1
|
Kaynarcalidan O, Oğuzoğlu TÇ. The oncogenic pathways of papillomaviruses. Vet Comp Oncol 2020; 19:7-16. [PMID: 33084187 DOI: 10.1111/vco.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Papillomaviruses are oncogenic DNA viruses and induce hyperplastic benign lesions of both cutaneous and mucosal tissues in their various hosts, including many domestic and wild animals as well as humans. There are some Papillomavirus genotypes that can infect hosts different from their own, such as BPV 1 and BPV 2 originated from cattle, which can also infect horses and are responsible for fibroblastic tumours in horses. This review article summarizes the origin and evolution of papillomaviruses as an etiological agent in the historical process. The main focus in this review is the evaluation of the interactions between high-risk papillomavirus oncoproteins and programmed cell-death pathways. It further exemplifies the role of these interactions in the malignant cell transformation process. In parallel with this, the use and importance of the bovine model system to enlighten the papillomavirus-associated cancers is discussed with an in-depth examination. Furthermore, it focuses on the epidemiological situation of BPV infections in Turkey in the cattle herds.
Collapse
Affiliation(s)
- Onur Kaynarcalidan
- Institute for Virology Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Van Doorslaer K. Evolution of the papillomaviridae. Virology 2013; 445:11-20. [PMID: 23769415 DOI: 10.1016/j.virol.2013.05.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/02/2013] [Accepted: 05/09/2013] [Indexed: 02/08/2023]
Abstract
Viruses belonging to the Papillomaviridae family have been isolated from a variety of mammals, birds and non-avian reptiles. It is likely that most, if not all, amniotes carry a broad array of viral types. To date, the complete genomic sequence of more than 240 distinct viral types has been characterized at the nucleotide level. The analysis of this sequence information has begun to shed light on the evolutionary history of this important virus family. The available data suggests that many different evolutionary mechanisms have influenced the papillomavirus phylogenetic tree. Increasing evidence supports that the ancestral papillomavirus initially specialized to infect different ecological niches on the host. This episode of niche sorting was followed by extensive episodes of co-speciation with the host. This review attempts to summarize our current understanding of the papillomavirus evolution.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- DNA Tumor Virus Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 209892, USA.
| |
Collapse
|
3
|
Feltkamp MCW, Kazem S, van der Meijden E, Lauber C, Gorbalenya AE. From Stockholm to Malawi: recent developments in studying human polyomaviruses. J Gen Virol 2013; 94:482-496. [DOI: 10.1099/vir.0.048462-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until a few years ago the polyomavirus family (Polyomaviridae) included a dozen viruses identified in avian and mammalian hosts. Two of these, the JC and BK-polyomaviruses isolated a long time ago, are known to infect humans and cause severe illness in immunocompromised hosts. Since 2007 an unprecedented number of eight novel polyomaviruses were discovered in humans. Among them are the KI- and WU-polyomaviruses identified in respiratory samples, the Merkel cell polyomavirus found in skin carcinomas and the polyomavirus associated with trichodysplasia spinulosa, a skin disease of transplant patients. Another four novel human polyomaviruses were identified, HPyV6, HPyV7, HPyV9 and the Malawi polyomavirus, so far not associated with any disease. In the same period several novel mammalian polyomaviruses were described. This review summarizes the recent developments in studying the novel human polyomaviruses, and touches upon several aspects of polyomavirus virology, pathogenicity, epidemiology and phylogeny.
Collapse
Affiliation(s)
- Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Siamaque Kazem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Lauber
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E. Gorbalenya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899 Moscow, Russia
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Wolff H, Greenwood AD. Did viral disease of humans wipe out the Neandertals? Med Hypotheses 2010; 75:99-105. [PMID: 20172660 PMCID: PMC7127019 DOI: 10.1016/j.mehy.2010.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/31/2010] [Indexed: 11/08/2022]
Abstract
Neandertals were an anatomically distinct hominoid species inhabiting a vast geographical area ranging from Portugal to western Siberia and from northern Europe to the Middle East. The species became extinct 28,000 years ago, coinciding with the arrival of anatomically modern humans (AMHs) in Europe 40,000 years ago. There has been considerable debate surrounding the main causes of the extinction of Neandertals. After at least 200,000 years of successful adaption to the climate, flora and fauna of Eurasia, it is not clear why they suddenly failed to survive. For many years, climate change or competition with anatomically modern human (AMH) have been the leading hypotheses. Recently these hypotheses have somewhat fallen out of favour due to the recognition that Neandertals were a highly developed species with complex social structure, culture and technical skills. Were AMHs lucky and survived some catastrophe that eradicated the Neandertals? It seems unlikely that this is the case considering the close timing of the arrival of AMHs and the disappearance of Neandertals. Perhaps the arrival of AMHs also brought additional new non-human microscopic inhabitants to the regions where Neandertals lived and these new inhabitants contributed to the disappearance of the species. We introduce a medical hypothesis that complements other recent explanations for the extinction of Neandertals. After the ancestors of Neandertals left Africa, their immune system adapted gradually to the pathogens in their new Eurasian environment. In contrast, AMHs continued to co-evolve with east African pathogens. More than 200,000 years later, AMHs carried pathogens that would have been alien to pre-historic Europe. First contact between long separated populations can be devastating. Recent European and American history provides evidence for similar events, where introduction of viral, protozoan or bacterial pathogens to immunologically naïve populations lead to mass mortality and local population extinction. We propose that a virus, possibly from the family Herpesviridae, contributed to Neandertal extinction.
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Virology, Helmholtz Center Munich, Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | |
Collapse
|
5
|
Witzany G. Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann N Y Acad Sci 2009; 1178:244-67. [PMID: 19845641 DOI: 10.1111/j.1749-6632.2009.04989.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It appears that all the detailed steps of evolution stored in DNA that are read, transcribed, and translated in every developmental and growth process of each individual cell depend on RNA-mediated processes, in most cases interconnected with other RNAs and their associated protein complexes and functions in a strict hierarchy of temporal and spatial steps. Life could not function without the key agents of DNA replication, namely mRNA, tRNA, and rRNA. Not only rRNA, but also tRNA and the processing of the primary transcript into the pre-mRNA and the mature mRNA are clearly descended from retro-"elements" with obvious retroviral ancestry. They seem to be remnants of viral infection events that did not kill their host but transferred phenotypic competences to their host and changed both the genetic identity of the host organism and the identity of the former infectious viral swarms. In this respect, noncoding RNAs may represent a great variety of modular tools for cellular needs that are derived from persistent nonlytic viral settlers.
Collapse
|
6
|
Abstract
In the last 30 years, the study of virus evolution has undergone a transformation. Originally concerned with disease and its emergence, virus evolution had not been well integrated into the general study of evolution. This chapter reviews the developments that have brought us to this new appreciation for the general significance of virus evolution to all life. We now know that viruses numerically dominate all habitats of life, especially the oceans. Theoretical developments in the 1970s regarding quasispecies, error rates, and error thresholds have yielded many practical insights into virus–host dynamics. The human diseases of HIV-1 and hepatitis C virus cannot be understood without this evolutionary framework. Yet recent developments with poliovirus demonstrate that viral fitness can be the result of a consortia, not one fittest type, a basic Darwinian concept in evolutionary biology. Darwinian principles do apply to viruses, such as with Fisher population genetics, but other features, such as reticulated and quasispecies-based evolution distinguish virus evolution from classical studies. The available phylogenetic tools have greatly aided our analysis of virus evolution, but these methods struggle to characterize the role of virus populations. Missing from many of these considerations has been the major role played by persisting viruses in stable virus evolution and disease emergence. In many cases, extreme stability is seen with persisting RNA viruses. Indeed, examples are known in which it is the persistently infected host that has better survival. We have also recently come to appreciate the vast diversity of phage (DNA viruses) of prokaryotes as a system that evolves by genetic exchanges across vast populations (Chapter 10). This has been proposed to be the “big bang” of biological evolution. In the large DNA viruses of aquatic microbes we see surprisingly large, complex and diverse viruses. With both prokaryotic and eukaryotic DNA viruses, recombination is the main engine of virus evolution, and virus host co-evolution is common, although not uniform. Viral emergence appears to be an unending phenomenon and we can currently witness a selective sweep by retroviruses that infect and become endogenized in koala bears.
Collapse
|
7
|
Potti J, Blanco G, Lemus JA, Canal D. Infectious offspring: how birds acquire and transmit an avian polyomavirus in the wild. PLoS One 2007; 2:e1276. [PMID: 18060070 PMCID: PMC2093992 DOI: 10.1371/journal.pone.0001276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 11/13/2007] [Indexed: 11/22/2022] Open
Abstract
Detailed patterns of primary virus acquisition and subsequent dispersal in wild vertebrate populations are virtually absent. We show that nestlings of a songbird acquire polyomavirus infections from larval blowflies, common nest ectoparasites of cavity-nesting birds, while breeding adults acquire and renew the same viral infections via cloacal shedding from their offspring. Infections by these DNA viruses, known potential pathogens producing disease in some bird species, therefore follow an 'upwards vertical' route of an environmental nature mimicking horizontal transmission within families, as evidenced by patterns of viral infection in adults and young of experimental, cross-fostered offspring. This previously undescribed route of viral transmission from ectoparasites to offspring to parent hosts may be a common mechanism of virus dispersal in many taxa that display parental care.
Collapse
Affiliation(s)
- Jaime Potti
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Department of Evolutionary Ecology, Pabellón del Perú, Sevilla, Spain.
| | | | | | | |
Collapse
|
8
|
Bravo IG, Alonso A. Phylogeny and evolution of papillomaviruses based on the E1 and E2 proteins. Virus Genes 2007; 34:249-62. [PMID: 16927128 DOI: 10.1007/s11262-006-0017-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/09/2006] [Indexed: 12/26/2022]
Abstract
Papillomaviridae are a family of small double-stranded DNA viruses that infect stratified squamous epithelia in vertebrates. Members of this family are causative agents of malignant tumours, such as cervical cancer while others are associated with benign proliferative lesions. So far, Papillomaviruses (PVs) are classified according to the sequence identity in the capsid gene L1. However, evidence has accumulated indicating a discontinuity in the evolutionary history of the L1 and L2 genes of many PVs, giving rise to differences in the phylogenetic reconstructions of the early and of the late genes. Neither the oncogenes E5, E6 and E7 nor the upstream regulatory region are suitable for phylogenetic inference due to the poor conservation along the Papillomaviridae family. We have analysed here the evolutionary relationships of the PVs with respect to the E1 and E2 proteins, and the results provide both phylogeny and biologic behaviour of the viruses. The hierarchical taxonomic relationships can be structured as an alternative classification system in which mucosal high-risk viruses, mucosal low-risk viruses and viruses associated with cutaneous lesions are grouped separately and do not appear intermingled. Some important trends are also observed: first, evolution of the PVs has not been homogeneous, even in viruses that infect the same host, and second mucosal human PVs have evolved faster than their cutaneous counterparts. The evolutionary analysis based on the E1 and E2 proteins will allow us to better understand the generation of the diversity of the PVs and the development of malignancy associated with these viruses.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Deutsches Krebsforschungszentrum (F050), Im Neuenheimer Feld-242, 69120 Heidelberg, Germany.
| | | |
Collapse
|
9
|
Kerr JR, Boschetti N. Short regions of sequence identity between the genomes of human and rodent parvoviruses and their respective hosts occur within host genes for the cytoskeleton, cell adhesion and Wnt signalling. J Gen Virol 2006; 87:3567-3575. [PMID: 17098972 DOI: 10.1099/vir.0.82259-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the mechanism(s) of pathogenesis and persistence of vertebrate parvoviruses remains incomplete. With the recent availability of the complete genome sequences of human, rat and mouse, and the ability to search these sequences and to locate matches to exact genomic regions, further insight into the interaction of parvoviruses with their human and rodent hosts is possible. To determine the extent and nature of sequence identity between candidate parvoviruses and their respective hosts, blast searches of the genome sequences of adeno-associated virus, parvovirus B19, mouse parvovirus, the prototype strain and immunosuppressant variant of minute virus of mouse, Kilham rat virus and rat parvovirus were performed against the genome(s) of their respective hosts (human, rat and mouse) using the resources of the NCBI and the Celera Discovery System. Regions of identity and similarity were mapped to their precise location in their particular host genome. For each virus, between one and 12 identical regions were found. Each identical region was 17-26 nt and was generally found at multiple sites within the particular host genome. These identical regions were predominantly located in non-coding regions of particular host genes and in intergenic regions. The ontology of host genes in which identical regions were found for each of the nine virus-host interactions highlighted several pathways/processes, including the cytoskeleton, cell adhesion and Wnt signalling. Within each virus species, these homologous regions were highly conserved (100 % identity in 16 out of 23 alignments where more than one sequence was available). All of these aspects suggest a particular advantage to the viruses of the presence of these sequences.
Collapse
Affiliation(s)
- Jonathan R Kerr
- Department of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Nicola Boschetti
- ZLB Behring AG, Wankdorfstrasse 10, CH-3000 Bern 22, Switzerland
| |
Collapse
|
10
|
Shadan FF. A circadian model for viral persistence. Med Hypotheses 2006; 68:546-53. [PMID: 17030450 DOI: 10.1016/j.mehy.2006.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/11/2006] [Indexed: 01/20/2023]
Abstract
Persistently infecting DNA viruses depend heavily on host cell DNA synthesis machinery. Replication of cellular and viral DNA is inhibited by mutagenic stress. It is hypothesized that diurnal regulation of viral DNA replication may occur at the level of cell cycle checkpoints and DNA repair, to protect DNA from exposure to UV light or other mutagens. This highly conserved mechanism is traced back to viruses that persist in prokaryotes and eukaryotes. Inhibition of viral DNA replication and the cell cycle in response to UV light may represent a functional building block in the evolution of circadian-gated DNA replication. Viral DNA replication appears to be closely linked to the circadian clock by interaction of viral promoters, early viral proteins and transcription factors. It is proposed here that under certain conditions viral oncogene expression is phase-shifted relative to that of tumor suppressor and DNA repair genes. The resulting desynchrony of checkpoint controls and DNA repair from diurnal genotoxic exposure produces cyclic periods of suboptimal response to DNA damage. This temporal vulnerability to genotoxic stress produces a "mutator phenotype" with inherent genome instability. The proposed model delineates areas of research with implications for viral pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Farhad F Shadan
- The Scripps Research Institute and Scripps Clinic, 10666 N. Torrey Pines Road, 403C, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Pérez-Losada M, Christensen RG, McClellan DA, Adams BJ, Viscidi RP, Demma JC, Crandall KA. Comparing phylogenetic codivergence between polyomaviruses and their hosts. J Virol 2006; 80:5663-9. [PMID: 16731904 PMCID: PMC1472594 DOI: 10.1128/jvi.00056-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022] Open
Abstract
Seventy-two full genomes corresponding to nine mammalian (67 strains) and two avian (5 strains) polyomavirus species were analyzed using maximum likelihood and Bayesian methods of phylogenetic inference. Our fully resolved and well-supported (bootstrap proportions > 90%; posterior probabilities = 1.0) trees separate the bird polyomaviruses (avian polyomavirus and goose hemorrhagic polyomavirus) from the mammalian polyomaviruses, which supports the idea of spitting the genus into two subgenera. Such a split is also consistent with the different viral life strategies of each group. Simian (simian virus 40, simian agent 12 [Sa12], and lymphotropic polyomavirus) and rodent (hamster polyomavirus, mouse polyomavirus, and murine pneumotropic polyomavirus [MPtV]) polyomaviruses did not form monophyletic groups. Using our best hypothesis of polyomavirus evolutionary relationships and established host phylogenies, we performed a cophylogenetic reconciliation analysis of codivergence. Our analyses generated six optimal cophylogenetic scenarios of coevolution, including 12 codivergence events (P < 0.01), suggesting that Polyomaviridae coevolved with their avian and mammal hosts. As individual lineages, our analyses showed evidence of host switching in four terminal branches leading to MPtV, bovine polyomavirus, Sa12, and BK virus, suggesting a combination of vertical and horizontal transfer in the evolutionary history of the polyomaviruses.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Integrative Biology, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Narechania A, Chen Z, DeSalle R, Burk RD. Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J Virol 2006; 79:15503-10. [PMID: 16306621 PMCID: PMC1316001 DOI: 10.1128/jvi.79.24.15503-15510.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomaviruses (HPVs) have long been thought to follow a monophyletic pattern of evolution with little if any evidence for recombination between genomes. On the basis of this model, both oncogenicity and tissue tropism appear to have evolved once. Still, no systematic statistical analyses have shown whether monophyly is the rule across all HPV open reading frames (ORFs). We conducted a taxonomic analysis of 59 mucosal/genital HPVs using whole-genome and sliding-window similarity measures; maximum-parsimony, neighbor-joining, and Bayesian phylogenetic analyses; and localized incongruence length difference (LILD) analyses. The algorithm for the LILD analyses localized incongruence by calculating the tree length differences between constrained and unconstrained nodes in a total-evidence tree across all HPV ORFs. The process allows statistical evaluation of every ORF/node pair in the total-evidence tree. The most significant incongruence was observed at the putative high-risk (i.e., cancer-associated) node, the common oncogenic ancestor for alpha HPV species 9 (e.g., HPV type 16 [HPV16]), 11, 7 (e.g., HPV18), 5, and 6. Although these groups share early-gene homology, including high degrees of similarity among E6 and E7, groups 9 and 11 diverge from groups 7, 5, and 6 with respect to L2 and L1. The HPV species groups primarily associated with cervical and anogenital cancers appear to follow two distinct evolutionary paths, one conferred by the early genes and another by the late genes. The incongruence in the genital HPV phylogeny could have occurred from an early recombination event, an ecological niche change, and/or asymmetric genome convergence driven by intense selection. These data indicate that the phylogeny of the oncogenic HPVs is complex and that their evolution may not be monophyletic across all genes.
Collapse
Affiliation(s)
- Apurva Narechania
- Department of Microbiology, Albert Einstein College of Medicine, Ullman Building, Room 515, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
13
|
Bravo IG, Alonso A. Mucosal human papillomaviruses encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J Virol 2004; 78:13613-26. [PMID: 15564472 PMCID: PMC533923 DOI: 10.1128/jvi.78.24.13613-13626.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We performed a phylogenetic study of the E2-L2 region of human mucosal papillomaviruses (PVs) and of the proteins therein encoded. Hitherto, proteins codified in this region were known as E5 proteins. We show that many of these proteins could be spurious translations, according to phylogenetic and chemical coherence criteria between similar protein sequences. We show that there are four separate families of E5 proteins, with different characteristics of phylogeny, chemistry, and rate of evolution. For the sake of clarity, we propose a change in the present nomenclature. E5alpha is present in groups A5, A6, A7, A9, and A11, PVs highly associated with malignant carcinomas of the cervix and penis. E5beta is present in groups A2, A3, A4, and A12, i.e., viruses associated with certain warts. E5gamma is present in group A10, and E5delta is encoded in groups A1, A8, and A10, which are associated with benign transformations. The phylogenetic relationships between mucosal human PVs are the same when considering the oncoproteins E6 and E7 and the E5 proteins and differ from the phylogeny estimated for the structural proteins L1 and L2. Besides, the protein divergence rate is higher in early proteins than in late proteins, increasing in the order L1 < L2 < E6 approximately E7 < E5. Moreover, the same proteins have diverged more rapidly in viruses associated with malignant transformations than in viruses associated with benign transformations. The E5 proteins display, therefore, evolutionary characteristics similar to those of the E6 and E7 oncoproteins. This could reflect a differential involvement of the E5 types in the transformation processes.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld-242, 69120 Heidelberg, Germany.
| | | |
Collapse
|
14
|
Niller HH, Salamon D, Rahmann S, Ilg K, Koroknai A, Bánáti F, Schwarzmann F, Wolf H, Minárovits J. A 30 kb region of the Epstein-Barr virus genome is colinear with the rearranged human immunoglobulin gene loci: implications for a "ping-pong evolution" model for persisting viruses and their hosts. A review. Acta Microbiol Immunol Hung 2004; 51:469-84. [PMID: 15704335 DOI: 10.1556/amicr.51.2004.4.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The left part of the Epstein-Barr virus (EBV) genome exhibits a strong colinearity of structural and functional elements with the immunoglobulin (Ig) gene loci which is only partially reflected in nucleotide sequence homologies. We propose that this colinearity may be the result of an inter-dependent co-evolution of the immunoglobulin loci together with EBV. Our observation could help elucidating the mechanisms of somatic hypermutation, explaining the ability of EBV to accidentally cause tumors, and shedding more light on the general mechanisms of viral and organismal evolution. We suggest that persisting viruses served as a complement for the organismal germline like in a ping-pong game and outline The Ping-Pong Evolution Hypothesis.
Collapse
Affiliation(s)
- H H Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Research Center, Landshuter Str. 22, D-93047 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hickman AB, Ronning DR, Kotin RM, Dyda F. Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 2002; 10:327-37. [PMID: 12191478 DOI: 10.1016/s1097-2765(02)00592-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adeno-associated virus (AAV), unique among animal viruses in its ability to integrate into a specific chromosomal location, is a promising vector for human gene therapy. AAV Replication (Rep) protein is essential for viral replication and integration, and its amino terminal domain possesses site-specific DNA binding and endonuclease activities required for replication initiation and integration. This domain displays a novel endonuclease fold and demonstrates an unexpected structural relationship to other viral origin binding proteins such as the papillomavirus E1 protein and the SV40 T antigen. The active site, located at the bottom of a positively charged cleft, is formed by the spatial convergence of a divalent metal ion and two conserved sequence motifs that define the rolling circle replication superfamily.
Collapse
Affiliation(s)
- Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
16
|
Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 2001; 65:288-318 ; second and third pages, table of contents. [PMID: 11381103 PMCID: PMC99028 DOI: 10.1128/mmbr.65.2.288-318.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.
Collapse
Affiliation(s)
- K A Gottlieb
- Department of Molecular Biology and Biochemistry, Biological Sciences II, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
17
|
Shadan FF, Villarreal LP. Parvovirus-mediated antineoplastic activity exploits genome instability. Med Hypotheses 2000; 55:1-4. [PMID: 11021317 DOI: 10.1054/mehy.1999.0887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The generation and accumulation of genetic mutations have been associated with carcinogenesis. Epidemiological and experimental evidence implicate parvoviruses in growth inhibition (oncosuppression) and selective destruction (oncolysis) of tumor cells. It is proposed here that parvoviruses can preferentially target genetically unstable tumor cells, which are deficient in DNA repair mechanisms. This selective strategy may serve as a virus-based therapeutic approach against cancer.
Collapse
Affiliation(s)
- F F Shadan
- Scripps Clinic and Research Foundation, Green Hospital, Internal Medicine, Medical Education, La Jolla, California 92037, USA.
| | | |
Collapse
|
18
|
Villarreal LP, Defilippis VR, Gottlieb KA. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 2000; 272:1-6. [PMID: 10873743 DOI: 10.1006/viro.2000.0381] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA.
| | | | | |
Collapse
|
19
|
Affiliation(s)
- J Holland
- Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA.
| | | |
Collapse
|
20
|
Affiliation(s)
- L P Villarreal
- Center for Viral Vector Design, Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA.
| | | |
Collapse
|