1
|
Chantler PD. Scallop Adductor Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-62710-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
2
|
Mechanism of catch force: tethering of thick and thin filaments by twitchin. J Biomed Biotechnol 2010; 2010:725207. [PMID: 20625409 PMCID: PMC2896863 DOI: 10.1155/2010/725207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/10/2010] [Indexed: 11/17/2022] Open
Abstract
Catch is a mechanical state occurring in some invertebrate smooth muscles characterized
by high force maintenance and resistance to stretch during extremely slow relaxation.
During catch, intracellular calcium is near basal concentration and myosin crossbridge
cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated
phosphorylation of sites near the N- and C- temini of the minititin twitchin (~526 kDa).
Some catch force maintenance car also occur together with cycling myosin crossbridges
at submaximal calcium concentrations, but not when the muscle is maximally activated.
Additionally, the link responsible for catch can adjust during shortening of submaximally
activated muscles and maintain catch force at the new shorter length. Twitchin binds to
both thick and thin filaments, and the thin filament binding shown by both the N- and Cterminal
portions of twitchin is decreased by phosphorylation of the sites that regulate
catch. The data suggest that the twitchin molecule itself is the catch force beanng tether
between thick and thin filaments. We present a model for the regulation of catch in
which the twitchin tether can be displaced from thin filaments by both (a) the
phosphorylation of twitchin and (b) the attachment of high force myosin crossbridges.
Collapse
|
3
|
Sobieszek A, Sarg B, Lindner H, Matusovsky OS, Zukowska M. Myosin Kinase of Molluscan Smooth Muscle. Regulation by Binding of Calcium to the Substrate and Inhibition of Myorod and Twitchin Phosphorylation by Myosin. Biochemistry 2010; 49:4191-9. [PMID: 20402494 DOI: 10.1021/bi100143q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Apolinary Sobieszek
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Innsbruck, Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Medical University, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University, Innsbruck, Austria
| | - Oleg S. Matusovsky
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Innsbruck, Austria
| | - Magdalena Zukowska
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Innsbruck, Austria
| |
Collapse
|
4
|
Matusovsky OS, Shelud'ko NS, Permyakova TV, Zukowska M, Sobieszek A. Catch muscle of bivalve molluscs contains myosin- and twitchin-associated protein kinase phosphorylating myorod. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:884-90. [DOI: 10.1016/j.bbapap.2009.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/11/2009] [Accepted: 12/28/2009] [Indexed: 10/20/2022]
|
5
|
Hoppe PE, Chau J, Flanagan KA, Reedy AR, Schriefer LA. Caenorhabditis elegans unc-82 encodes a serine/threonine kinase important for myosin filament organization in muscle during growth. Genetics 2010; 184:79-90. [PMID: 19901071 PMCID: PMC2815932 DOI: 10.1534/genetics.109.110189] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/01/2009] [Indexed: 11/18/2022] Open
Abstract
Mutations in the unc-82 locus of Caenorhabditis elegans were previously identified by screening for disrupted muscle cytoskeleton in otherwise apparently normal mutagenized animals. Here we demonstrate that the locus encodes a serine/threonine kinase orthologous to human ARK5/SNARK (NUAK1/NUAK2) and related to the PAR-1 and SNF1/AMP-Activated kinase (AMPK) families. The predicted 1600-amino-acid polypeptide contains an N-terminal catalytic domain and noncomplex repetitive sequence in the remainder of the molecule. Phenotypic analyses indicate that unc-82 is required for maintaining the organization of myosin filaments and internal components of the M-line during cell-shape changes. Mutants exhibit normal patterning of cytoskeletal elements during early embryogenesis. Defects in localization of thick filament and M-line components arise during embryonic elongation and become progressively more severe as development proceeds. The phenotype is independent of contractile activity, consistent with unc-82 mutations preventing proper cytoskeletal reorganization during growth, rather than undermining structural integrity of the M-line. This is the first report establishing a role for the UNC-82/ARK5/SNARK kinases in normal development. We propose that activation of UNC-82 kinase during cell elongation regulates thick filament attachment or growth, perhaps through phosphorylation of myosin and paramyosin. We speculate that regulation of myosin is an ancestral characteristic of kinases in this region of the kinome.
Collapse
Affiliation(s)
- Pamela E. Hoppe
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Johnnie Chau
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kelly A. Flanagan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - April R. Reedy
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lawrence A. Schriefer
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
6
|
Galler S. Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge. J Muscle Res Cell Motil 2008; 29:73-99. [PMID: 19039672 DOI: 10.1007/s10974-008-9149-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/18/2008] [Indexed: 12/15/2022]
Abstract
The catch state (or 'catch') of molluscan smooth muscles is a passive holding state that occurs after cessation of stimulation. During catch, force and, in particular, resistance to stretch are maintained for long time periods with low (or no) energy consumption at basal intracellular free [Ca2+]. The catch state is initiated by Ca2+-stimulated dephosphorylation of the titin-like protein twitchin and is inhibited by cAMP-dependent phosphorylation of twitchin. In addition, catch is pH sensitive, but the reason for this is unknown. According to a traditional model, catch is due to slower cross-bridge cycles where myosin heads remain longer attached to the actin filaments after force generation, possibly caused by a hindered release of ADP from the myosin heads. However, this model was disproved by recent findings which showed that (i) inhibitors of myosin function, such as vanadate, do not affect catch force; (ii) factors which terminate the catch state do not accelerate myosin head detachment kinetics and (iii) a catch-like high resistance to stretch is still inducible when force development is prevented. Thus, catch probably involves passive linkage structures interconnecting the myofilaments (catch linkages). For example twitchin could (i) tie myosin heads to the thin filaments, (ii) mechanically lock them in a stretch resistant state or (iii) interconnect thick and thin filaments directly. However, it is questionable if these mechanisms are sufficient since twitchin seems to be about 15-times less abundant than myosin. Therefore, in addition, interconnections between thick filaments could exist, which could involve e.g. paramyosin or twitchin. Catch could even involve changes in the compliance of thick filaments. The function of myorod, found specifically in catch muscles in equal abundance with myosin, is not known. The suggestion is made here that catch linkages are present already during active contraction either as ratchet-like elements resisting stretch and not opposing shortening or in some kind of 'standby' mode ready to transform suddenly into the working mode by stretches or after Ca2+ removal following cessation of stimulation.
Collapse
Affiliation(s)
- Stefan Galler
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
7
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
8
|
Sobieszek A, Matusovsky OS, Permyakova TV, Sarg B, Lindner H, Shelud'ko NS. Phosphorylation of myorod (catchin) by kinases tightly associated to molluscan and vertebrate smooth muscle myosins. Arch Biochem Biophys 2006; 454:197-205. [PMID: 16970905 DOI: 10.1016/j.abb.2006.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/19/2022]
Abstract
Myorod, also known as catchin, a newly discovered component of molluscan smooth muscle thick filaments, is an alternative product of the myosin heavy chain gene. It contains a C-terminal rod part that is identical to that part of myosin and a unique N-terminal domain that is very small relative to the myosin head domain. The role of myorod in contraction or relaxation of this muscle type is unknown. In the present study we demonstrated that myorod was phosphorylated not only by a kinase endogenous to molluscan myosin and twitchin but also to vertebrate smooth muscle myosin light chain kinase (MLCK). The rates and maximal levels of phosphorylation were up to threefold higher than those observed by protein kinase A with clear optima at the physiological salt concentrations. Using a mild digestion with chymotrypsin we isolated an 11 kDa phosphopeptide and showed that the phosphorylation site was located at the N-terminal domain of myorod at Thr 141 position. The sequence around this site exhibited a high degree of similarity to that expected for the substrate recognition site of MLCK. The phosphorylation rates strongly depended on the ionic conditions indicating that this site could be readily sterically blocked during myorod polymerization. Another component of the thick filaments involved in regulation of the catch state, twitchin, was phosphorylated by MLCK and exhibited endogenous myorod kinase and MLCK activities. A possible role of these phosphorylation reactions in the regulation of molluscan smooth muscles is discussed.
Collapse
Affiliation(s)
- Apolinary Sobieszek
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Mitterweg 24, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
9
|
Béjar P, Villamarín JA. Catalytic subunit of cAMP-dependent protein kinase from a catch muscle of the bivalve mollusk Mytilus galloprovincialis: purification, characterization, and phosphorylation of muscle proteins. Arch Biochem Biophys 2006; 450:133-40. [PMID: 16579959 DOI: 10.1016/j.abb.2006.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 11/17/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.
Collapse
Affiliation(s)
- Pablo Béjar
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | |
Collapse
|
10
|
Chapter 4 Scallop adductor muscles: Structure and function. SCALLOPS: BIOLOGY, ECOLOGY AND AQUACULTURE 2006. [DOI: 10.1016/s0167-9309(06)80031-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
12
|
Shelud'ko N, Tuturova K, Permyakova T, Tyurina O, Matusovskaya G, Matusovsky O. Proteolytic substructure of myorod, a thick filament protein of molluscan smooth muscles. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:69-75. [PMID: 12223213 DOI: 10.1016/s1096-4959(02)00108-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myorod (MR), a new thick filament protein of molluscan smooth muscles, is an alternatively spliced product of the myosin (Mn) heavy chain gene. We studied digestion of MR and Mn from the posterior adductor of Crenomytilus grayanus and the outer portion of adductor of Mizuchopecten (Patinopecten) yessoensis by papain and constructed the proteolytic substructure of MR, that is an analogue to Mn substructure. There are a head domain (analogue of Mn S1) and a rod domain (analogue of Mn rod); the junction between them is split at low ionic strength. The rod, in turn, consists of a neck domain (analogue of Mn S2) and a tail domain (identical to light meromyosin); the junction between them is split at high ionic strength. The localization and possible function of MR are discussed.
Collapse
Affiliation(s)
- N Shelud'ko
- Department of Cell Biophysics, Institute of Marine Biology, Far East Division of Russian Academy of Sciences, Vladivostok 690041, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Shelud'ko N, Permjakova T, Tuturova K, Neverkina O, Drozdov A. Myorod, a thick filament protein in molluscan smooth muscles: isolation, polymerization and interaction with myosin. J Muscle Res Cell Motil 2002; 22:91-100. [PMID: 11563553 DOI: 10.1023/a:1010359718304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myorod, a new protein of molluscan smooth muscles, is localized on the surface of paramyosin core of thick filaments together with myosin [Shelud'ko et al. (1999) Comp Biochem Physiol, 122, 277]. This protein is an alternatively spliced product of the myosin heavy chain gene. It contains the C-terminal rod part of myosin and a unique N-terminal domain [Yamada et al. (2000) J Mol Biol, 295, 169]. In the present study, the methods of myorod and myorod-free myosin preparation are developed and some properties of myorod are compared with those of myosin and myosin rod. We found that, in spite of the identity of filament-forming domains, the properties of polymeric myorod are clearly distinct from those of myosin and myosin rod. Myorod is much more soluble at intermediate ionic strength. The critical monomer concentration for polymerization of myorod is many times higher. The size of polymer particles of myorod is considerably smaller than that of myosin and myosin rod. The pure polymeric myorod forms a low turbid and unexpectedly high viscous suspension. The low-shear intrinsic viscosity of myorod is an order of magnitude higher than that of myosin or myosin rod and is close to that of F-actin. A trace admixture of myosin in myorod preparations or a small addition of myosin (0.2-1.0%) to myorod drastically alters the myorod polymerization. The suspensions of polymeric myorod nucleated by myosin have a high turbidity and low viscosity and consist of large particles. As judged from the changes in particle size distribution during polymerization, these particles are formed by successive dimerization steps. Electron micrographs show that the particles are typically spindle-shaped filaments in contrast to polymers of pure myorod which forms a network-like structure consisting of small particles. Possible participation of myorod in the catch-contraction of molluscan smooth muscles is discussed.
Collapse
Affiliation(s)
- N Shelud'ko
- Department of Cell Biophysics, Institute of Marine Biology, Far East Division of Russian Academy of Sciences, Vladivostok.
| | | | | | | | | |
Collapse
|
14
|
Funabara D, Kinoshita S, Watabe S, Siegman MJ, Butler TM, Hartshorne DJ. Phosphorylation of molluscan twitchin by the cAMP-dependent protein kinase. Biochemistry 2001; 40:2087-95. [PMID: 11329277 DOI: 10.1021/bi0022691] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catch in certain molluscan muscles is released by an increase in cAMP, and it was suggested that the target of cAMP-dependent protein kinase (PKA) is the high molecular weight protein twitchin [Siegman, M. J., Funabara, J., Kinoshita, S., Watabe, S., Hartshorne, D. J., and Butler, T. M. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 5384-5388]. This study was carried out to investigate the phosphorylation of twitchin by PKA. Twitchin was isolated from Mytilus catch muscles and was phosphorylated by PKA to a stoichiometry of about 3 mol of P/mol of twitchin. There was no evidence of twitchin autophosphorylation. Two phosphorylated peptides were isolated and sequenced, termed D1 and D2. Additional cDNA sequence for twitchin was obtained, and the D2 site was located at the C-terminal side of the putative kinase domain in a linker region between two immunoglobulin C2 repeats. Excess PKA substrates, e.g., D1 and D2, blocked the reduction in force on addition of cAMP, confirming the role for PKA in regulating catch. Papain proteolysis of (32)P-labeled twitchin from permeabilized muscles showed that the D1 site represented about 50% of the (32)P labeling. Proteolysis of in-situ twitchin with thermolysin suggested that the D1 and D2 sites were at the N- and C-terminal ends of the molecule, respectively. Thermolysin proteolysis also indicated that D1 and D2 were major sites of phosphorylation by PKA. The direct phosphorylation of twitchin by PKA is consistent with a regulatory role for twitchin in the catch mechanism and probably involves phosphorylation at the D1 and D2 sites.
Collapse
Affiliation(s)
- D Funabara
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Yamada A, Yoshio M, Oiwa K, Nyitray L. Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol 2000; 295:169-78. [PMID: 10623517 DOI: 10.1006/jmbi.1999.3349] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molluscan catch muscles contain polypeptides of 110-120 kDa in size which have the same partial amino acid sequences as those of the myosin heavy chain (MHC). Here we provide evidence that these polypeptides are major components only of the catch-type muscles (their estimated molar ratio to MHC is approximately 1:1) and they are alternative products of the MHC gene. Northern blot analysis of total RNA from Mytilus galloprovincialis catch muscles was carried out with fragments from the 3'-end of the MHC cDNA as probes. We detected two bands of 6.5 kb and 3.5 kb. The former corresponds to the MHC mRNA, and the latter is an mRNA coding for catchin, a novel myosin rod-like protein. By using a 5'-rapid amplification of cDNA ends (RACE) PCR method, the full-length cDNA of Mytilus catchin was cloned. It codes for a protein with a unique N-terminal domain of 156 residues (rich in serine, threonine, and proline), which includes a phosphorylatable peptide sequence. The rest of the sequence is identical with the C-terminal 830 residues of the MHC. We also analyzed Mytilus and scallop (Argopecten irradians) genomic DNAs and found that the 5'-end of the cDNA sequence was located in a large intron of the MHC gene in both species. Since catchin is abundantly expressed only in catch muscles and it is phosphorylatable, we suggest that it may play an important role in the catch contraction of molluscan smooth muscles.
Collapse
Affiliation(s)
- A Yamada
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe, 651-2492, Japan.
| | | | | | | |
Collapse
|
16
|
Liang W, Warrick HM, Spudich JA. A structural model for phosphorylation control of Dictyostelium myosin II thick filament assembly. J Cell Biol 1999; 147:1039-48. [PMID: 10579723 PMCID: PMC2169343 DOI: 10.1083/jcb.147.5.1039] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Myosin II thick filament assembly in Dictyostelium is regulated by phosphorylation at three threonines in the tail region of the molecule. Converting these three threonines to aspartates (3 x Asp myosin II), which mimics the phosphorylated state, inhibits filament assembly in vitro, and 3 x Asp myosin II fails to rescue myosin II-null phenotypes. Here we report a suppressor screen of Dictyostelium myosin II-null cells containing 3 x Asp myosin II, which reveals a 21-kD region in the tail that is critical for the phosphorylation control. These data, combined with new structural evidence from electron microscopy and sequence analyses, provide evidence that thick filament assembly control involves the folding of myosin II into a bent monomer, which is unable to incorporate into thick filaments. The data are consistent with a structural model for the bent monomer in which two specific regions of the tail interact to form an antiparallel tetrameric coiled-coil structure.
Collapse
Affiliation(s)
- Wenchuan Liang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| | - Hans M. Warrick
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| |
Collapse
|
17
|
A novel thick filament protein in smooth muscles of bivalve molluscs. Comp Biochem Physiol B Biochem Mol Biol 1999. [DOI: 10.1016/s0305-0491(99)00009-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Yamada A, Yoshio M, Nakayama H. Bi-directional movement of actin filaments along long bipolar tracks of oriented rabbit skeletal muscle myosin molecules. FEBS Lett 1997; 409:380-4. [PMID: 9224694 DOI: 10.1016/s0014-5793(97)00558-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In actomyosin in vitro motility assays, orientation of myosin molecules affects their interaction with actin. We obtained long tracks of myosin molecules with uniform orientation. Bipolar filaments about 50 microm long were made from myosin rod prepared from molluscan smooth muscles, to which rabbit skeletal-muscle myosin bound, creating long synthetic thick-filaments. Movement of F-actin toward their center was much faster (4.7 +/- 0.6 microm s(-1)) than in the opposite direction (1.9 +/- 0.2 microm s(-1)), indicating that myosin molecules were arranged in the same orientation along each half of the bipolar filament. These complex thick-filaments permit measurement of actin movement over 20 microm of oriented skeletal myosin tracks facilitating mechanistic studies of actomyosin motility.
Collapse
Affiliation(s)
- A Yamada
- Kansai Advanced Research Center, Communications Research Laboratory, Nishi-ku, Kobe, Japan.
| | | | | |
Collapse
|
19
|
Hoppe PE, Waterston RH. Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans. J Cell Biol 1996; 135:371-82. [PMID: 8896595 PMCID: PMC2121044 DOI: 10.1083/jcb.135.2.371] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Caenorhabditis elegans body wall muscle contains two isoforms of myosin heavy chain, MHC A and MHC B, that differ in their ability to initiate thick filament assembly. Whereas mutant animals that lack the major isoform, MHC B, have fewer thick filaments, mutant animals that lack the minor isoform, MHC A, contain no normal thick filaments. MHC A, but not MHC B, is present at the center of the bipolar thick filament where initiation of assembly is thought to occur (Miller, D.M.,I. Ortiz, G.C. Berliner, and H.F. Epstein. 1983. Cell. 34:477-490). We mapped the sequences that confer A-specific function by constructing chimeric myosins and testing them in vivo. We have identified two distinct regions of the MHC A rod that are sufficient in chimeric myosins for filament initiation function. Within these regions, MHC A displays a more hydrophobic rod surface, making it more similar to paramyosin, which forms the thick filament core. We propose that these regions play an important role in filament initiation, perhaps mediating close contacts between MHC A and paramyosin in an antiparallel arrangement at the filament center. Furthermore, our analysis revealed that all striated muscle myosins show a characteristic variation in surface hydrophobicity along the length of the rod that may play an important role in driving assembly and determining the stagger at which dimers associate.
Collapse
Affiliation(s)
- P E Hoppe
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
20
|
Csizmadia AM, Bonet-Kerrache A, Nyitray L, Mornet D. Purification and properties of caldesmon-like protein from molluscan smooth muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 108:59-63. [PMID: 8205392 DOI: 10.1016/0305-0491(94)90165-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this comparative study, the heat-stable protein content of scallop muscles was reinvestigated. The hCaD-like protein was prepared and its properties carefully examined. The heat-stable high-molecular-mass caldesmon-like (hCaD-like) protein is only present in the catch (smooth) muscle and it is completely absent in the striated muscle of scallop. The isolated scallop hCaD-like protein cosediments with F-actin, binds to myosin significantly and inhibits the ATPase activity of acto-myosin. A partial cDNA clone from a Mytilus anterior byssus retractor muscle (ABRM)-related protein showed strong homology with the hCaD gizzard sequence. This allowed identification of the heat-stable 100-110 kDa protein doublet band isolated in this study as a caldesmon-like molecule.
Collapse
Affiliation(s)
- A M Csizmadia
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
| | | | | | | |
Collapse
|
21
|
Abstract
The ability of certain molluscan smooth muscles to maintain a prolonged state of contraction, termed 'catch', has been correlated with the activity of a calcineurin-like Ca(2+)-regulated phosphatase. The release of this phosphatase through extensive treatment of fibers with detergent, as shown by Western blots and a calmodulin-binding overlay assay, results in the loss of catch tension maintenance. This effect is reversed by perfusion of the fiber with brain calcineurin. These findings suggest that the activity of the calcineurin-like phosphatase, switched on during the onset of active contraction, plays a critical role in the maintenance of catch.
Collapse
Affiliation(s)
- L Castellani
- Rosenstiel Basic Medical Research Center, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
22
|
Complete primary structure of a scallop striated muscle myosin heavy chain. Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55085-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Watabe S, Hartshorne DJ. Paramyosin and the catch mechanism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 96:639-46. [PMID: 2225769 DOI: 10.1016/0305-0491(90)90207-a] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Catch is a mechanism found in many molluscan smooth muscles in which tension is maintained at relatively low energy cost. 2. Paramyosin forms the core of thick filaments. In catch muscle paramyosin concentrations are high and the thick filaments are relatively long. 3. The mechanism of catch is not understood, but the consensus is that tension during catch is borne by slowly-cycling cross-bridge attachments to actin. 4. Stimulation by acetylcholine increases intracellular Ca2+ and initiates a contraction characterized by a relatively rapid cross-bridge cycling. Reduction of Ca2+ can lead to relaxation or catch. Relaxation occurs only when a second neurotransmitter, serotonin, is present. 5. The catch state is released by serotonin, via activation of adenylate cyclase, increased levels of cAMP and phosphorylation of one or more contractile proteins, possibly paramyosin. Other targets for phosphorylation are discussed. 6. The contractile cycle of catch muscles, therefore, is controlled by both Ca2+ and cAMP.
Collapse
Affiliation(s)
- S Watabe
- Laboratory of Marine Biochemistry, Faculty of Agriculture, University of Tokyo, Japan
| | | |
Collapse
|
24
|
Trybus KM, Henry L. Monoclonal antibodies detect and stabilize conformational states of smooth muscle myosin. J Biophys Biochem Cytol 1989; 109:2879-86. [PMID: 2480352 PMCID: PMC2115922 DOI: 10.1083/jcb.109.6.2879] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antibodies with epitopes near the heavy meromyosin/light meromyosin junction distinguish the folded from the extended conformational states of smooth muscle myosin. Antibody 10S.1 has 100-fold higher avidity for folded than for extended myosin, while antibody S2.2 binds preferentially to the extended state. The properties of these antibodies provide direct evidence that the conformation of the rod is different in the folded than the extended monomeric state, and suggest that this perturbation may extend into the subfragment 2 region of the rod. Two antihead antibodies with epitopes on the heavy chain map at or near the head/rod junction. Magnesium greatly enhances the binding of these antibodies to myosin, showing that the conformation of the heavy chain in the neck region changes upon divalent cation binding to the regulatory light chain. Myosin assembly is also altered by antibody binding. Antibodies that bind to the central region of the rod block disassembly of filaments upon MgATP addition. Antibodies with epitopes near the COOH terminus of the rod, in contrast, promote filament depolymerization, suggesting that this region of the tail is important for assembly. The monoclonal antibodies described here are therefore useful both for detecting and altering conformational states of smooth muscle myosin.
Collapse
Affiliation(s)
- K M Trybus
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02254-9110
| | | |
Collapse
|
25
|
Abstract
Smooth muscle cells squeeze the blood back to your heart, raise the hackles on your neck and change the F-stop of your eyes. The past year has provided penetrating new insights into their mechanism of contraction.
Collapse
|
26
|
Kagawa H, Gengyo K, McLachlan AD, Brenner S, Karn J. Paramyosin gene (unc-15) of Caenorhabditis elegans. Molecular cloning, nucleotide sequence and models for thick filament structure. J Mol Biol 1989; 207:311-33. [PMID: 2754728 DOI: 10.1016/0022-2836(89)90257-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paramyosin is a major structural component of thick filaments isolated from many invertebrate muscles. The Caenorhabditis elegans paramyosin gene (unc-15) was identified by screening with specific antibodies an "exon-expression" library containing lacZ/nematode gene fusions. Short probes recovered from the library were used to identify bacteriophage lambda and cosmid clones that encompass the entire paramyosin (unc-15) gene. From these clones, numerous subclones containing epitopes reacting with anti-paramyosin sera were obtained, providing strong evidence that the initial cloned fragment was, in fact, derived from the structural gene for paramyosin. The complete nucleotide sequence of a 12 x 10(3) base-pair region spanning the gene was obtained. The gene is composed of ten short exons encoding a protein of 866 [corrected] amino acid residues. Paramyosin is highly similar to residues 267 to 1089 of myosin heavy chain rods. For most of its length, paramyosin appears to form an alpha-helical coiled-coil and shows the expected heptad repeat of hydrophobic amino acid residues and the 28-residue repeat of charged amino acids characteristic of myosin heavy chain rods. However, paramyosin differs from myosin in having non-helical extensions at both the N and C termini and an additional "skip" residue that interrupts the 28-residue repeat. The distribution of charges along the length of the paramyosin rod is also significantly different from that of myosin heavy chain rods. Potential charge-mediated interactions between paramyosin rods and between paramyosin and myosin rods were calculated using a model successfully applied previously to the analysis of the myosin rod sequences. Myosin rods aligned in parallel show optimal charge-charge interactions at multiples of 98 residue staggers (i.e. at axial displacements of multiples of 143 A). Paramyosin rods, in contrast, appear to interact optimally at parallel staggers of 493 residues (i.e. at axial displacements of 720 A) but show only weak interaction peaks at 98 or 296 residues. Similar calculations suggest optimal interactions between paramyosin molecules and myosin rods and in their anti-parallel alignments. The implications of these results for the structure of the bare zone and the assembly of nematode thick filaments are discussed.
Collapse
Affiliation(s)
- H Kagawa
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | | | |
Collapse
|