that the injection system remains patent for at least 21 days.
Collapse
Affiliation(s)
- D S McDonald
- Department of Clinical Neurosciences, University of Calgary, Room 182A, 3330 Hospital Drive, Alta, Calgary, Canada T2N 4N1
| | | |
Collapse
|
19
|
Valero-Cabré A, Navarro X. Functional impact of axonal misdirection after peripheral nerve injuries followed by graft or tube repair. J Neurotrauma 2002; 19:1475-85. [PMID: 12490012 DOI: 10.1089/089771502320914705] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accuracy of reinnervation is one of the main factors conditioning functional recovery after brain, spinal, or peripheral axonal damage. Using the peripheral nerve as an experimental model, we studied the amount of inaccurate muscle reinnervation and its consequences on walking. Adult rats were submitted to an 8-mm resection of the sciatic nerve repaired by autograft (AG, n = 9), silicone (SIL, n = 13) or poly-L-lactate-epsilon-caprolactone (PLC, n = 11) single guides, and fascicular tubulization of peroneal and tibial branches with a dual silicone tube (FSIL, n = 9). At the end of follow-up, the sciatic nerve and its tibial and peroneal fascicles were dissected and stimulated by means of a suction electrode. In control rats, gastrocnemius and plantar muscles are fully innervated by the tibial fascicle and the tibialis anterior muscle by the peroneal nerve. None of the groups had noticeable recovery of locomotion assessed by the walking track index (SFI around -70 in all groups). After resection, all animals of groups AG, SIL, and PLC showed aberrant muscle reinnervation by axons from a non-corresponding fascicle, whereas in group FSIL only one of six regenerated animals showed misdirected activity. The proportion of inaccurate muscle activation was similar in group AG (47% for gastrocnemius, 54% for tibialis anterior, and 44% for plantar muscles) and in group SIL (42%, 42%, and 42%), and reduced in group PLC (26%, 38%, and 27%). In conclusion, fascicular silicone tubulization allowed the highest degree of accuracy but the lowest recovery, whereas resorbable PLC guides provided for the best balance between amount and accuracy of reinnervation after nerve resection.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
20
|
Ceballos D, Valero-Cabré A, Valderrama E, Schüttler M, Stieglitz T, Navarro X. Morphologic and functional evaluation of peripheral nerve fibers regenerated through polyimide sieve electrodes over long-term implantation. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 60:517-28. [PMID: 11948510 DOI: 10.1002/jbm.10099] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We evaluated by morphologic and functional analysis the regeneration of peripheral nerve fibers through polyimide regenerative-type electrodes over long-term implantation. Polyimide sieve electrodes were placed in silicone chambers and implanted between the severed ends of the sciatic nerve in rats. The sieve part had 281 round via holes of 40 microm in diameter, with nine integrated recording-stimulating electrodes arranged around the via holes. The degree of axonal regeneration was examined at 2, 7, and 12 months postimplantation (mpi). Regeneration was successful in 12 of the 13 animals implanted. Reinnervation of distal muscle and nerves increased with time, reaching a plateau about 7 mpi. The number of myelinated fibers increased from 2 to 7 months, at which time it was similar to control values. With time the myelinated fibers matured, with significant increases in axon diameter and myelin thickness. Only 0.6% of the regenerated axons showed evidence of compression near the implanted electrode. The majority of the myelinated fibers that crossed the via holes and had been regenerated through the distal nerve had a normal appearance. Sieve electrodes were useful for nerve stimulation at postimplantation. Stimulation through different active electrodes excited nerve bundles, evoking compound muscle action potentials of varying shape and amplitude, indicative of selective axonal stimulation.
Collapse
Affiliation(s)
- Dolores Ceballos
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Kassar-Duchossoy L, Duchossoy Y, Rhrich-Haddout F, Horvat JC. Reinnervation of a denervated skeletal muscle by spinal axons regenerating through a collagen channel directly implanted into the rat spinal cord. Brain Res 2001; 908:25-34. [PMID: 11457428 DOI: 10.1016/s0006-8993(01)02554-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, the continuity between the central nervous system (CNS) and the peripheral nervous system (PNS) was restored by mean of a collagen channel in order to reinnervate a skeletal muscle. Three groups of animals were considered. In the first group, one end of the collagen channel was implanted in the cervical spinal cord of adult rats. The other end was connected to a 30-mm autologous peripheral nerve graft (PNG) implanted into the denervated biceps brachii muscle. The gap between the spinal cord and the proximal nerve stump varied from 3 to 7 mm. In the second group of animals, the distal end of the PNG graft was ligatured in order to compare the survival of the growing axons in the presence and in the absence of a muscular target. In the third group of animals, the extraspinal stump of the collagen channel was ligatured. Our study demonstrates that spinal neurons and dorsal root ganglion (DRG) neurons can grow long axons through the collagen channel over a 7-mm gap and reinnervate a denervated skeletal muscle. The results also indicate that the presence of a PNG at the extraspinal stump of the collagen channel is essential for axonal regrowth and that the muscle target contributes to the long-term maintenance of the regenerating axons. These data might be interesting for clinical application when the continuity between the CNS and PNS is interrupted such as in root avulsion.
Collapse
Affiliation(s)
- L Kassar-Duchossoy
- Laboratoire de Neurobiologie, Université René Descartes, 45 rue des Saints-Pères, Paris, France.
| | | | | | | |
Collapse
|
22
|
Shen ZL, Berger A, Hierner R, Allmeling C, Ungewickell E, Walter GF. A Schwann cell-seeded intrinsic framework and its satisfactory biocompatibility for a bioartificial nerve graft. Microsurgery 2001; 21:6-11. [PMID: 11426639 DOI: 10.1002/1098-2752(2001)21:1<6::aid-micr1001>3.0.co;2-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To optimize the internal environment of a collagen nerve tube, we designed a Schwann cell-seeded intrinsic framework and its biocompatibility was investigated. We fixed 6-0 polyglactin woven filaments (Vicryl) or polydioxanone monofilaments (PDS) on a silicone ring in a net fashion. It was coated with matrigel and then incubated with cultured newborn or adult Schwann cells. Furthermore, we implanted 1.5-cm-long filament-filled collagen tubes in a rat model. Using a live/dead fluorescent assay and electron microscopy, we found that adherent Schwann cells onto filaments remained viable and oriented longitudinally along filaments. The preliminary in vivo study indicated that a mild inflammatory reaction was present around the tube wall. However, nerve regeneration occurred around and between filaments. We concluded that the arrangement of Schwann cell columns onto filaments was achieved, mimicking Bünger bands. It was shown that the biomaterials did not impede nerve regeneration.
Collapse
Affiliation(s)
- Z L Shen
- Clinic of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Germany
| | | | | | | | | | | |
Collapse
|
23
|
HOBSON MARKI, GREEN COLINJ, TERENGHI GIORGIO. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 2000; 197 Pt 4:591-605. [PMID: 11197533 PMCID: PMC1468175 DOI: 10.1046/j.1469-7580.2000.19740591.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whilst there is an increased understanding of the cell biology of nerve regeneration, it remains unclear whether there is a direct interrelationship between vascularisation and efficacy of nerve regeneration within a nerve conduit. To establish this is important as in clinical surgery peripheral nerve conduit grafting has been widely investigated as a possible alternative to the use of nerve autografts. The aim of this study was to assess whether vascular endothelial growth factor (VEGF), a highly specific endothelial cell mitogen, can enhance vascularisation and, indirectly, axonal regeneration within a silicone nerve regeneration chamber. Chambers containing VEGF (500-700 ng/ml) in a laminin-based gel (Matrigel) were inserted into 1 cm rat sciatic nerve defects and nerve regeneration examined in relation to angiogenesis between 5 and 180 d. Longitudinal sections were stained with antibodies against endothelial cells (RECA-1), axons (neurofilament) and Schwann cells (S-100) to follow the progression of vascular and neural elements. Computerised image analysis demonstrated that the addition of VEGF significantly increased blood vessel penetration within the chamber from d 5, and by d 10 this correlated with an increase of axonal regeneration and Schwann cell migration. The pattern of increased nerve regeneration due to VEGF administration was maintained up to 180 d, when myelinated axon counts were increased by 78 % compared with plain Matrigel control. Furthermore the dose-response of blood vessel regeneration to VEGF was clearly reflected in the increase of axonal regrowth and Schwann cell proliferation, indicating the close relationship between regenerating nerves and blood vessels within the chamber. Target organ reinnervation was enhanced by VEGF at 180 d as measured through the recovery of gastrocnemius muscle weights and footpad axonal terminal density, the latter showing a significant increase over controls (P < 0.05). The results demonstrate an overall relationship between increased vascularisation and enhanced nerve regeneration within an acellular conduit, and highlight the interdependence of the 2 processes.
Collapse
Affiliation(s)
- MARK I.
HOBSON
- Blond McIndoe Laboratories, Royal Free and University College Medical School, London, UK
| | - COLIN J.
GREEN
- Blond McIndoe Laboratories, Royal Free and University College Medical School, London, UK
| | - GIORGIO TERENGHI
- Blond McIndoe Laboratories, Royal Free and University College Medical School, London, UK
- Correspondence to Dr G. Terenghi, Blond McIndoe Laboratories, University Department of Surgery, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK. Tel: +44 207 794 0500, ext. 3944; fax: +44 207 431 4528; e-mail:
| |
Collapse
|
24
|
Rangappa N, Romero A, Nelson KD, Eberhart RC, Smith GM. Laminin-coated poly(L-lactide) filaments induce robust neurite growth while providing directional orientation. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 51:625-34. [PMID: 10880110 DOI: 10.1002/1097-4636(20000915)51:4<625::aid-jbm10>3.0.co;2-u] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular channels during development and after peripheral nerve injury are thought to provide guidance cues to growing axons. In tissue culture where these cues are absent, neurites from dorsal root ganglion neurons grow with a radial distribution. To induce directional axonal growth and to enhance the rate of axonal growth after injury, we have designed microfilaments of poly(L-lactide). We demonstrate that dorsal root ganglia grown on these filaments in vitro extend longitudinally oriented neurites in a manner similar to native peripheral nerves. The extent of neurite growth was significantly higher on laminin-coated filaments compared with uncoated and poly-L-lysine-coated filaments. As high as 5.8 +/- 0.2 mm growth was observed on laminin-coated filaments compared with 2.0 +/- 0.2 mm on uncoated and 2.2 +/- 0.3 mm on poly-L-lysine-coated filaments within 8 days. Schwann cells were found to grow on all types of filaments. They were, however, absent in the leading edges of growth on laminin-coated filaments. Photolysis of Schwann cells caused a significant reduction in the neurite length on all types of filaments. Laminin-coated filaments, however, induced significantly longer neurites compared with uncoated and/or poly-L-lysine-coated filaments even in the absence of Schwann cells. Our results suggest that laminin-coated poly(L-lactide) filaments are suitable for inducing directional and enhanced axonal growth. Implants designed by arranging these microfilaments into bundles should aid regenerating axons by providing guidance cues and channels to organize matrix deposition, cell migration, axon growth, and improve functional recovery.
Collapse
Affiliation(s)
- N Rangappa
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9130, USA
| | | | | | | | | |
Collapse
|
25
|
Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K, Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 2000; 868:315-28. [PMID: 10854584 DOI: 10.1016/s0006-8993(00)02207-1] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We evaluated peripheral nerve regeneration across an 80-mm gap using a novel artificial nerve conduit. The conduit was made of a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers. Twelve beagle dogs underwent implantation of the nerve conduit across an 80-mm gap in the left peroneal nerve. In four other dogs used as negative controls, the nerve was resected and left unconnected. Histological observation showed that numerous unmyelinated and myelinated nerve fibers, all smaller in diameter and with a thinner myelin sheath than normal nerve fibers, regrew through and beyond the gap 12 months after implantation. The distribution of the regenerated axonal diameters was different from that of the normal axonal diameters. Compound muscle action potentials, motor evoked potentials, and somatosensory evoked potentials were recorded in most animals 3 months after implantation. Peak amplitudes and latencies recovered gradually, which indicating the functional establishment of the nerve connection with the target organs. In addition to the ordinary electrophysiological recoveries, potentials with distinct latencies originating from Aalpha, Adelta and C fibers became distinguishable at the 6th lumbar vertebra following stimulation of the peroneal nerve distal to the gap 12 months after implantation. The pattern of walking without load was restored to almost normal 10-12 months after implantation. Neither electrophysiological nor histological restoration was obtained in the controls. Our nerve conduit can guide peripheral nerve elongation and lead to favorable functional recovery across a wider nerve gap than previously reported artificial nerve conduits.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogoin Sakyo-ku, 606-8507, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez FJ, Verdú E, Ceballos D, Navarro X. Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol 2000; 161:571-84. [PMID: 10686077 DOI: 10.1006/exnr.1999.7315] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study evaluates the ability of Schwann cells (SCs) transplanted into a nerve guide to improve regeneration and reinnervation after sciatic nerve resection and repair, leaving a 6-mm gap, in the mouse. SCs were isolated from predegenerated adult sciatic nerves and expanded in culture using a chemically defined medium. Syngeneic, isogeneic, and autologous SCs were suspended in Matrigel and seeded in resorbable, permeable poly(l-lactide-co-epsilon-caprolactone) guides at 150,000 cells/tube. Guides containing SCs were compared to guides filled with Matrigel alone and with peroneal nerve autografts. Functional reinnervation was assessed by noninvasive methods to determine recovery of sweating, nociceptive, sensory, and motor functions in the hindpaw during 4 months postoperation. Morphological analysis of the regenerated nerves was performed at the end of follow-up. The group with an autograft achieved faster and higher levels of reinnervation and higher number of regenerated myelinated fibers than groups repaired by tubulization. The immunogenicity of transplanted SCs influenced the outcome of nerve regeneration. Transplants of autologous SCs resulted in slightly lower levels of reinnervation than autografts, but higher recovery and number of regenerated fibers reaching the distal nerve than transplants of isologous and syngeneic SCs, although most of the differences were not statistically significant. Syngeneic SCs did not improve regeneration with respect to acellular guides. Prelabeled transplanted SCs were found to survive into the guide 1-3 months after implantation, to a larger number when they were autologous than syngeneic. Cellular prostheses composed of a resorbable guide seeded with autologous SCs appear as an alternative for repairing long gaps in injured nerves, approaching the success of autografts.
Collapse
Affiliation(s)
- F J Rodríguez
- Department of Cell Biology, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | | | | | | |
Collapse
|
27
|
Abstract
We have investigated the axonal transport of neurofilament protein in cultured neurons by constricting single axons with fine glass fibers. We observed a rapid accumulation of anterogradely and retrogradely transported membranous organelles on both sides of the constrictions and a more gradual accumulation of neurofilament protein proximal to the constrictions. Neurofilament protein accumulation was dependent on the presence of metabolic substrates and was blocked by iodoacetate, which is an inhibitor of glycolysis. These data indicate that neurofilament protein moves anterogradely in these axons by a mechanism that is directly or indirectly dependent on nucleoside triphosphates. The average transport rate was estimated to be at least 130 micrometer/h (3.1 mm/d), and approximately 90% of the accumulated neurofilament protein remained in the axon after detergent extraction, suggesting that it was present in a polymerized form. Electron microscopy demonstrated that there were an abnormally large number of neurofilament polymers proximal to the constrictions. These data suggest that the neurofilament proteins were transported either as assembled polymers or in a nonpolymeric form that assembled locally at the site of accumulation. This study represents the first demonstration of the axonal transport of neurofilament protein in cultured neurons.
Collapse
Affiliation(s)
- T J Koehnle
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
| | | |
Collapse
|
28
|
Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 1998; 154:315-29. [PMID: 9878170 DOI: 10.1006/exnr.1998.6955] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral nerve regeneration was studied across a tubulated 10-mm gap in the rat sciatic nerve using histomorphometry and electrophysiological measurements of A-fiber, B-fiber, and C-fiber peaks of the evoked action potentials. Tubes fabricated from large-pore collagen (max. pore diameter, 22 nm), small-pore collagen (max. pore diameter, 4 nm), and silicone were implanted either saline-filled or filled with a highly porous, collagen-glycosaminoglycan (CG) matrix. The CG matrix was deliberately synthesized, based on a previous optimization study, to degrade with a half-life of about 6 weeks and to have a very high specific surface through a combination of high pore volume fraction (0.95) and relatively small average pore diameter (35 microm). Nerves regenerated through tubes fabricated from large-pore collagen and filled with the CG matrix had significantly more large-diameter axons, more total axons, and significantly higher A-fiber conduction velocities than any other tubulated group; and, although lower than normal, their histomorphometric and electrophysiological properties were statistically indistinguishable from those of the autograft control. Although the total number of myelinated axons in nerves regenerated by tubulation had reached a plateau by 30 weeks, the number of axons with diameter larger than 6 microm, which have been uniquely associated with the A-fiber peak of the action potential, continued to increase at substantial rates through the completion of the study (60 weeks). The kinetic data strongly suggest that a nerve trunk maturation process, not previously reported in studies of the tubulated 10-mm gap in the rat sciatic nerve, and consisting in increase of axonal tissue area with decrease in total tissue area, continues beyond 60 weeks after injury, resulting in a nerve trunk which increasingly approaches the structure of the normal control.
Collapse
Affiliation(s)
- L J Chamberlain
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- P W Baas
- Dept of Anatomy, The University of Wisconsin Medical School, Madison, WI, USA
| | | |
Collapse
|
30
|
Abstract
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such as N-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regenerations may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.
Collapse
Affiliation(s)
- S Y Fu
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
31
|
den Dunnen WF, Stokroos I, Blaauw EH, Holwerda A, Pennings AJ, Robinson PH, Schakenraad JM. Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1996; 31:105-15. [PMID: 8731155 DOI: 10.1002/(sici)1097-4636(199605)31:1<105::aid-jbm13>3.0.co;2-m] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study was to evaluate short-term peripheral nerve regeneration across a 10-mm. gap, using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide, with an internal diameter of 1.5 mm and a wall thickness of 0.30 mm. To do so, we evaluated regenerating nerves using light microscopy, transmission electron microscopy and morphometric analysis after implantation of 12-mm nerve guides in the sciatic nerve of the rat. Evaluation times ranged from 3-10 weeks. Three weeks after reconstruction, myelinated nerve fibers could be observed in the distal nerve stump. Ten weeks after reconstruction, the regenerating nerves already resembled normal nerves. In conclusion, we show that poly(DL-lactide-epsilon-caprolacton) nerve guides can be successfully applied in the reconstruction of severed nerves in the rat model. Furthermore, we have observed the fastest nerve regeneration described thus far, after reconstruction using a biodegradable nerve guide.
Collapse
Affiliation(s)
- W F den Dunnen
- Department of Biomaterials and Biocompatibility, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Zeng L, Huck S, Redl H, Schlag G. Fibrin sealant matrix supports outgrowth of peripheral sensory axons. SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY 1995; 29:199-204. [PMID: 8539561 DOI: 10.3109/02844319509050127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been suggested that fibrin-based matrix has an important role during the early stage of nerve regeneration. A fibrin sealant matrix, which was made by combining diluted human fibrinogen and thrombin, was used as a substrate for in vitro elongation of neurites and in vivo regeneration of axons. In the in vitro experiment, dissociated embryonic chick sensory neurons were cultured on dishes coated with fibrin sealant matrix and compared with the solution of thrombin/calcium chloride, or with poly-D-lysine (PDLctr). After 16 hours, cultures were stained immunohistochemically with a monoclonal antineurofilament antibody. The neurons survived well, and an abundant network of neurites, qualitatively similar to that on PDLctr, developed on the fibrin sealant matrix. The percentage of neurons that had outsprout at 16 hours was the same both in the fibrin sealant matrix and PDLctr groups. By contrast, all the neurons plated on the dishes treated with the solution of thrombin/calcium chloride were dead after 16 hours. Immunohistochemical staining of fibrinogen also showed an even distribution of fibrin matrix over the culture dishes. For the in vivo experiments, 48 rat sciatic nerves were cut and reconnected with two epineurial stitches. Fibrin sealant matrix or phosphate buffer solution was applied to the transsected and repaired region. Pinch reflex test showed that the regeneration of the leading sensory fibre was significantly faster in the fibrin sealant matrix group than in the control group at 3 and 4 days. These results indicate that fibrin sealant matrix accelerates regeneration of axons in vivo during the early phase, and also supports elongation of neurites in vitro.
Collapse
Affiliation(s)
- L Zeng
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, University of Vienna, Austria
| | | | | | | |
Collapse
|
33
|
Benito-Ruiz J, Navarro-Monzonis A, Piqueras A, Baena-Montilla P. Invaginated vein graft as nerve conduit: an experimental study. Microsurgery 1994; 15:105-15. [PMID: 8183108 DOI: 10.1002/micr.1920150205] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vein grafts have been used for nerve repair in experimental and clinical studies. However, some concerns about their collapsability and the presence of valves which could block axonal growth have been put forth. We propose a modification to eliminate these potential problems by turning the vein inside out, obtaining an "invaginated" vein graft. We performed an experimental study on 61 adult Wistar rats, divided into 3 groups: control (non-operated) (n = 11); immediate repair, with 3 subgroups: invaginated vein graft (n = 10), vein graft (n = 10), and nerve graft (n = 10); and delayed repair, with 2 subgroups: invaginated vein graft (n = 10) and nerve graft (n = 10). Delayed repair was performed 3 to 4 weeks following division of the nerve. Electromyographical (EMG) assessment was performed in all operated animals at 2, 4, and 6 months after immediate reconstruction, and at 1 and 4 months after delayed repair. At the end of the study, all nerves were excised and a morphometric analysis was performed. We conclude that vein grafts are as useful as nerve grafts in immediate and delayed nerve repair, as there were no significant functional or histologic differences. We found no significant differences between invaginated vein grafts and non-invaginated vein grafts. However, electrophysiological results were slightly superior in the former. Regenerated axons were small, grouped in minifascicles with thin myelin sheaths. The venous adventitia did not interfere with axonal growth.
Collapse
Affiliation(s)
- J Benito-Ruiz
- Department of Plastic and Reconstructive Surgery, Hospital La Fe, Valencia, Spain
| | | | | | | |
Collapse
|
34
|
Brown A, Slaughter T, Black MM. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J Cell Biol 1992; 119:867-82. [PMID: 1429841 PMCID: PMC2289703 DOI: 10.1083/jcb.119.4.867] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have investigated the sites of microtubule (MT) assembly in neurons during axon growth by taking advantage of the relationship between the proportion of tyrosinated alpha-tubulin (tyr-tubulin) in MTs and their age. Specifically, young (newly assembled) MTs contain more tyr-tubulin than older (more long-lived) MTs. To quantify the relative proportion of tyr-tubulin in MTs, cultured rat sympathetic neurons were permeabilized under conditions that stabilize existing MTs and remove unassembled tubulin. The MTs were then double-stained with antibodies to tyr-tubulin (as a measure of the amount of tyr-tubulin in MTs) and to beta-tubulin (as a measure of total MT mass), using immunofluorescence procedures. Cells were imaged with a cooled charge-coupled device camera and the relative proportion of tyr-tubulin in the MTs was quantified by computing the ratio of the tyr-tubulin fluorescence to the beta-tubulin fluorescence using a novel application of digital image processing and analysis techniques. The amount of tyr-tubulin in the MTs was highest in the cell body and at the growth cone; peak ratios in these two regions were approximately 10-fold higher than for the axon shaft. Moving out from the cell body into the axon, the tyr-tubulin content declined over an average distance of 40 microns to reach a constant low value within the axon shaft and then rose again more distally, over an average distance of 110 microns, to reach a peak at the growth cone (average axon length = 358 microns). These observations indicate that newly assembled MTs are concentrated in the proximal and distal regions of growing axons and therefore that the cell body and growth cone are the most active sites of MT assembly dynamics in neurons that are actively extending axons.
Collapse
Affiliation(s)
- A Brown
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
35
|
Zhao Q, Dahlin LB, Kanje M, Lundborg G. The formation of a 'pseudo-nerve' in silicone chambers in the absence of regenerating axons. Brain Res 1992; 592:106-14. [PMID: 1280515 DOI: 10.1016/0006-8993(92)91664-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The formation of a regenerate between sciatic nerve segments or stumps inserted into Y-tunnelled silicone chambers was studied under conditions where regenerating axons were prevented from entering the chamber. This was accomplished by using an isolated segment of the nerve as a proximal insert. After one week, a cellular regenerate spanned the proximal and distal inserts. The size of the regenerate increased if circulation was preserved in the distal inserts. At four weeks, a perineurium-like sheath surrounded the regenerate and longitudinally oriented Schwann cell columns could be observed throughout the regenerate. A similar 'pseudo-nerve' formed towards a piece of distally inserted tendon. Thus, the information required for the formation of a nerve-like structure is inherent to the non-neuronal cells entering the chamber. Schwann cells, in contrast to regenerating axons, do not exhibit preferential growth towards nervous tissue.
Collapse
Affiliation(s)
- Q Zhao
- Department of Hand Surgery, General Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
36
|
Dubový P, Svízenská I. Migration of Schwann cells from the distal stump of the sciatic nerve 1 week after transection: the effects of insulin and cytosine arabinoside. Glia 1992; 6:281-8. [PMID: 1464460 DOI: 10.1002/glia.440060406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have examined the migratory capacity of Schwann cells from the distal stump of a 1-week transected sciatic nerve of adult rat for a distance of 10 mm. The distal stump was introduced into the open end of a silicone chamber packed with artificial fibrin sponge (Gelaspon) soaked in phosphate-buffered saline (control chambers), cytosine arabinoside (Ara-C) (0.05 mM), or insulin (40 U/ml). Migrating Schwann cells were distinguished from fibroblasts by the presence of non-specific cholinesterase (nChE) activity and glial fibrillary acidic protein (GFAP). The cells of distal stumps including Schwann cells accepted Gelaspon as a suitable adhesive substratum. In the chambers filled with Gelaspon soaked in phosphate-buffered saline alone Schwann cells were outnumbered by fibroblasts. The addition of Ara-C resulted in greater numbers of Schwann cells, which migrate longer distances into the chambers. The application of insulin enhanced Schwann cell migration as well. These morphologic observations were further supported by biochemical measurements of nChE activity. The results suggest an influence on Schwann cell migration by fibroblasts of connective tissue sheaths and a stimulation of Schwann cell migration by insulin.
Collapse
Affiliation(s)
- P Dubový
- Department of Anatomy, Medical Faculty, Masaryk University, Brno, Czechoslovakia
| | | |
Collapse
|
37
|
Le Beau JM. Growth factor expression in normal and diabetic rats during peripheral nerve regeneration through silicone tubes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 321:37-44. [PMID: 1280400 DOI: 10.1007/978-1-4615-3448-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The silicone tube model of regeneration has proved to be an invaluable tool for experimental studies aimed at understanding expression of growth factors during normal and abnormal metabolic states of regeneration. Since the morphological parameters of nerve growth and myelination are well-defined and easily identified in this model, the expression of both diffusible and intracellular-acting growth factors can be readily correlated with the occurrence of these cellular events. These studies facilitate the study of the cellular and molecular events that accompany regeneration. Further, because the sciatic nerve can be traced up to its corresponding neurons, growth factor gene expression can also be studied by in situ hybridization and Northern blotting techniques. This is particularly important in defining the cell source of extracellularly released growth factors. Finally, and most importantly, the regeneration process in the normal or diseased metabolic state (such as diabetes) can be manipulated via the administration of adjuncts to the tube that either promote or inhibit regeneration. Further studies in this regard, and in the identification of growth factors involved and their role during regeneration should shed some light on the pathogenesis and possible means of mitigating or reversing diabetic neuropathy.
Collapse
Affiliation(s)
- J M Le Beau
- Eastern Virginia Medical School, Diabetes Institute, Norfolk 23510
| |
Collapse
|
38
|
Azzam NA, Zalewski AA, Williams LR, Azzam RN. Nerve cables formed in silicone chambers reconstitute a perineurial but not a vascular endoneurial permeability barrier. J Comp Neurol 1991; 314:807-19. [PMID: 1816277 DOI: 10.1002/cne.903140413] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The passage of molecules into the endoneurial environment of the axons of normal peripheral nerve is regulated by two permeability barriers, the perineurial-nerve barrier and the endoneurial blood-nerve barrier. These barriers exist because of the presence of tight junctions between adjacent perineurial cells and adjacent endothelial cells. In the present study we investigated whether permeability barriers form in nerve cables, which develop inside silicone chambers. The sciatic nerves of adult rats were cut, and the proximal and distal ends sutured into opposite ends of silicone chambers that were filled with dialyzed plasma. The presence of barriers was determined with the tracer horseradish peroxidase (HRP), which was injected intravenously and detected histochemically in tissues by light and electron microscopy. At four weeks, a regenerated nerve cable extended across the 10 mm length of each chamber. However, no permeability barriers were present since the reaction product for HRP was visible throughout the cable. At twenty-six weeks, all the axons in cables were gathered into minifascicles. Each minifascicle of axons was surrounded by perineurial cells. Blood vessels were excluded from the minifascicles by the perineurial cells and the vessels were permeable to HRP, thus indicating that their endothelial cells had not formed tight junctions. Despite the leakage of HRP from the excluded vessels, the tracer did not reach the axons because the perineurial cells encircling the minifascicles developed tight junctions. In some animals, the chambers were removed at four weeks to determine whether the chamber influenced barrier development. This manipulation had no effect since cables, with or without chambers, exhibited similar findings at twenty-six weeks. Our results indicate that nerve cables regenerate a perineurial but not an endoneurial permeability barrier. We conclude that axons in long-term cables are protected by only a perineurial permeability barrier.
Collapse
Affiliation(s)
- N A Azzam
- Laboratory of Neural Control, NINDS, NIH, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
39
|
Le Beau JM, Tedeschi B, Walter G. Increased expression of pp60c-src protein-tyrosine kinase during peripheral nerve regeneration. J Neurosci Res 1991; 28:299-309. [PMID: 1709691 DOI: 10.1002/jnr.490280217] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since little is known about the intracellular changes that take place in response to Schwann cell-neuron interactions that occur during neurite outgrowth and myelination, we investigated the expression of a protein-tyrosine kinase, pp60c-src, during peripheral nerve regeneration through a silicone tube. Segments of regenerated nerve, extracted at various times following nerve-transection, showed an induction of in vitro c-src kinase activity as measured by autophosphorylation of immunoprecipitated pp60c-src. This activity occurred at 7 days following nerve transection coincident with the onset of neurite outgrowth in vivo. This kinase activity, which peaked out between 21 and 35 days and decreased thereafter, appeared to be associated with axonal growth and myelination, but not mitogenesis in the tube. Analysis of c-src proteins levels by Western blot showed a similar expression profile as that of the kinase activity. Qualitatively, the expression of an immunoreactive c-src band, migrating slightly slower than pp60, was detected in extracts of regenerating nerve segments as well as in the corresponding L4 and L5 dorsal root ganglia. This protein may be the CNS neuronal-specific form (pp60+) of the c-src protein. In situ hybridization revealed that Schwann cells and sensory and motor neurons associated with the regenerated sciatic nerve were positive for c-src mRNA during regeneration possibly accounting for the increased src protein expression during regeneration. Since the increased expression of pp60c-src in regenerated nerve segments coincides with both axonal sprouting and myelination, our findings suggest that the c-src protein may play a role in Schwann cell-neuron interactions which facilitate the occurrence of these events during regeneration. In addition, although pp60+ is generally not detectable in the mature PNS, our findings show that this protein may be induced during conditions of PNS differentiation which promote neurite outgrowth.
Collapse
Affiliation(s)
- J M Le Beau
- Department of Pathology, University of California, San Diego, La Jolla
| | | | | |
Collapse
|
40
|
Knoops B, Hubert I, Hauw JJ, van den Bosch de Aguilar P. Axonal growth and glial migration from co-cultured hippocampal and septal slices into fibrin-fibronectin-containing matrix of peripheral regeneration chambers: a light and electron microscope study. Brain Res 1991; 540:183-94. [PMID: 2054610 DOI: 10.1016/0006-8993(91)90506-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to investigate whether a fibrin-fibronectin-containing matrix of a peripheral regeneration chamber could promote the growth of central nervous system neurons, hippocampal and septal slices were co-cultured in the presence of this acellular substrate. In introducing the peripheral matrix into a 2-mm-long tube between hippocampal and septal slices, a spatio-temporal sequence of cell migration and axonal growth was described by light and electron microscopy. Axons were able to elongate directly into the flocculent material constituting the matrix and a possible neurite-promoting activity was implicated in this process as axonal growth was not detected in direct contact with rat plasma coagulated with calcium, or chicken plasma coagulated with thrombin, used as control matrices. However, in the 3 different substrates tested, astrocytes were able to migrate and dilated astroglial processes containing intermediate filaments were detected. Axonal processes were observed growing on the glial cell surface. GFAP-positive phagocytic cells, that could be of the same origin as astrocytes, were involved in matrix removing. Neuronal growth and glial migration arose from hippocampal and septum slices and acetylcholinesterase-containing fibers were seen in the bridging structure suggesting that cholinergic axons were able to progress to the hippocampal slice. This technique appeared to provide a model in which axonal growth and cell migration can be studied 'in vitro' in a 3-dimensional environment.
Collapse
Affiliation(s)
- B Knoops
- Laboratoire de Biologie Cellulaire, Université Catholique de Louvain, Belgium
| | | | | | | |
Collapse
|
41
|
|
42
|
Hollowell JP, Villadiego A, Rich KM. Sciatic nerve regeneration across gaps within silicone chambers: long-term effects of NGF and consideration of axonal branching. Exp Neurol 1990; 110:45-51. [PMID: 2209781 DOI: 10.1016/0014-4886(90)90050-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We examined whether the short-term beneficial effects of nerve growth factor (NGF) upon regeneration are sustained over a prolonged period of time across 8-mm gaps within silicone chambers. Rat sciatic nerve regeneration both with and without NGF was examined after 10 weeks. Myelinated counts from the regenerated sciatic and distal tributary nerves were correlated to the numbers of motor and sensory neurons retrogradely labeled with horseradish peroxidase (HRP) applied distal to the regenerated segment. Regenerated sciatic and sural nerves were examined ultrastructurally for morphological analysis. Both regenerated groups by 10 weeks achieved essentially complete counts of myelinated axons in the distal tributary nerves and the regenerated segment of the sciatic nerve compared to the uninjured controls. There were similar numbers of retrogradely labeled sensory and motor neurons in the dorsal root ganglia (DRG) and lumbar spinal cord of both groups and, surprisingly, of the uninjured normal control group. Ultrastructural analysis demonstrated no difference in the distribution of axonal diameters or myelin thickness between the regenerated groups. In evaluating regeneration in experimental silicone chamber models, it is important to determine such parameters as the percentage of neurons that grow across the gap and the incidence of axonal sprouting. One can then make accurate assessments of experimental perturbations and predict whether they improve the naturally occurring regeneration through chambers. These results must ultimately be compared with equivalent determinations in the uninjured nerve. At 10 weeks there was essentially complete regeneration of both the NGF and control regenerative groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J P Hollowell
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
43
|
Eckardt A, Meier K, Hausamen JE. Histomorphometric results after late microsurgical nerve grafting of the inferior alveolar nerve of the rabbit. Int J Oral Maxillofac Surg 1990; 19:312-4. [PMID: 2124605 DOI: 10.1016/s0901-5027(05)80428-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An experimental study was conducted to evaluate the regenerative potential of the inferior alveolar nerve after nerve transection and microsurgical reconstruction at different intervals. Histomorphometric parameters of regenerating axons were assessed using a computer-assisted image analysis system. A continuous decrease in axon density and a reduction in axon diameter was noted in all groups. The average regeneration rate ranged from 42% to 60%. The results of this study indicate that microsurgical reconstruction of the inferior alveolar nerve is even possible 12 months after nerve transection.
Collapse
Affiliation(s)
- A Eckardt
- Dept. of Oral and Maxillofacial Surgery, Medizinische Hochschule Hannover, West Germany
| | | | | |
Collapse
|
44
|
Vuorinen VS, Röyttä M. Taxol-induced neuropathy after nerve crush: long-term effects on regenerating axons. Acta Neuropathol 1990; 79:663-71. [PMID: 1972855 DOI: 10.1007/bf00294245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that newly derived axonal sprouts are sensitive to the effect of taxol. Taxol induced an accumulation of microtubules in axonal sprouts, which resulted in giant axonal bulbs with the subsequent excessive proliferation of distorted axonal twigs from the distal end of swollen axonal bulbs 3 weeks after the nerve crush. The present study was performed to evaluate the chronic effects of taxol upon regenerative axons and the morphological changes have now been followed up to 40 weeks post injection (PI). The results showed that 1 month PI, the giant axonal bulbs with the conglomerations of haphazardly arranged axonal twigs were numerous at the lesion site. Later on, the axonal twigs, filled with axoplasmic microtubules, elongated and showed more longitudinal orientation as they grew distally. After 8 weeks PI the axonal elongation progressed and the majority of the original small axonal twigs disappeared and several larger diameter axonal branches developed. Some of the axonal branches emerging from the giant axonal bulbs became myelinated and survived while others degenerated. Ultrastructurally, the number of microtubules remained high in the surviving axonal branches up to 3 months PI. The degenerating branches showed an unexpected loss of microtubules 2 months onwards with the subsequent accumulation of degenerative axoplasmic material. However, neurofilaments were numerous in the degenerating axonal branches even when degenerative axoplasmic material was present. The present results show that some of the taxol-induced axonal twigs develop into larger diameter axonal branches which persist for up to 10 months. The cytoskeletal differences in the surviving versus the degenerating axonal branches suggests local regulatory mechanisms for regulation of axonal cytoskeleton in axons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V S Vuorinen
- Department of Pathology, University of Turku, Finland
| | | |
Collapse
|
45
|
Abstract
After peripheral nerve 5 in the cockroach Periplaneta americana was cut, changes occurring in the glial cells in the proximal stump were studied immediately after damage and during the process of nerve regeneration. During the first week haemocytes accumulated outside the nerve and morphologically similar granule-containing cells appeared inside the nerve. These cells were involved in phagocytic activity. Between the second and the fourth week, signs of regeneration were distinguishable; many small axonal sprouts were formed which were surrounded by glial processes, and the nerve stump increased in length. During this period the glial cells produced large amounts of extracellular material in which the bundles of axons and glia were embedded. The structural differences between glial and perineurial cells were lost during these stages of regeneration and there was no restriction to the penetration of the extracellular tracer lanthanum. After 8 weeks, reinnervation of the muscles had taken place, perineurial and glial cells were again distinguishable, and the perineurial cells were able to exclude lanthanum.
Collapse
Affiliation(s)
- R E Blanco
- Department of Zoology, Cambridge University, England
| |
Collapse
|
46
|
Abstract
Mammalian peripheral nerve fibres can regenerate after injury. Repair is most likely to succeed if axons are simply crushed or have only a very short (less than 0.5 cm) interstump gap to cross and most likely to fail if the interstump gap is long (greater than 1 cm) and associated with soft tissue damage. Whereas reactive axonal sprouting appears to be an intrinsic neuronal response to injury, the subsequent organization of the axonal sprouts, in particular their orderly outgrowth in minifascicles towards a distant distal stump does not occur unless Schwann cells are present. During the injury response, Schwann cells proliferate; co-migrate with regrowing axons (when the proximal stump is separated from the distal stump); respond to axonal cues by transient upregulation or re-expression of molecules which provide a favourable substrate for axonal extension; and attract bundles of regrowing axons and their associated Schwann cells across interstump gaps up to 1 cm in length. Recruited macrophages remove myelin debris from the Schwann cell tubes; they probably interact with Schwann cells in other ways during the injury response, e.g. by presenting mitogens and cytokines.
Collapse
Affiliation(s)
- S M Hall
- Department of Anatomy, United Medical and Dental Schools of Guy's Hospital, London
| |
Collapse
|
47
|
Sketelj J, Bresjanac M, Popović M. Rapid growth of regenerating axons across the segments of sciatic nerve devoid of Schwann cells. J Neurosci Res 1989; 24:153-62. [PMID: 2585543 DOI: 10.1002/jnr.490240205] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The characteristic response of Schwann cells (SC) accompanies peripheral nerve injury and regeneration. To elucidate their role, the question of whether or not regenerating axons can elongate across the segments of a peripheral nerve devoid of SC was investigated. Rat sciatic nerve was crushed so that the continuity of SC basal laminae was not interrupted. A segment about 15 mm long distal to the crush was either repeatedly frozen/thawed to eliminate SC or scalded by moist heat which, in addition, denatured the proteins in the SC basal laminae, too. Both sensory and motor axons grew rapidly across the frozen/thawed segment of the nerve. Their rate of elongation was reduced by only 30% in comparison to control crushed nerves. SC were not present along the path of growing axons adhering tightly to the bare SC basal laminae. The rate of elongation of regenerating sensory and motor axons in scalded nerve segments was eight times lower than in control crushed nerves. SC were present in that part of the scalded region that had been invaded by the regenerating axons but no further distally. These results suggest that acellular basal laminae of SC provide very good, although not optimal, conditions for elongation of regenerating sensory and motor axons. If biochemical integrity of the basal lamina is destroyed, the regenerating axons must be accompanied or preceded by viable SC. and axon elongation rate is significantly reduced.
Collapse
Affiliation(s)
- J Sketelj
- Institute of Pathophysiology, School of Medicine, E. Kardelj University, Ljubljana, Yugoslavia
| | | | | |
Collapse
|
48
|
Fields RD, Le Beau JM, Longo FM, Ellisman MH. Nerve regeneration through artificial tubular implants. Prog Neurobiol 1989; 33:87-134. [PMID: 2678271 DOI: 10.1016/0301-0082(89)90036-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R D Fields
- Laboratory of Developmental Neurobiology, NICHD, Bethesda, MD 20892
| | | | | | | |
Collapse
|
49
|
Le Beau JM, LaCorbiere M, Powell HC, Ellisman MH, Schubert D. Extracellular fluid conditioned during peripheral nerve regeneration stimulates Schwann cell adhesion, migration and proliferation. Brain Res 1988; 459:93-104. [PMID: 3167584 DOI: 10.1016/0006-8993(88)90289-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Schwann cell movement and proliferation occur during peripheral nerve regeneration and remyelination. We asked whether soluble factors promoting these activities were present in fluid surrounding rat sciatic nerves regenerating across a 10-mm gap bridged by a silicone tube. In this model, regenerated and remyelinated axons extend across the gap by 28 days following nerve transection and tube implantation. Fluid conditioned by cells participating in nerve regeneration (RCF) was assayed for its ability to promote Schwann cell adhesion, migration and proliferation in vitro. RCFs collected at post-transectional days 1-28 were equally effective in promoting Schwann cell-substratum adhesion. In contrast, the motility-promoting activity of RCF was minimal at 1-2 days following nerve-transection, peaked at 7 days and remained elevated through 21 days. The RCF peak response was 87-fold greater than control. Schwann cell proliferative activity of RCF exhibited peaks of activity at 1 and 14 days post-transection. The biological potency of this fluid for each activity assayed in vitro correlated well with the behavior of Schwann cells chronicled during nerve repair in vivo. These findings suggest that soluble factors promoting Schwann cell adhesion, migration, and proliferation accumulate extracellularly during peripheral nerve regeneration and remyelination.
Collapse
Affiliation(s)
- J M Le Beau
- Department of Neurosciences, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|