1
|
Veletanlic V, Sartalamacchia K, Diller JR, Ogden KM. Multiple rotavirus species encode fusion-associated small transmembrane (FAST) proteins with cell type-specific activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536061. [PMID: 37066280 PMCID: PMC10104117 DOI: 10.1101/2023.04.07.536061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins are viral nonstructural proteins that mediate cell-cell fusion to form multinucleated syncytia. We previously reported that human species B rotavirus NSP1-1 is a FAST protein that induces syncytia in primate epithelial cells but not rodent fibroblasts. We hypothesized that the NSP1-1 proteins of other rotavirus species could also mediate cell-cell fusion and that fusion activity might be limited to cell types derived from homologous hosts. To test this hypothesis, we predicted the structure and domain organization of NSP1-1 proteins of species B rotavirus from a human, goat, and pig, species G rotavirus from a pigeon and turkey, and species I rotavirus from a dog and cat. We cloned these sequences into plasmids and transiently expressed the NSP1-1 proteins in avian, canine, hamster, human, porcine, and simian cells. Regardless of host origin of the virus, each NSP1-1 protein induced syncytia in primate cells, while few induced syncytia in other cell types. To identify the domains that determined cell-specific fusion activity for human species B rotavirus NSP1-1, we engineered chimeric proteins containing domain exchanges with the p10 FAST protein from Nelson Bay orthoreovirus. Using the chimeric proteins, we found that the N-terminal and transmembrane domains determined the cell type specificity of fusion activity. Although the species and cell type criteria for fusion activity remain unclear, these findings suggest that rotavirus species B, G, and I NSP1-1 are functional FAST proteins whose N termini play a role in specifying the cells in which they mediate syncytia formation.
Collapse
Affiliation(s)
- Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Fujii Y, Hirayama M, Nishiyama S, Takahashi T, Okajima M, Izumi F, Takehara K, Masatani T, Sugiyama M, Ito N. Characterization of an avian rotavirus A strain isolated from a velvet scoter ( Melanitta fusca): implication for the role of migratory birds in global spread of avian rotaviruses. J Gen Virol 2022; 103. [PMID: 35175915 DOI: 10.1099/jgv.0.001722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Mihoko Hirayama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
3
|
Tsugawa T, Fujii Y, Akane Y, Honjo S, Kondo K, Nihira H, Kimura H, Kawasaki Y. Molecular characterization of the first human G15 rotavirus strain of zoonotic origin from the bovine species. J Gen Virol 2021; 102. [PMID: 33847554 DOI: 10.1099/jgv.0.001581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Group A rotaviruses (RVAs) infect a wide variety of mammalian and avian species. Animals act as a potential reservoir to RVA human infections by direct virion transmission or by contributing genes to reassortants. Here, we report the molecular characterization of a rare human RVA strain Ni17-46 with a genotype G15P[14], isolated in Japan in 2017 during rotavirus surveillance in a paediatric outpatient clinic. The genome constellation of this strain was G15-P[14]-I2-R2-C2-M2-A13-N2-T9-E2-H3. This is the first report of an RVA with G15 genotype in humans, and sequencing and phylogenetic analysis results suggest that human infection with this strain has zoonotic origin from the bovine species. Given the fact that this strain was isolated from a patient with gastroenteritis and dehydration symptoms, we must take into account the virulence of this strain in humans.
Collapse
Affiliation(s)
- Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshiki Fujii
- Department of Virology Ⅱ, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sunagawa City Hospital, Sunagawa, Hokkaido, Japan
| | | | - Hirokazu Kimura
- Graduate School of Health Science, Gunma Paz University, Takasaki, Gunma, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Development of a live attenuated trivalent porcine rotavirus A vaccine against disease caused by recent strains most prevalent in South Korea. Vet Res 2019; 50:2. [PMID: 30616694 PMCID: PMC6323864 DOI: 10.1186/s13567-018-0619-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022] Open
Abstract
Porcine rotaviruses cause severe economic losses in the Korean swine industry due to G- and P-genotype mismatches between the predominant field and vaccine strains. Here, we developed a live attenuated trivalent porcine group A rotavirus vaccine using 80 cell culture passages of the representative Korean predominant strains G8P[7] 174-1, G9P[23] PRG942, and G5P[7] K71. Vaccination with the trivalent vaccine or its individual components induced no diarrhea during the first 2 weeks post-vaccination, i.e., the vaccines were attenuated. Challenge of trivalent-vaccinated or component-vaccinated piglets with homologous virulent strain(s) did not induce diarrhea for 2 weeks post-challenge. Immunization with the trivalent vaccine or its individual components also alleviated the histopathological lesions in the small intestines caused by challenge with the corresponding original virulent strain(s). Fecal secretory IgAs specific for each of vaccine strains were detected starting at 14 days post-vaccination (dpv), and IgA levels gradually increased up to 28 dpv. Oral immunization with the trivalent vaccine or its individual components induced high levels of serum virus-neutralizing antibody by 7 dpv. No diarrhea was observed in any experimental piglets during five consecutive passages of each vaccine strain. Our data indicated that the live attenuated trivalent vaccine was safe and effective at protecting piglets from diarrhea induced by challenge exposure of homologous virulent strains. This trivalent vaccine will potentially contribute toward controlling porcine rotavirus disease in South Korea and other countries where rotavirus infections with similar G and P genotypes are problematic.
Collapse
|
5
|
Bentes GA, Guimarães JR, Volotão EDM, Fialho AM, Hooper C, Ganime AC, Gardinali NR, Lanzarini NM, da Silva ADS, Pitcovski J, Leite JP, Pinto MA. Cynomolgus Monkeys ( Macaca fascicularis) as an Experimental Infection Model for Human Group A Rotavirus. Viruses 2018; 10:v10070355. [PMID: 29973483 PMCID: PMC6071073 DOI: 10.3390/v10070355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Abstract
Group A rotaviruses (RVA) are one of the most common causes of severe acute gastroenteritis in infants worldwide. Rotaviruses spread from person to person, mainly by faecal–oral transmission. Almost all unvaccinated children may become infected with RVA in the first two years of life. The establishment of an experimental monkey model with RVA is important to evaluate new therapeutic approaches. In this study, we demonstrated viral shedding and viraemia in juvenile–adult Macaca fascicularis orally inoculated with Wa RVA prototype. Nine monkeys were inoculated orally: seven animals with human RVA and two control animals with saline solution. During the study, the monkeys were clinically monitored, and faeces and blood samples were tested for RVA infection. In general, the inoculated animals developed an oligosymptomatic infection pattern. The main clinical symptoms observed were diarrhoea in two monkeys for three days, associated with a reduction in plasmatic potassium content. Viral RNA was detected in seven faecal and five sera samples from inoculated animals, suggesting virus replication. Cynomolgus monkeys are susceptible hosts for human Wa RVA infection. When inoculated orally, they presented self-limited diarrhoea associated with presence of RVA infectious particles in faeces. Thus, cynomolgus monkeys may be useful as animal models to evaluate the efficacy of new antiviral approaches.
Collapse
Affiliation(s)
- Gentil Arthur Bentes
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Juliana Rodrigues Guimarães
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Eduardo de Mello Volotão
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Alexandre Madi Fialho
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Cleber Hooper
- Serviço de Controle da Qualidade Animal, Instituto de Ciência e Tecnologia em Biomodelos, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Ana Carolina Ganime
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Noemi Rovaris Gardinali
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Natália Maria Lanzarini
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Alexandre Dos Santos da Silva
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Jacob Pitcovski
- Virology and Vaccine Development Laboratory, MIGAL Technology Center, Kiryat Shmona 11016, Israel.
| | - José Paulo Leite
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ 21.040-360, Brazil.
| |
Collapse
|
6
|
Ma Y. Identification of G and P genotype-specific motifs in the predicted VP7 and VP4 amino acid sequences. Virus Res 2015; 210:271-8. [PMID: 26321159 DOI: 10.1016/j.virusres.2015.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Equine rotavirus (ERV) strain L338 (G13P[18]) has a unique G and P genotype. However, the evolutionary relationship of L338 with other ERVs is still unknown. Here whole genome analysis of the L338 ERV strain was independently performed. Its genotype constellations were determined as G13-P[18]-I6-R9-C9-M6-A6-N9-T12-E14-H11, confirming previous genotype assignments. The L338 strain only shared the P[18] and I6 genotypes with other ERVs. The nucleotide sequences of the other 9 RNA segments were different from those of cogent genes of all other group A rotavirus (RVA) strains including ERVs and formed unique phylogenetic lineages. The L338 evolutionary footprints were tentatively identified in both VP7 and VP4 amino acid sequences: two regions were found in VP7 and twelve in VP4. The conserved regions shared between L338 and other group A rotavirus strains (RVAs) indicated that L338 was more closely related genomically to animal and human RVAs other than ERVs, suggesting that L338 may not be an endogenous equine RV but have emerged as an interspecies reassortant with other RVA strains. Furthermore, genotype-specific motifs of all 27 G and 37 P types were identified in regions 7-1a (aa 91-100) of VP7 and regions 8-1 (aa146-151) and 8-3 (aa113-118 and 125-135) of VP4 (VP8*).
Collapse
Affiliation(s)
- Yongping Ma
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yu Zhong District, Yi Xue Yuan Road #1, Chongqing 400016, China.
| |
Collapse
|
7
|
Bhowmick R, Mukherjee A, Patra U, Chawla-Sarkar M. Rotavirus disrupts cytoplasmic P bodies during infection. Virus Res 2015; 210:344-54. [PMID: 26386333 DOI: 10.1016/j.virusres.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
Cytoplasmic Processing bodies (P bodies), the RNA-protein aggregation foci of translationally stalled and potentially decaying mRNA, have been reported to be differentially modulated by viruses. Rotavirus, the causative agent of acute infantile gastroenteritis is a double stranded RNA virus which completes its entire life-cycle exclusively in host cell cytoplasm. In this study, the fate of P bodies was investigated upon rotavirus infection. It was found that P bodies get disrupted during rotavirus infection. The disruption occurred by more than one different mechanism where deadenylating P body component Pan3 was degraded by rotavirus NSP1 and exonuclease XRN1 along with the decapping enzyme hDCP1a were relocalized from cytoplasm to nucleus. Overall the study highlights decay and subcellular relocalization of P body components as novel mechanisms by which rotavirus subverts cellular antiviral responses.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
8
|
Morelli M, Ogden KM, Patton JT. Silencing the alarms: Innate immune antagonism by rotavirus NSP1 and VP3. Virology 2015; 479-480:75-84. [PMID: 25724417 PMCID: PMC4940189 DOI: 10.1016/j.virol.2015.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022]
Abstract
The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFNs) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)/RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other rotavirus species evade host innate immune responses. Rotavirus NSP1 and VP3 directly antagonize host innate immune pathways. NSP1, a putative E3 ubiquitin ligase, mediates turnover of multiple immune factors. VP3, the viral capping enzyme, has phosphodiesterase activity to block OAS/RNase L.
Collapse
Affiliation(s)
- Marco Morelli
- Rotavirus Molecular Biology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristen M Ogden
- Rotavirus Molecular Biology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T Patton
- Rotavirus Molecular Biology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Nemoto M, Nagai M, Tsunemitsu H, Omatsu T, Furuya T, Shirai J, Kondo T, Fujii Y, Todaka R, Katayama K, Mizutani T. Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009-2010. Arch Virol 2015; 160:1171-9. [DOI: 10.1007/s00705-015-2374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/14/2015] [Indexed: 11/29/2022]
|
10
|
Park JG, Kim DS, Matthijnssens J, Kwon HJ, Zeller M, Alfajaro MM, Son KY, Hosmillo M, Ryu EH, Kim JY, Lee JH, Park SJ, Kang MI, Kwon J, Choi JS, Cho KO. Comparison of pathogenicities and nucleotide changes between porcine and bovine reassortant rotavirus strains possessing the same genotype constellation in piglets and calves. Vet Microbiol 2014; 172:51-62. [DOI: 10.1016/j.vetmic.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 11/26/2022]
|
11
|
Park JG, Kim HJ, Matthijnssens J, Alfajaro MM, Kim DS, Son KY, Kwon HJ, Hosmillo M, Ryu EH, Kim JY, Cena RB, Lee JH, Kang MI, Park SI, Cho KO. Different virulence of porcine and porcine-like bovine rotavirus strains with genetically nearly identical genomes in piglets and calves. Vet Res 2013; 44:88. [PMID: 24083947 PMCID: PMC3851489 DOI: 10.1186/1297-9716-44-88] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Direct interspecies transmissions of group A rotaviruses (RVA) have been reported under natural conditions. However, the pathogenicity of RVA has never been directly compared in homologous and heterologous hosts. The bovine RVA/Cow-tc/KOR/K5/2004/G5P[7] strain, which was shown to possess a typical porcine-like genotype constellation similar to that of the G5P[7] prototype RVA/Pig-tc/USA/OSU/1977/G5P9[7] strain, was examined for its pathogenicity and compared with the porcine G5P[7] RVA/Pig-tc/KOR/K71/2006/G5P[7] strain possessing the same genotype constellation. The bovine K5 strain induced diarrhea and histopathological changes in the small intestine of piglets and calves, whereas the porcine K71 strain caused diarrhea and histopathological changes in the small intestine of piglets, but not in calves. Furthermore, the bovine K5 strain showed extra-intestinal tropisms in both piglets and calves, whereas the porcine K71 strain had extra-intestinal tropisms in piglets, but not in calves. Therefore, we performed comparative genomic analysis of the K71 and K5 RVA strains to determine whether specific mutations could be associated with these distinct clinical and pathological phenotypes. Full-length sequencing analyses for the 11 genomic segments for K71 and K5 revealed that these strains were genetically nearly identical to each other. Two nucleotide mutations were found in the 5′ untranslated region (UTR) of NSP5 and the 3′ UTR of NSP3, and eight amino acid mutations in VP1-VP4 and NSP2. Some of these mutations may be critical molecular determinants for RVA virulence and/or pathogenicity.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Full genomic analysis of rabbit rotavirus G3P[14] strain N5 in China: Identification of a novel VP6 genotype. INFECTION GENETICS AND EVOLUTION 2012; 12:1567-76. [DOI: 10.1016/j.meegid.2012.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022]
|
13
|
Zeller M, Heylen E, De Coster S, Van Ranst M, Matthijnssens J. Full genome characterization of a porcine-like human G9P[6] rotavirus strain isolated from an infant in Belgium. INFECTION GENETICS AND EVOLUTION 2012; 12:1492-500. [DOI: 10.1016/j.meegid.2012.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
14
|
Ghosh S, Shintani T, Urushibara N, Taniguchi K, Kobayashi N. Whole-genomic analysis of a human G1P[9] rotavirus strain reveals intergenogroup-reassortment events. J Gen Virol 2012; 93:1700-1705. [DOI: 10.1099/vir.0.043026-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Group A rotavirus (RVA) strain K8 (RVA/Human-tc/JPN/K8/1977/G1P[9]) was found to have Wa-like VP7 and NSP1 genes and AU-1-like VP4 and NSP5 genes. To determine the exact origin and overall genetic makeup of this unusual RVA strain, the remaining genes (VP1–VP3, VP6 and NSP2–NSP4) of K8 were analysed in this study. Strain K8 exhibited a G1-P[9]-I1-R3-C3-M3-A1-N1-T3-E3-H3 genotype constellation, not reported previously. The VP6 and NSP2 genes of strain K8 were related closely to those of common human Wa-like G1P[8] and/or G3P[8] strains, whilst its VP1–VP3, NSP3 and NSP4 genes were related more closely to those of AU-1-like RVAs and/or AU-1-like genes of multi-reassortant strains than to those of other RVAs. Therefore, strain K8 might have originated from intergenogroup-reassortment events involving acquisition of four Wa-like genes, possibly from G1P[8] RVAs, by an AU-1-like P[9] strain. Whole-genomic analysis of strain K8 has provided important insights into the complex genetic diversity of RVAs.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuzumi Shintani
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Ghosh S, Shintani T, Kobayashi N. Evidence for the porcine origin of equine rotavirus strain H-1. Vet Microbiol 2012; 158:410-4. [DOI: 10.1016/j.vetmic.2012.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/08/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
16
|
Kim HH, Matthijnssens J, Kim HJ, Kwon HJ, Park JG, Son KY, Ryu EH, Kim DS, Lee WS, Kang MI, Yang DK, Hyun BH, Park SI, Park SJ, Cho KO. Full-length genomic analysis of porcine G9P[23] and G9P[7] rotavirus strains isolated from pigs with diarrhea in South Korea. INFECTION GENETICS AND EVOLUTION 2012; 12:1427-35. [PMID: 22613801 DOI: 10.1016/j.meegid.2012.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Group A rotaviruses (RVAs) are agents causing severe gastroenteritis in infants and young animals. G9 RVA strains are believed to have originated from pigs. However, this genotype has emerged as the fifth major human RVA genotype worldwide. To better understand the relationship between human and porcine RVA strains, complete RVA genome data are needed. For human RVA strains, the number of complete genome data have grown exponentially. However, there is still a lack of complete genome data on porcine RVA strains. Recently, G9 RVA strains have been identified as the third most important genotype in diarrheic pigs in South Korea in combinations with P[7] and P[23]. This study is the first report on complete genome analyses of 1 G9P[7] and 3 G9P[23] porcine RVA strains, resulting in the following genotype constellation: G9-P[7]/P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. By comparisons of these genotype constellations, it was revealed that the Korean G9P[7] and G9P[23] RVA strains possessed a typical porcine RVA backbone, similar to other known porcine RVA strains. However, detailed phylogenetic analyses revealed the presence of intra-genotype reassortments among porcine RVA strains in South Korea. Thus, our data provide genetic information of G9 RVA strains increasingly detected in both humans and pigs, and will help to establish the role of pigs as a source or reservoir for novel human RVA strains.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Matthijnssens J, Miño S, Papp H, Potgieter C, Novo L, Heylen E, Zeller M, Garaicoechea L, Badaracco A, Lengyel G, Kisfali P, Cullinane A, Collins PJ, Ciarlet M, O’Shea H, Parreño V, Bányai K, Barrandeguy M, Van Ranst M. Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 2012; 93:866-875. [DOI: 10.1099/vir.0.039255-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, the complete genome sequences of seven equine group A rotavirus (RVA) strains (RVA/Horse-tc/GBR/L338/1991/G13P[18], RVA/Horse-wt/IRL/03V04954/2003/G3P[12] and RVA/Horse-wt/IRL/04V2024/2004/G14P[12] from Europe; RVA/Horse-wt/ARG/E30/1993/G3P[12], RVA/Horse-wt/ARG/E403/2006/G14P[12] and RVA/Horse-wt/ARG/E4040/2008/G14P[12] from Argentina; and RVA/Horse-wt/ZAF/EqRV-SA1/2006/G14P[12] from South Africa) were determined. Multiple novel genotypes were identified and genotype numbers were assigned by the Rotavirus Classification Working Group: R9 (VP1), C9 (VP2), N9 (NSP2), T12 (NSP3), E14 (NSP4), and H7 and H11 (NSP5). The genotype constellation of L338 was unique: G13-P[18]-I6-R9-C9-M6-A6-N9-T12-E14-H11. The six remaining equine RVA strains showed a largely conserved genotype constellation: G3/G14-P[12]-I2/I6-R2-C2-M3-A10-N2-T3-E2/E12-H7, which is highly divergent from other known non-equine RVA genotype constellations. Phylogenetic analyses revealed that the sequences of these equine RVA strains are related distantly to non-equine RVA strains, and that at least three lineages exist within equine RVA strains. A small number of reassortment events were observed. Interestingly, the three RVA strains from Argentina possessed the E12 genotype, whereas the three RVA strains from Ireland and South Africa possessed the E2 genotype. The unusual E12 genotype has until now only been described in Argentina among RVA strains collected from guanaco, cattle and horses, suggesting geographical isolation of this NSP4 genotype. This conserved genetic configuration of equine RVA strains could be useful for future vaccine development or improvement of currently used equine RVA vaccines.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Samuel Miño
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | - Hajnalka Papp
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Luis Novo
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mark Zeller
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | - György Lengyel
- Dr György Radó Military Medical Centre, Budapest, Hungary
| | - Péter Kisfali
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - Ann Cullinane
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - P. J. Collins
- Molecular Epidemiology Laboratory, Cork Institute of Technology, Cork, Ireland
| | - Max Ciarlet
- Clinical Research and Development, Novartis Vaccines and Diagnostics, Inc., Cambridge, MA 02139, USA
| | - Helen O’Shea
- Molecular Epidemiology Laboratory, Cork Institute of Technology, Cork, Ireland
| | - Viviana Parreño
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - María Barrandeguy
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Kim HJ, Park JG, Alfajaro MM, Kim DS, Hosmillo M, Son KY, Lee JH, Bae YC, Park SI, Kang MI, Cho KO. Pathogenicity characterization of a bovine triple reassortant rotavirus in calves and piglets. Vet Microbiol 2012; 159:11-22. [PMID: 22465801 DOI: 10.1016/j.vetmic.2012.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Rotaviruses are important human and animal pathogens with high impact on public health and livestock industry. There is little evidence about the cross-species pathogenicity and extra-intestinal infections of animal and human reassortant rotaviruses, particularly based on all 11 genotyping data. In this study, the bovine triple reassortant KJ56-1 strain harboring two bovine-like genome segments, eight porcine-like genome segments, and one human-like genome segment was used to evaluate the cross-species pathogenicity in its parent species, calves and piglets, and to determine its abilities of causing viremia and extra-intestinal tropisms in piglets. The KJ56-1 strain isolated from a calf diarrhea fecal sample replicated without causing diarrhea and severe intestinal pathology in calves. However, piglets inoculated with this strain showed persistent severe diarrhea and marked intestinal pathology. By SYBR Green real-time RT-PCR, viral RNA was detected in the sera, mesenteric lymph node, lung, liver, choroid plexus, and cerebrospinal fluid in the experimental piglets. An immunofluorescence assay confirmed viral replication in these extra-intestinal organs and tissues. These results indicated that the bovine triple reassortant KJ56-1 strain was virulent to piglets but not to calves. Our data also demonstrated that the reassortant rotaviruses had the ability to spread to the bloodstream from the gut, enter and amplify in the mesenteric lymph node, and disseminate to the extra-intestinal organs and tissues.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Suzuki T, Kuga K, Miyazaki A, Tsunemitsu H. Genetic divergence and classification of non-structural protein 1 among porcine rotaviruses of species B. J Gen Virol 2011; 92:2922-2929. [DOI: 10.1099/vir.0.036426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porcine rotavirus B (RVB) has frequently been detected in diarrhoea of suckling and weaned pigs. Moreover, epidemiological studies using ELISA have demonstrated high antibody prevalence in sera from sows, indicating that RVB infections are widespread. Because it is difficult to propagate RVBs serially in cell culture, genetic analysis of RNA segments of porcine RVBs other than those encoding VP7 and NSP2 has been scarcely performed. We conducted sequence and phylogenetic analyses focusing on non-structural protein 1 (NSP1), using 15 porcine RVB strains isolated from diarrhoeic faeces collected around Japan. Sequence analysis showed that the porcine NSP1 gene contains two overlapping ORFs. Especially, peptide 2 of NSP1 retains highly conserved cysteine and histidine residues among RVBs. Comparison of NSP1 nucleotide and deduced amino acid sequences from porcine RVB strains demonstrated low identities to those from other RVB strains. Phylogenetic analysis of RVB NSP1 revealed the presence of murine, human, ovine, bovine and porcine clusters. Furthermore, the NSP1 genes of porcine RVBs were divided into three genotypes, suggesting the possibility that porcine species might be an original host of RVB infection. Of nine strains common to those used in our previous study, only one strain was classified into a different genotype from the others in the analysis of VP7, in contrast to the analysis of NSP1, where all belonged to the same cluster. This fact suggests the occurrence of gene reassortment among porcine RVBs. These findings should provide more beneficent information to understand the evolution and functions of RVBs.
Collapse
Affiliation(s)
- Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kazufumi Kuga
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Ayako Miyazaki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Hiroshi Tsunemitsu
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
20
|
Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049-65. [DOI: 10.2217/fmb.11.90] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556, Japan
| | | |
Collapse
|
21
|
Kim HJ, Park JG, Matthijnssens J, Lee JH, Bae YC, Alfajaro MM, Park SI, Kang MI, Cho KO. Intestinal and extra-intestinal pathogenicity of a bovine reassortant rotavirus in calves and piglets. Vet Microbiol 2011; 152:291-303. [DOI: 10.1016/j.vetmic.2011.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/20/2011] [Accepted: 05/11/2011] [Indexed: 12/14/2022]
|
22
|
Martella V, Potgieter AC, Lorusso E, De Grazia S, Giammanco GM, Matthijnssens J, Bányai K, Ciarlet M, Lavazza A, Decaro N, Buonavoglia C. A feline rotavirus G3P[9] carries traces of multiple reassortment events and resembles rare human G3P[9] rotaviruses. J Gen Virol 2011; 92:1214-1221. [PMID: 21228122 DOI: 10.1099/vir.0.027425-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The full-length genome sequence of a feline G3P[9] rotavirus (RV) strain, BA222, identified from the intestinal content of an adult cat, was determined. Strain BA222 possessed a G3-P[9]-I2-R2-C2-M2-A3-N1-T3-E2-H3 genomic constellation, differing substantially from other feline RVs. Phylogenetic analyses of each genome segment revealed common origins with selected animal and zoonotic human RVs, notably with rare multi-reassortant human G3P[9] RVs (Ita/PAI58/96 and Ita/PAH136/96). Altogether, the findings suggest that feline RVs are genetically diverse and that human RVs may occasionally originate either directly or indirectly (via reassortment) from feline RVs.
Collapse
Affiliation(s)
- V Martella
- Department of Veterinary Public Health, University of Bari, Valenzano, Italy
| | | | - E Lorusso
- Department of Veterinary Public Health, University of Bari, Valenzano, Italy
| | - S De Grazia
- Department of Health Promotion Sciences 'G. D'Alessandro', University of Palermo, Italy
| | - G M Giammanco
- Department of Health Promotion Sciences 'G. D'Alessandro', University of Palermo, Italy
| | | | - K Bányai
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - M Ciarlet
- Infectious Diseases and Vaccines - Clinical Research, Merck Research Laboratory, North Wales, Pennsylvania, USA
| | - A Lavazza
- Istituto Zooprofilattico Sperimentale di Lombardia ed Emilia Romagna, Brescia, Italy
| | - N Decaro
- Department of Veterinary Public Health, University of Bari, Valenzano, Italy
| | - C Buonavoglia
- Department of Veterinary Public Health, University of Bari, Valenzano, Italy
| |
Collapse
|
23
|
Arnold MM, Patton JT. Rotavirus antagonism of the innate immune response. Viruses 2009; 1:1035-56. [PMID: 21994581 PMCID: PMC3185539 DOI: 10.3390/v1031035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/05/2009] [Accepted: 11/20/2009] [Indexed: 12/17/2022] Open
Abstract
Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN)-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1) that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF) family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.
Collapse
Affiliation(s)
- Michelle M Arnold
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA; E-Mail:
| | | |
Collapse
|
24
|
Molecular characterization of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of bovine group B rotaviruses: identification of a novel VP4 genotype. Arch Virol 2009; 155:159-67. [DOI: 10.1007/s00705-009-0555-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/22/2009] [Indexed: 11/26/2022]
|
25
|
Esona M, Geyer A, Page N, Trabelsi A, Fodha I, Aminu M, Agbaya V, Tsion B, Kerin T, Armah G, Steele A, Glass R, Gentsch J. Genomic characterization of human rotavirus G8 strains from the African rotavirus network: Relationship to animal rotaviruses. J Med Virol 2009; 81:937-51. [DOI: 10.1002/jmv.21468] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gómara M, Maes P, Patton JT, Rahman M, Van Ranst M. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 2008; 82:3204-19. [PMID: 18216098 PMCID: PMC2268446 DOI: 10.1128/jvi.02257-07] [Citation(s) in RCA: 715] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/08/2008] [Indexed: 01/10/2023] Open
Abstract
Group A rotavirus classification is currently based on the molecular properties of the two outer layer proteins, VP7 and VP4, and the middle layer protein, VP6. As reassortment of all the 11 rotavirus gene segments plays a key role in generating rotavirus diversity in nature, a classification system that is based on all the rotavirus gene segments is desirable for determining which genes influence rotavirus host range restriction, replication, and virulence, as well as for studying rotavirus epidemiology and evolution. Toward establishing such a classification system, gene sequences encoding VP1 to VP3, VP6, and NSP1 to NSP5 were determined for human and animal rotavirus strains belonging to different G and P genotypes in addition to those available in databases, and they were used to define phylogenetic relationships among all rotavirus genes. Based on these phylogenetic analyses, appropriate identity cutoff values were determined for each gene. For the VP4 gene, a nucleotide identity cutoff value of 80% completely correlated with the 27 established P genotypes. For the VP7 gene, a nucleotide identity cutoff value of 80% largely coincided with the established G genotypes but identified four additional distinct genotypes comprised of murine or avian rotavirus strains. Phylogenetic analyses of the VP1 to VP3, VP6, and NSP1 to NSP5 genes showed the existence of 4, 5, 6, 11, 14, 5, 7, 11, and 6 genotypes, respectively, based on nucleotide identity cutoff values of 83%, 84%, 81%, 85%, 79%, 85%, 85%, 85%, and 91%, respectively. In accordance with these data, a revised nomenclature of rotavirus strains is proposed. The novel classification system allows the identification of (i) distinct genotypes, which probably followed separate evolutionary paths; (ii) interspecies transmissions and a plethora of reassortment events; and (iii) certain gene constellations that revealed (a) a common origin between human Wa-like rotavirus strains and porcine rotavirus strains and (b) a common origin between human DS-1-like rotavirus strains and bovine rotaviruses. These close evolutionary links between human and animal rotaviruses emphasize the need for close simultaneous monitoring of rotaviruses in animals and humans.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Oliveira CM, Farias IP, Ferraz da Fonseca JC, Brasil LM, de Souza R, Astolfi-Filho S. Phylogeny and molecular genetic parameters of different stages of hepatitis B virus infection in patients from the Brazilian Amazon. Arch Virol 2008; 153:823-30. [PMID: 18288443 DOI: 10.1007/s00705-008-0053-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 01/04/2008] [Indexed: 12/18/2022]
Abstract
A fragment of 600 bp of the gene which codes for the surface antigen of hepatitis B virus (HBV) was amplified and sequenced from patients who were born in five states of the Brazilian Amazon (Amazonas, Pará, Acre, Rondônia and Tocantins). A total of 44 sequences were used for the estimation of molecular genetic parameters and phylogenetic analyses. Compared with patients who were asymptomatic, those who had acute hepatitis and chronic liver disease had higher levels of genetic variability and higher rates of nucleotide substitutions. The analysis of transition and transversion substitutions showed that transition-type substitutions predominated. In chronic liver disease carriers, transversion-type substitutions showed phylogenetic saturation. In general, all of the analyses carried out in this study showed an association between patterns of changes in molecular genetic parameters and the stage of disease progression. Phylogenetic analysis using the HKY85 model of evolution identified 41 individuals as genotype A, suggesting its predominance in the Amazon region, one individual as genotype C, and one individual closely related to genotypes E and F.
Collapse
Affiliation(s)
- Cíntia Mara de Oliveira
- Centro de Apoio Multidisciplinar, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Douagi I, McInerney GM, Hidmark AS, Miriallis V, Johansen K, Svensson L, Karlsson Hedestam GB. Role of interferon regulatory factor 3 in type I interferon responses in rotavirus-infected dendritic cells and fibroblasts. J Virol 2007; 81:2758-68. [PMID: 17215281 PMCID: PMC1865971 DOI: 10.1128/jvi.01555-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main pathway for the induction of type I interferons (IFN) by viruses is through the recognition of viral RNA by cytosolic receptors and the subsequent activation of interferon regulatory factor 3 (IRF-3), which drives IFN-alpha/beta transcription. In addition to their role in inducing an antiviral state, type I IFN also play a role in modulating adaptive immune responses, in part via their effects on dendritic cells (DCs). Many viruses have evolved mechanisms to interfere with type I IFN induction, and one recently reported strategy for achieving this is by targeting IRF-3 for degradation, as shown for rotavirus nonstructural protein 1 (NSP1). It was therefore of interest to investigate whether rotavirus-exposed DCs would produce type I IFN and/or mature in response to the virus. Our results demonstrate that IRF-3 was rapidly degraded in rotavirus-infected mouse embryonic fibroblasts (MEFs) and type I IFN was not detected in these cultures. In contrast, rotavirus induced type I IFN production in myeloid DCs (mDCs), resulting in their activation. Type I IFN induction in response to rotavirus was reduced in mDCs from IRF-3(-/-) mice, indicating that IRF-3 was important for mediating the response. Exposure of mDCs to UV-treated rotavirus induced significantly higher type I IFN levels, suggesting that rotavirus-encoded functions also antagonized the response in DCs. However, in contrast to MEFs, this action was not sufficient to completely abrogate type I IFN induction, consistent with a role for DCs as sentinels for virus infection.
Collapse
Affiliation(s)
- Iyadh Douagi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Mahbub Alam M, Kobayashi N, Ishino M, Naik TN, Taniguchi K. Analysis of genetic factors related to preferential selection of the NSP1 gene segment observed in mixed infection and multiple passage of rotaviruses. Arch Virol 2006; 151:2149-59. [PMID: 16773237 DOI: 10.1007/s00705-006-0795-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/27/2006] [Indexed: 12/15/2022]
Abstract
Reassortment is one of the major evolutionary mechanisms of the rotavirus genome. Preferential selection (assortment) of the NSP1 gene segment from either of the parental viruses after coinfection of these viruses has been reported as a notable finding in reassortment. To analyze genetic factors which are associated with preferential selection of the rotavirus NSP1 gene segment into progeny viruses, mixed infection and multiple passages were performed using two panels of rotaviruses, i.e., bovine rotavirus A5 clones, and simian rotavirus SA11 and five strains of SA11-based single NSP1 gene-substitution reassortants. In the first experiment, three A5 clones (A5-10, A5-13, and A5-16) that had genetically distinct NSP1 genes in the same genetic background were used. In coinfection of these A5 clones, it was noted that the A5-10 NSP1 gene, which encodes an incomplete protein product due to presence of a nonsense codon at an unusual position, was selected more preferentially than the A5-13 NSP1 gene with intact length and structure. The A5-16 NSP1 gene, with a deletion of 500 bp, was least efficiently selected. In the second experiment, we prepared two reassortants, SOF and SRF, which have NSP1 genes from rotavirus strains OSU and RRV, respectively, in the genetic background of SA11, which were used together with previously prepared reassortants SKF, SDF, and SNF, which had NSP1 genes from strains KU, DS1, and K9, respectively. Among the 6 NSP1 genes analyzed, the NSP1 gene from SKF was most preferentially selected, followed by SNF, SOF, SDF, SA11, and SRF, in that order. Although SOF exhibited less growth efficacy than SA11, the growth rates of other reassortants were similar to that of SA11. These findings suggest that for the occurrence of preferential selection of the NSP1 gene, production of the intact NSP1 protein may not be involved, but the presence of intact length of the NSP1 gene may be required. Furthermore, it was also found that genetic similarity based on primary structure of this gene is not related to the selectivity of the NSP1 gene.
Collapse
Affiliation(s)
- M Mahbub Alam
- Department of Veterinary Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | | | | |
Collapse
|
30
|
Matthijnssens J, Rahman M, Martella V, Xuelei Y, De Vos S, De Leener K, Ciarlet M, Buonavoglia C, Van Ranst M. Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J Virol 2006; 80:3801-10. [PMID: 16571797 PMCID: PMC1440464 DOI: 10.1128/jvi.80.8.3801-3810.2006] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Belgian rotavirus strain B4106, isolated from a child with gastroenteritis, was previously found to have VP7 (G3), VP4 (P[14]), and NSP4 (A genotype) genes closely related to those of lapine rotaviruses, suggesting a possible lapine origin or natural reassortment of strain B4106. To investigate the origin of this unusual strain, the gene sequences encoding VP1, VP2, VP3, VP6, NSP1, NSP2, NSP3, and NSP5/6 were also determined. To allow comparison to a lapine strain, the 11 double-stranded RNA segments of a European G3P[14] rabbit rotavirus strain 30/96 were also determined. The complete genome similarity between strains B4106 and 30/96 was 93.4% at the nucleotide level and 96.9% at the amino acid level. All 11 genome segments of strain B4106 were closely related to those of lapine rotaviruses and clustered with the lapine strains in phylogenetic analyses. In addition, sequence analyses of the NSP5 gene of strain B4106 revealed that the altered electrophoretic mobility of NSP5, resulting in a super-short pattern, was due to a gene rearrangement (head-to-tail partial duplication, combined with two short insertions and a deletion). Altogether, these findings confirm that a rotavirus strain with an entirely lapine genome complement was able to infect and cause severe disease in a human child.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsunemitsu H, Kamiyama M, Kawashima K, Katsuda K, Kohmoto M, Saif LJ, Shouji T, Onodera T. Molecular characterization of the major capsid protein VP6 of bovine group B rotavirus and its use in seroepidemiology. J Gen Virol 2005; 86:2569-2575. [PMID: 16099916 DOI: 10.1099/vir.0.80938-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major inner capsid protein (VP6) gene of the bovine group B rotavirus (GBR) Nemuro strain is 1269 nt in length and contains one open reading frame encoding 391 aa. Nucleotide and amino acid sequence identities of the Nemuro VP6 gene compared with the published corresponding human and rodent GBR genes were respectively 66–67 and 70–72 %, which are notably lower than those between human and rodent viruses (72–73 and 83–84 %, respectively). Overall identities of VP6 genes among GBRs were substantially lower than those among both group A rotaviruses (GARs) and group C rotaviruses (GCRs) derived from different species of mammals. These results demonstrate that bovine GBR is remarkably distinct from other GBRs and that GBRs from different species may have had a longer period of divergence than GARs and GCRs. Recombinant VP6 was generated with a baculovirus expression system and used for an ELISA to detect GBR antibodies. All 13 paired sera from adult cows with GBR-induced diarrhoea in the field showed antibody responses in the ELISA. In serological surveys of GBR infection using the ELISA, 47 % of cattle sera were positive for GBR antibodies, with a higher antibody prevalence in adults than in young cattle. In pigs, a high prevalence of GBR antibodies (97 %) was detected in sera from sows. These results suggest that GBR infection is common in cattle and pigs, notwithstanding the scarcity of reports of GBR detection in these species to date.
Collapse
Affiliation(s)
- Hiroshi Tsunemitsu
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| | - Mariko Kamiyama
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| | - Kenji Kawashima
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| | - Ken Katsuda
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| | - Mariko Kohmoto
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691-4096, USA
| | - Tomotaro Shouji
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| | - Toshiyuki Onodera
- Shichinohe Research Unit, National Institute of Animal Health, Shichinohe, Aomori 039-2586, Japan
| |
Collapse
|
32
|
Yang H, Makeyev EV, Kang Z, Ji S, Bamford DH, van Dijk AA. Cloning and sequence analysis of dsRNA segments 5, 6 and 7 of a novel non-group A, B, C adult rotavirus that caused an outbreak of gastroenteritis in China. Virus Res 2004; 106:15-26. [PMID: 15522443 DOI: 10.1016/j.virusres.2004.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
A diarrhoeal outbreak among adults in China was caused by a new rotavirus, termed ADRV-N, that does not react with antisera directed against group A, B or C rotaviruses [Zhonghua Liu Xing Bing Xue Za Zhi (Chin. Epidemiol.) 19 (1998) 336]. ADRV-N can be propagated in cell cultures [Zhonghua Yi Xue Za Zhi (Natl. Med. J. China) 82 (2002) 14]. We present the complete sequences for ADRV-N genome segments 5 and 6, and a full ORF sequence of genome segment 7. The deduced amino acid sequences suggest that these segments encode NSP1, VP6 and NSP3, respectively. These three ADRV-N genome segments have a unique -ACCCC-3' terminal sequence. The 5'-GG- terminus of segments 5 and 6 is the same as that of other rotaviruses. The amino acid similarity between VP6 and NSP3 of ADRV-N and the cognate sequences of their closest counterpart, group B IDIR, was 37 and 35%, respectively. The ADRV-N NSP1 has a double-stranded RNA binding motif (DSRM) and a putative autoproteolytic cleavage motif upstream from the DSRM. The putative ADRV-N NSP3 has a truncated C-terminus compared to the cognate protein of group B rotaviruses. All the available data demonstrate that ADRV-N differs significantly from the known rotaviruses and strongly suggest that ADRV-N is the first recognized member of a new group of rotaviruses infecting humans.
Collapse
Affiliation(s)
- H Yang
- Institute of Biotechnology and Faculty of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Iturriza Gómara M, Kang G, Mammen A, Jana AK, Abraham M, Desselberger U, Brown D, Gray J. Characterization of G10P[11] rotaviruses causing acute gastroenteritis in neonates and infants in Vellore, India. J Clin Microbiol 2004; 42:2541-7. [PMID: 15184432 PMCID: PMC427862 DOI: 10.1128/jcm.42.6.2541-2547.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rotavirus G10P[11] strains, which are commonly found in cattle, have frequently been associated with asymptomatic neonatal infections in India. We report the finding of G10P[11] strains associated with severe disease in neonates in Vellore, southern India. Rotavirus strains from 43 fecal samples collected from neonates with or without gastrointestinal symptoms between 1999 and 2000 were genotyped by reverse transcription-PCR. Forty-one neonates (95%) were infected with G10P[11] rotavirus strains, and 63% of the infections were in children who had gastrointestinal symptoms, including acute watery diarrhea. G10P[11] strains were also seen infecting older children with dehydrating gastroenteritis in Vellore. Characterization of the genes encoding VP7, VP4, VP6, and NSP4 of these strains revealed high sequence homology with the corresponding genes of the asymptomatic neonatal strain I321, which in turn is very closely related to bovine G10P[11] strains circulating in India. No significant differences were seen in the sequences obtained from strains infecting symptomatic neonates or children and asymptomatic neonates.
Collapse
Affiliation(s)
- Miren Iturriza Gómara
- Enteric Virus Unit, Enteric Respiratory and Neurological Virus Laboratory, Health Protection Agency, 61 Colindale Ave., London NW9 5HT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wakuda M, Nagashima S, Kobayashi N, Pongsuwanna Y, Taniguchi K. Serologic and genomic characterization of a G12 human rotavirus in Thailand. J Clin Microbiol 2004; 41:5764-9. [PMID: 14662978 PMCID: PMC309043 DOI: 10.1128/jcm.41.12.5764-5769.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G and P type specificity of the human rotavirus strain T-152 (G12P[9]) isolated in Thailand was serologically confirmed with G12-specific monoclonal antibodies prepared in this study by using a reference G12 strain, L26, as an immunizing antigen and a P[9]-specific monoclonal antibody, respectively. The genomic relationship of strain T-152 with representative human rotavirus strains was examined by means of Northern blot analysis. The results showed that T152 is closely related to strain AU-1 (G3P[9]). Gene 5 (NSP1 gene) of T152, which did not hybridize with those of any other strains examined, was characterized by sequence determination. The T152 NSP1 gene is 1,652 nucleotides in length, encodes 493 amino acids, and exhibits low identity to those of representative human and animal rotaviruses.
Collapse
Affiliation(s)
- M Wakuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | |
Collapse
|
35
|
Palombo EA. Genetic analysis of Group A rotaviruses: evidence for interspecies transmission of rotavirus genes. Virus Genes 2003; 24:11-20. [PMID: 11928984 DOI: 10.1023/a:1014073618253] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rotaviruses are the major cause of severe gastroenteritis in young children and animals. The rotavirus genome is composed of eleven segments of double-stranded RNA and can undergo genetic reassortment during mixed infections, leading to progeny viruses with novel or atypical phenotypes. There are numerous descriptions of rotavirus strains isolated from human and animals that share genetic and antigenic features of viruses from heterologous species. In many cases, genetic analysis by hybridization has clearly demonstrated the genetic relatedness of gene segments to those from viruses isolated from different species. Together with the observation that some virus strains appear to have been transmitted to a different species as a whole genome constellation, these data suggest that interspecies transmission occurs naturally, albeit at low frequencies. Although interspecies transmission has not been documented directly, there is an increasing number of reports of atypical rotaviruses that are apparently derived from transmission between: humans, cats and dogs; humans and cattle; humans and pigs; pigs and cattle; and pigs and horses. Interspecies evolutionary relationships are supported by phylogenetic analysis of rotavirus genes from different species. The emergence of novel strains derived from interspecies transmission has implications for the design and implementation of successful human rotavirus vaccine strategies.
Collapse
Affiliation(s)
- Enzo A Palombo
- School of Engineering and Science, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
36
|
Mitzel DN, Weisend CM, White MW, Hardy ME. Translational regulation of rotavirus gene expression. J Gen Virol 2003; 84:383-391. [PMID: 12560571 DOI: 10.1099/vir.0.18558-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rotavirus mRNAs are transcribed from 11 genomic dsRNA segments within a subviral particle. The mRNAs are extruded into the cytoplasm where they serve as mRNA for protein synthesis and as templates for packaging and replication into dsRNA. The molecular steps in the replication pathway that regulate the levels of viral gene expression are not well defined. We have investigated potential mechanisms of regulation of rotavirus gene expression by functional evaluation of two differentially expressed viral mRNAs. NSP1 (gene 5) and VP6 (gene 6) are expressed early in infection, and VP6 is expressed in excess over NSP1. We formulated the hypothesis that the amounts of NSP1 and VP6 were regulated by the translational efficiencies of the respective mRNAs. We measured the levels of gene 5 and gene 6 mRNA and showed that they were not significantly different, and protein analysis indicated no difference in stability of NSP1 compared with VP6. Polyribosome analysis showed that the majority of gene 6 mRNA was present on large polysomes. In contrast, sedimentation of more than half of the gene 5 mRNA was subpolysomal. The change in distribution of gene 5 mRNA in polyribosome gradients in response to treatment with low concentrations of cycloheximide suggested that gene 5 is a poor translation initiation template compared with gene 6 mRNA. These data define a regulatory mechanism for the difference in amounts of VP6 and NSP1 and provide evidence for post-transcriptional control of rotavirus gene expression mediated by the translational efficiency of individual viral mRNAs.
Collapse
Affiliation(s)
- Dana N Mitzel
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Carla M Weisend
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Michael W White
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Michele E Hardy
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| |
Collapse
|
37
|
El-Attar L, Dhaliwal W, Iturriza-Gómara M, Bridger JC. Identification and molecular characterization of a bovine G3 rotavirus which causes age-independent diarrhea in cattle. J Clin Microbiol 2002; 40:937-42. [PMID: 11880420 PMCID: PMC120263 DOI: 10.1128/jcm.40.3.937-942.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G3 rotaviruses have been reported rarely in cattle, and none have been characterized. We report the first genomic characterization of a bovine G3 rotavirus, CP-1, which had been biologically characterized in vivo and shown to cause age-independent diarrhea. CP-1 was a G3 rotavirus as its VP7 had 92 to 96% deduced amino acid identity to those of G3 rotaviruses. However, initially, CP-1 was identified as a G10 rotavirus by RT-PCR even though the CP-1 VP7 had only 81 to 85% deduced amino acid identity to those of G10 rotaviruses. Rotavirus CP-1 was of P[5] specificity, a type common in cattle, and had a bovine NSP1 and NSP4. These results added another animal species to those in which G3 rotaviruses have been found, characterized a bovine rotavirus which caused age-independent diarrhea in calves, and raised the possibility that bovine G3 rotaviruses may be misdiagnosed as G10 rotaviruses.
Collapse
Affiliation(s)
- L El-Attar
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, London NW1 0TU, United Kingdom
| | | | | | | |
Collapse
|
38
|
El-Attar L, Dhaliwal W, Howard CR, Bridger JC. Rotavirus cross-species pathogenicity: molecular characterization of a bovine rotavirus pathogenic for pigs. Virology 2001; 291:172-82. [PMID: 11878886 DOI: 10.1006/viro.2001.1222] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotaviruses which cause disease in heterologous animal species have been reported but the molecular basis of cross-species infectivity and disease is not established. We report the molecular characterization of a cloned rotavirus, PP-1, which was originally obtained from cattle and which had been biologically characterized in vivo in two target animal species, gnotobiotic pigs and calves. In pigs, PP-1 caused severe clinical disease but in experimental calves it replicated subclinically. PP-1 was characterized as a G3 reassortant with a porcine VP4 and NSP4 but a bovine NSP1. The PP-1 VP4 had 96 to 97% deduced amino acid identity to P[7] porcine rotaviruses and P[7] specificity was confirmed with VP4-specific monoclonal antibodies. Sequence analysis of the PP-1 NSP1 showed 94 to 99.6% deduced amino acid identity to bovine rotaviruses but the NSP4 protein had 94 to 98% identity to the NSP4 genotype B porcine rotaviruses. G-typing PCR initially classified PP-1 as a G10 rotavirus but sequence analysis revealed 92 to 96% identity of the PP-1 VP7 with porcine, simian, and human G3 rotaviruses. These results, combined with the in vivo properties of PP-1 in the two target species, supported the concept that species-specific VP4 and NSP4, but not NSP1, are required to induce rotavirus disease, at least in calves and pigs. The results illustrate experimentally that rotaviruses circulating in one animal species can pose a risk to another by the emergence of a pathogenic reassortant rotavirus under appropriate conditions.
Collapse
Affiliation(s)
- L El-Attar
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London, NW1 OTU, United Kingdom
| | | | | | | |
Collapse
|
39
|
Ito H, Sugiyama M, Masubuchi K, Mori Y, Minamoto N. Complete nucleotide sequence of a group A avian rotavirus genome and a comparison with its counterparts of mammalian rotaviruses. Virus Res 2001; 75:123-38. [PMID: 11325467 DOI: 10.1016/s0168-1702(01)00234-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nucleotide sequences encoding four structural proteins (VP1-4) and six nonstructural proteins (NSP1-6) of avian rotavirus PO-13 were determined. Based on the results of earlier sequencing studies [Ito et al., 1995, Sequence analysis of cDNA for the VP6 protein of group A avian rota viruses. Arch. Vriol. 140, 605-612; Rohwedder et al., 1997, Chicken rotavirus Ch-1 shows a second type of avian VP6 gene, Virus Genes 15, 65-71; Rohwedder et al., 1997, Bovine rotavirus 993/83 shows a third subtype of avian VP7 protein, Virus Genes 14, 147-151], determination of PO-13 genome sequence has been completed. The PO-13 genome is 18845 nucleotides in length. It is 290 nucleotides longer than the genome of SA11. The amino acid sequence homology between PO-13 and mammalian rotaviruses ranged from 76-77% (VP1) to 16-18% (NSP1). The features of gene and amino acid sequence were compared with those of the corresponding protein of mammalian rotaviruses. Based on results of the phylogenetic analyses of NSP1, we speculate that an ancestral rotavirus could have separated into groups A, B and C rotaviruses at an early evolutionary stage and that group A rotavirus separated into mammalian and avian rotaviruses with host evolution.
Collapse
Affiliation(s)
- H Ito
- Department of Veterinary Public Health, Faculty of Agriculture, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | | | | | | | | |
Collapse
|
40
|
Ciarlet M, I a P, Conner ME, Liprandi F. Antigenic and molecular analyses reveal that the equine rotavirus strain H-1 is closely related to porcine, but not equine, rotaviruses: interspecies transmission from pigs to horses? Virus Genes 2001; 22:5-20. [PMID: 11210939 DOI: 10.1023/a:1008175716816] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have sequenced the genes encoding the inner capsid protein VP6 and the outer capsid glycoprotein VP7 of the subgroup (SG) I equine rotavirus strain H-1 (P9[7], G5). The VP6 and VP7 proteins of the equine rotavirus strain H-1 shared a high degree of sequence and deduced amino acid identity with SG I porcine strains and serotype G5 porcine strains, respectively. Previous sequence analyses of the genes encoding the outer capsid spike protein VP4 and the nonstructural proteins NSP1 and NSP4 of equine H-1 strain also revealed a high degree of sequence and deduced amino acid homology with the prototype porcine rotavirus strain OSU (P9[7], G5). We have also confirmed and extended the VP4 and VP7 antigenic relatedness of equine rotavirus strain H-1 to porcine strains of P9[7] and G5 serotype specificities isolated in the United States, Venezuela, Argentina, and Australia based on cross-neutralization studies. In addition, the pathogenicity of tissue culture-adapted equine H-1, H-2, FI-14, FI-23, and L338, and porcine OSU rotavirus strains was compared in the neonatal mouse model. The 50% diarrhea dose (DD50) of equine H-1 was similar to that of porcine OSU and equine H-2 and L338 strains, while the DD50 of equine H-2 was > or = 50 or 315-fold lower than those of equine FI-14 or FI-23, respectively. Our sequence comparison of NSP4 of the rotavirus strains tested potentially identified amino acid residue 136, within the variable region spanning amino acids 130 to 141, as playing a role in virulence. Taken together, there is strong support to suggest that the equine rotavirus strain H-1 may represent an example of interspecies transmission from pigs to horses.
Collapse
Affiliation(s)
- M Ciarlet
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
41
|
Ciarlet M, Estes MK, Conner ME. Simian rhesus rotavirus is a unique heterologous (non-lapine) rotavirus strain capable of productive replication and horizontal transmission in rabbits. J Gen Virol 2000; 81:1237-49. [PMID: 10769066 DOI: 10.1099/0022-1317-81-5-1237] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Simian rhesus rotavirus (RRV) is the only identified heterologous (non-lapine) rotavirus strain capable of productive replication at a high inoculum dose of virus (>10(8) p.f.u.) in rabbits. To evaluate whether lower doses of RRV would productively infect rabbits and to obtain an estimate of the 50% infectious dose, rotavirus antibody-free rabbits were inoculated orally with RRV at inoculum doses of 10(3), 10(5) or 10(7) p.f.u. Based on faecal virus antigen or infectious virus shedding, RRV replication was observed with inoculum doses of 10(7) and 10(5) p.f.u., but not 10(3) p.f.u. Horizontal transmission of RRV to one of three mock-inoculated rabbits occurred 4-5 days after onset of virus antigen shedding in RRV-infected rabbits. Rabbits infected at 10(7) and 10(5), but not 10(3), p.f.u. of RRV developed rotavirus-specific immune responses and were completely (100%) protected from lapine ALA rotavirus challenge. These data confirm that RRV can replicate productively and spread horizontally in rabbits. In attempts to elucidate the genetic basis of the unusual replication efficacy of RRV in rabbits, the sequence of the gene encoding the lapine non-structural protein NSP1 was determined. Sequence analysis of the NSP1 of three lapine rotaviruses revealed a high degree of amino acid identity (85-88%) with RRV. Since RRV and lapine strains also share similar VP7s (96-97%) and VP4s (69-70%), RRV might replicate efficiently in rabbits because of the high relatedness of these three gene products, each implicated in host range restriction.
Collapse
Affiliation(s)
- M Ciarlet
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
42
|
Kojima K, Taniguchi K, Kawagishi-Kobayashi M, Matsuno S, Urasawa S. Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. Virus Res 2000; 67:163-71. [PMID: 10867195 DOI: 10.1016/s0168-1702(00)00139-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We generated rotavirus clones with rearrangement in vitro by serial passages of a human rotavirus strain (IGV-80-3) at high multiplicity of infection and determined nucleotide sequences of the rearranged genes from two distinct rotavirus clones, each of which possesses two rearranged genes: a common rearranged NSP1 gene and NSP3 gene with slightly different migration in polyacrylamide gel electrophoresis. Sequence analysis showed that the rearranged NSP1 and NSP3 genes had similar gene structures: concatemerization in a head to tail orientation and partial duplication of the open reading frame following the termination codon. The rearranged NSP1 gene had a direct repeat, whereas in the rearranged NSP3 gene, no such pattern was found.
Collapse
Affiliation(s)
- K Kojima
- Department of Hygiene, Sapporo Medical University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
43
|
Shen S, McKee TA, Wang ZD, Desselberger U, Liu DX. Sequence analysis and in vitro expression of genes 6 and 11 of an ovine group B rotavirus isolate, KB63: evidence for a non-defective, C-terminally truncated NSP1 and a phosphorylated NSP5. J Gen Virol 1999; 80 ( Pt 8):2077-2085. [PMID: 10466806 DOI: 10.1099/0022-1317-80-8-2077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An ovine group B rotavirus (GBR) isolate, KB63, was isolated from faeces of a young goat with diarrhoea in Xinjiang, People's Republic of China. Sequence determination and comparison of genes 6 and 11 with the corresponding sequences of GBR strains ADRV and IDIR showed that they were the cognate genes encoding NSP1 and NSP5, respectively. While the overall identities of nucleotide sequences between these two genes and the corresponding genes of strains ADRV and IDIR were in the range 52.6-57.2%, the identities of deduced amino acid sequences were only 34.9-46.3%. These results demonstrate that the substantial diversity of NSP1 observed among group A rotaviruses (GAR) also exists within GBRs and that a high degree of diversity also exists among NSP5 of GBRs, in contrast to GAR NSP5. The NSP1 gene of KB63 contains three ORFs, whereas the NSP1 genes of other GBR strains contain only two. ORFs 2 and 3 of the KB63 gene may be derived from a single ORF corresponding to ORF2 of other GBR strains by the usage of a stop codon created by an upstream single base deletion and single point mutations. In vitro expression studies showed that ORFs 1 and 2, but not 3, of gene 6 can be translated, suggesting that ORF2 may encode a C-terminally truncated, potentially functional product. It may play a role, together with the product of ORF1, in virus replication, as the virus can be passaged further in kids. Similarly, gene 11 can be translated in vitro. Like its counterpart in GARs, the protein encoded by gene 11 was shown to be phosphorylated in vitro.
Collapse
Affiliation(s)
- S Shen
- Clinical Microbiology and Public Health Laboratory and Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QW, UK2
- Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 1176041
| | - T A McKee
- Clinical Microbiology and Public Health Laboratory and Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QW, UK2
| | - Z D Wang
- Xinjiang August 1st Agricultural University, Xinjiang, People's Republic of China3
| | - U Desselberger
- Clinical Microbiology and Public Health Laboratory and Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QW, UK2
| | - D X Liu
- Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 1176041
| |
Collapse
|
44
|
Bridger JC, Dhaliwal W, Adamson MJ, Howard CR. Determinants of rotavirus host range restriction--a heterologous bovine NSP1 gene does not affect replication kinetics in the pig. Virology 1998; 245:47-52. [PMID: 9614866 DOI: 10.1006/viro.1998.9108] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic basis of rotavirus host range restriction (host species specificity) is unknown but the NSP1 (fifth) gene has been implicated in some studies. We studied the replication kinetics in vivo of a NSP1 gene monoreassortant, E11, to assess the influence of a heterologous NSP1 gene on the ability to replicate in pigs. The monoreassortant possessed 10 genes from the porcine parent rotavirus SW20/21, which replicated productively in pigs, and the NSP1 gene from the bovine rotavirus UK which produced an abortive infection in pigs. Groups of up to four pigs were inoculated orally with 10(5) to 10(6) TCID50 of the monoreassortant, the porcine parent rotavirus, or the bovine parent rotavirus or were sham inoculated. The monoreassortant replicated productively in pigs with replication kinetics almost identical to the porcine parent rotavirus. During a 9-day observation period after inoculation, the number of days with virus in the faeces, the onset and duration of virus excretion, and peak titres in faeces were similar for the monoreassortant and the parent porcine rotavirus. The genetic composition of the viruses excreted in the faeces was confirmed as that of the inocula by PAGE. Thus possession of a heterologous NSP1 gene from a bovine rotavirus which failed to replicate in pigs did not produce an abortive infection or affect the replication kinetics in vivo. The genetic basis of host range restriction between porcine and bovine rotaviruses remains to be established.
Collapse
Affiliation(s)
- J C Bridger
- Department of Pathology and Infectious Diseases, Royal Veterinary College, London, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Ciarlet M, Estes MK, Barone C, Ramig RF, Conner ME. Analysis of host range restriction determinants in the rabbit model: comparison of homologous and heterologous rotavirus infections. J Virol 1998; 72:2341-51. [PMID: 9499095 PMCID: PMC109534 DOI: 10.1128/jvi.72.3.2341-2351.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1997] [Accepted: 11/12/1997] [Indexed: 02/06/2023] Open
Abstract
The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV x D (G1), RRV x DS-1 (G2), and RRV x ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 10(3) 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction. Also, our results suggest that VP4 may be involved in, but is not exclusively responsible for, host range restriction in the rabbit model. The replication efficiency of rotavirus in rabbits also is not controlled by the product of gene 5 (NSP1) alone, since a reassortant rotavirus with ALA gene 5 and all other genes from SA11 was more severely replication restricted than either parental rotavirus strain.
Collapse
Affiliation(s)
- M Ciarlet
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Cunliffe NA, Das BK, Ramachandran M, Bhan MK, Glass RI, Gentsch JR. Sequence analysis demonstrates that VP6, NSP1 and NSP4 genes of Indian neonatal rotavirus strain 116E are of human origin. Virus Genes 1997; 15:39-44. [PMID: 9354268 DOI: 10.1023/a:1007958914141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have sequenced the genes encoding the inner capsid protein VP6 and the nonstructural proteins NSP1 and NSP4 of the Indian neonatal serotype P8[11]G9 human/bovine reassortant candidate vaccine rotavirus strain 116E. These three genes share a high degree of sequence and deduced amino acid homology with human prototype strain Wa. Our results confirm and extend those of previous RNA-RNA hybridization studies which suggested that these genes are of human origin, and will facilitate examination of the host immune response to 116E induced by natural infection and vaccination.
Collapse
Affiliation(s)
- N A Cunliffe
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fujiwara Y, Nakagomi O. Interspecies sharing of two distinct nonstructural protein 1 alleles among human and animal rotaviruses as revealed by dot blot hybridization. J Clin Microbiol 1997; 35:2703-5. [PMID: 9316942 PMCID: PMC230045 DOI: 10.1128/jcm.35.10.2703-2705.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The distribution of the nonstructural protein 1 (NSP1) alleles from human strain AU-1 and canine strain K9 among rotaviruses of human, feline, canine, bovine, and simian origin was studied by a dot blot hybridization assay. Human and feline strains belonging to the AU-1 genogroup had the same NSP1 allele, while canine and feline strains belonging to the canine-feline genogroup shared another NSP1 allele. This canine-feline NSP1 allele had a significant level of homology with the NSP1 of rhesus rotavirus strain MMU18006.
Collapse
Affiliation(s)
- Y Fujiwara
- Department of Microbiology, Akita University School of Medicine, Hondo, Japan
| | | |
Collapse
|
48
|
Abstract
The rotavirus nonstructural protein NSP4 plays a role in viral assembly by acting as an intracellular receptor for single-shelled particles and assisting in the translocation of these particles across the endoplasmic reticulum. Recently, NSP4 has been implicated in rotavirus virulence and is thought to act as an enterotoxin which triggers chloride secretion by a calcium-dependent signal transduction pathway. Limited sequence analysis of NSP4 shows a well-conserved protein. To define the extent of sequence variation in the gene coding for NSP4, we have sequenced this gene from nine human rotavirus strains. These data and the analysis of additional human strains and various animal rotaviruses (bovine, simian, equine, and porcine) by Northern blot hybridization suggested that three NSP4 genotypes were present among rotavirus strains. A correlation between NSP4 genotype and VP6 subgroup was also implied. Two different NSP4 genes (which encoded distinct types of NSP4 proteins) were found among standard human rotaviruses and in strains circulating in the local community and these showed homology to cognate genes in some animal strains.
Collapse
Affiliation(s)
- C D Kirkwood
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
49
|
Cunliffe NA, Woods PA, Leite JPG, Das BK, Ramachandran M, Bhan MK, Hart CA, Glass RI, Gentsch JR. Sequence analysis of NSP4 gene of human rotavirus allows classification into two main genetic groups. J Med Virol 1997. [DOI: 10.1002/(sici)1096-9071(199709)53:1<41::aid-jmv8>3.0.co;2-q] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Taniguchi K, Kojima K, Urasawa S. Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153-155. J Virol 1996; 70:4125-30. [PMID: 8648754 PMCID: PMC190301 DOI: 10.1128/jvi.70.6.4125-4130.1996] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We isolated two nondefective bovine rotavirus mutants (A5-10 and A5-16 clones) which have nonsense mutations in the early portion of the open reading frame of the NSP1 gene. In the NSP1 gene (1,587 bases long) of A5-10, a nonsense codon is present at nucleotides 153 to 155 just upstream of the coding region (nucleotides 156 to 230) of a cysteine-rich Zn finger motif. A5-16 gene 5 (1,087 bases long) was found to have a large deletion of 500 bases corresponding to nucleotides 142 to 641 of a parent A5-10 NSP1 gene and to have a nonsense codon at nucleotides 183 to 185, which resulted from the deletion. Expression of gene 5-specific NSP1 could not be detected in MA-104 cells infected with the A5-10 or A5-16 clone or in an in vitro translation system using the plasmids with gene 5 cDNA from A5-10 or A5-16. Nevertheless, both A5-10 and A5-16 replicated well in cultured cells, although the plaque size of A5-16 was extremely small.
Collapse
Affiliation(s)
- K Taniguchi
- Department of Hygiene, Sapporo Medical University School of Medicine, Japan.
| | | | | |
Collapse
|