1
|
Liu X, Zhao Z, Shi X, Zong Y, Sun Y. The Effects of Viral Infections on the Molecular and Signaling Pathways Involved in the Development of the PAOs. Viruses 2024; 16:1342. [PMID: 39205316 PMCID: PMC11359136 DOI: 10.3390/v16081342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cytomegalovirus infection contributes to 10-30% of congenital hearing loss in children. Vertebrate peripheral auditory organs include the outer, middle, and inner ear. Their development is regulated by multiple signaling pathways. However, most ear diseases due to viral infections are due to congenital infections and reactivation and affect healthy adults to a lesser extent. This may be due to the fact that viral infections affect signaling pathways that are important for the development of peripheral hearing organs. Therefore, an in-depth understanding of the relationship between viral infections and the signaling pathways involved in the development of peripheral hearing organs is important for the prevention and treatment of ear diseases. In this review, we summarize the effects of viruses on signaling pathways and signaling molecules in the development of peripheral auditory organs.
Collapse
Affiliation(s)
- Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Origin of Neuroblasts in the Avian Otic Placode and Their Distributions in the Acoustic and Vestibular Ganglia. BIOLOGY 2023; 12:biology12030453. [PMID: 36979145 PMCID: PMC10045822 DOI: 10.3390/biology12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. This intricate sensory organ originates from the otic placode, which generates the sensory elements of the membranous labyrinth, as well as all the ganglionic neuronal precursors. How auditory and vestibular neurons establish their fate identities remains to be determined. Their topological origin in the incipient otic placode could provide positional information before they migrate, to later segregate in specific portions of the acoustic and vestibular ganglia. To address this question, transplants of small portions of the avian otic placode were performed according to our previous fate map study, using the quail/chick chimeric graft model. All grafts taking small areas of the neurogenic placodal domain contributed neuroblasts to both acoustic and vestibular ganglia. A differential distribution of otic neurons in the anterior and posterior lobes of the vestibular ganglion, as well as in the proximal, intermediate, and distal portions of the acoustic ganglion, was found. Our results clearly show that, in birds, there does not seem to be a strict segregation of acoustic and vestibular neurons in the incipient otic placode.
Collapse
|
3
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Origin of acoustic-vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Struct Funct 2019; 224:2757-2774. [PMID: 31396696 DOI: 10.1007/s00429-019-01934-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 01/03/2023]
Abstract
The inner ear is a complex three-dimensional sensory structure with auditory and vestibular functions. It originates from the otic placode, which generates the sensory elements of the membranous labyrinth and all the ganglionic neuronal precursors. Neuroblast specification is the first cell differentiation event. In the chick, it takes place over a long embryonic period from the early otic cup stage to at least stage HH25. The differentiating ganglionic neurons attain a precise innervation pattern with sensory patches, a process presumably governed by a network of dendritic guidance cues which vary with the local micro-environment. To study the otic neurogenesis and topographically-ordered innervation pattern in birds, a quail-chick chimaeric graft technique was used in accordance with a previously determined fate-map of the otic placode. Each type of graft containing the presumptive domain of topologically-arranged placodal sensory areas was shown to generate neuroblasts. The differentiated grafted neuroblasts established dendritic contacts with a variety of sensory patches. These results strongly suggest that, rather than reverse-pathfinding, the relevant role in otic dendritic process guidance is played by long-range diffusing molecules.
Collapse
Affiliation(s)
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, E30100, Murcia, Spain.,Instituto Murciano de Investigaciones Biosanitarias (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, E06071, Badajoz, Spain.
| |
Collapse
|
5
|
Hoijman E, Fargas L, Blader P, Alsina B. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6. [PMID: 28537554 PMCID: PMC5476427 DOI: 10.7554/elife.25543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI:http://dx.doi.org/10.7554/eLife.25543.001 The inner ear is responsible for our senses of hearing and balance, and is made up of a series of fluid-filled cavities. Sounds, and movements of the head, cause the fluid within these cavities to move. This activates neurons that line the cavities, causing them to increase their firing rates and pass on information about the sounds or head movements to the brain. Damage to these neurons can result in deafness or vertigo. But where do the neurons themselves come from? It is generally assumed that all inner ear neurons develop inside an area of the embryo called the inner ear epithelium. Cells in this region are thought to switch on a gene called neurog1, triggering a series of changes that turn them into inner ear neurons. However, using advanced microscopy techniques in zebrafish embryos, Hoijman, Fargas et al. now show that this is not the whole story. While zebrafish do not have external ears, they do possess fluid-filled structures for balance and hearing that are similar to those of other vertebrates. Zebrafish embryos are also transparent, which means that activation of genes can be visualized directly. By imaging zebrafish embryos in real time, Hoijman, Fargas et al. show that the first cells to switch on neurog1 do so outside the inner ear epithelium. These pioneer cells then migrate into the inner ear epithelium and switch on neurog1 in their new neighbors. A substance called fibroblast growth factor tells the inner ear epithelium to let the pioneers enter, and thereby controls the final number of inner ear neurons. The work of Hoijman, Fargas et al. reveals how coordinated activation of genes and movement of cells gives rise to inner ear neurons. This should provide insights into the mechanisms that generate other types of sensory tissue. In the long term, the advances made in this study may lead to new strategies for repairing damaged sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.25543.002
Collapse
Affiliation(s)
- Esteban Hoijman
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - L Fargas
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
6
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
7
|
Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A 2016; 113:E6840-E6848. [PMID: 27791112 DOI: 10.1073/pnas.1609146113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons of the Statoacoustic Ganglion (SAG), which innervate the inner ear, originate as neuroblasts in the floor of the otic vesicle and subsequently delaminate and migrate toward the hindbrain before completing differentiation. In all vertebrates, locally expressed Fgf initiates SAG development by inducing expression of Neurogenin1 (Ngn1) in the floor of the otic vesicle. However, not all Ngn1-positive cells undergo delamination, nor has the mechanism controlling SAG delamination been elucidated. Here we report that Goosecoid (Gsc), best known for regulating cellular dynamics in the Spemann organizer, regulates delamination of neuroblasts in the otic vesicle. In zebrafish, Fgf coregulates expression of Gsc and Ngn1 in partially overlapping domains, with delamination occurring primarily in the zone of overlap. Loss of Gsc severely inhibits delamination, whereas overexpression of Gsc greatly increases delamination. Comisexpression of Ngn1 and Gsc induces ectopic delamination of some cells from the medial wall of the otic vesicle but with a low incidence, suggesting the action of a local inhibitor. The medial marker Pax2a is required to restrict the domain of gsc expression, and misexpression of Pax2a is sufficient to block delamination and fully suppress the effects of Gsc The opposing activities of Gsc and Pax2a correlate with repression or up-regulation, respectively, of E-cadherin (cdh1). These data resolve a genetic mechanism controlling delamination of otic neuroblasts. The data also elucidate a developmental role for Gsc consistent with a general function in promoting epithelial-to-mesenchymal transition (EMT).
Collapse
|
8
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Nguyen K, Hall AL, Jones JM. Expression of myosin VIIA in the developing chick inner ear neurons. Gene Expr Patterns 2015. [DOI: 10.1016/j.gep.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Battisti AC, Fantetti KN, Moyers BA, Fekete DM. A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2. Hear Res 2014; 310:1-12. [PMID: 24456709 PMCID: PMC3979322 DOI: 10.1016/j.heares.2014.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023]
Abstract
Mechanosensory hair cells in the chicken inner ear are innervated by bipolar afferent neurons of the statoacoustic ganglion (SAG). During development, individual SAG neurons project their peripheral process to only one of eight distinct sensory organs. These neuronal subtypes may respond differently to guidance cues as they explore the periphery in search of their target. Previous gene expression data suggested that Slit repellants might channel SAG neurites into the sensory primordia, based on the presence of robo transcripts in the neurons and the confinement of slit transcripts to the flanks of the prosensory domains. This led to the prediction that excess Slit proteins would impede the outgrowth of SAG neurites. As predicted, axonal projections to the primordium of the anterior crista were reduced 2-3 days after electroporation of either slit1 or slit2 expression plasmids into the anterior pole of the otocyst on embryonic day 3 (E3). The posterior crista afferents, which normally grow through and adjacent to slit expression domains as they are navigating towards the posterior pole of the otocyst, did not show Slit responsiveness when similarly challenged by ectopic delivery of slit to their targets. The sensitivity to ectopic Slits shown by the anterior crista afferents was more the exception than the rule: responsiveness to Slits was not observed when the entire E4 SAG was challenged with Slits for 40 h in vitro. The corona of neurites emanating from SAG explants was unaffected by the presence of purified human Slit1 and Slit2 in the culture medium. Reduced axon outgrowth from E8 olfactory bulbs cultured under similar conditions for 24 h confirmed bioactivity of purified human Slits on chicken neurons. In summary, differential sensitivity to Slit repellents may influence the directional outgrowth of otic axons toward either the anterior or posterior otocyst.
Collapse
Affiliation(s)
- Andrea C Battisti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| | - Kristen N Fantetti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| | - Belle A Moyers
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| | - Donna M Fekete
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| |
Collapse
|
11
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
12
|
Regional differences in myelination of chick vestibulocochlear ganglion cells. Int J Dev Neurosci 2013; 31:568-79. [PMID: 23872348 DOI: 10.1016/j.ijdevneu.2013.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, vestibular and cochlear ganglion (VG and CG, respectively) cells are bipolar neurons with myelinated axons and perikarya. The time course of the myelination of the VG and CG cells during development of chick embryos was investigated. Chick VG and CG from embryonic day at 7-20 (E7-20) were prepared for a transmission electron microscopy, myelin basic protein immunohistochemistry, and real-time quantitative RT-PCR. In the VG cells, myelination was first observed on the peripheral axons of the ampullar nerves at E10, on the utricular and saccular nerves at E12, and on the lagenar and neglecta nerves at E13. In the VG central axons, myelination was first seen on the ampullar nerves at E11, on the utricular and saccular nerves at E13, and on the lagenar nerves at E13. In the CG cells, the myelination was first observed on the peripheral and central axons at E14. In both VG and CG, myelination was observed on the perikarya at E17. These results suggest that the onset of the axonal myelination on the VG cells occurred earlier than that on the CG cells, whereas the perikaryal myelination occurred at about the same time on the both types of ganglion cells. Moreover, the myelination on the ampullar nerves occurred earlier than that on the utricular and saccular nerves. The myelination on the peripheral axons occurred earlier than that on the central axons of the VG cells, whereas that on the central and peripheral axons of the CG cells occurred at about the same time. The regional differences in myelination in relation to the onset of functional activities in the VG and CG cells are discussed.
Collapse
|
13
|
Neves J, Abelló G, Petrovic J, Giraldez F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ 2012; 55:96-112. [PMID: 23252974 DOI: 10.1111/dgd.12016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
The development of the inner ear provides a beautiful example of one basic problem in development, that is, to understand how different cell types are generated at specific times and domains throughout embryonic life. The functional unit of the inner ear consists of hair cells, supporting cells and neurons, all deriving from progenitor cells located in the neurosensory competent domain of the otic placode. Throughout development, the otic placode resolves into the complex inner ear labyrinth, which holds the auditory and vestibular sensory organs that are innervated in a highly specific manner. How does the early competent domain of the otic placode give rise to the diverse specialized cell types of the different sensory organs of the inner ear? We review here our current understanding on the role of Notch signaling in coupling patterning and cell fate determination during inner ear development, with a particular emphasis on contributions from the chicken embryo as a model organism. We discuss further the question of how these two processes rely on two modes of operation of the Notch signaling pathway named lateral induction and lateral inhibition.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Patterson RA, Cavanaugh AM, Cantemir V, Brauer PR, Reedy MV. MT2-MMP expression during early avian morphogenesis. Anat Rec (Hoboken) 2012; 296:64-70. [PMID: 23161772 DOI: 10.1002/ar.22618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
Membrane-type 2 matrix metalloproteinase (MT2-MMP; also called MMP15) is a membrane-bound protease that degrades extracellular matrix and activates proMMPs such as proMMP-2. MMP-2 expression in avian embryos is well documented, but it is not clear how proMMP-2 is activated during avian embryogenesis. Herein, we report that MT2-MMP mRNA is expressed in several tissues including the neural folds and epidermal ectoderm, intermediate mesoderm, pharyngeal arches, limb buds, and dermis. Several, but not all, of these tissues are known to express MMP-2. These observations suggest MT2-MMP may play a role during embryonic development not only through its own proteolytic activity but also by activating proMMP-2.
Collapse
|
15
|
Magariños M, Contreras J, Aburto MR, Varela-Nieto I. Early development of the vertebrate inner ear. Anat Rec (Hoboken) 2012; 295:1775-90. [PMID: 23044927 DOI: 10.1002/ar.22575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
This is a review of the biological processes and the main signaling pathways required to generate the different otic cell types, with particular emphasis on the actions of insulin-like growth factor I. The sensory organs responsible of hearing and balance have a common embryonic origin in the otic placode. Lineages of neural, sensory, and support cells are generated from common otic neuroepithelial progenitors. The sequential generation of the cell types that will form the adult inner ear requires the coordination of cell proliferation with cell differentiation programs, the strict regulation of cell survival, and the metabolic homeostasis of otic precursors. A network of intracellular signals operates to coordinate the transcriptional response to the extracellular input. Understanding the molecular clues that direct otic development is fundamental for the design of novel treatments for the protection and repair of hearing loss and balance disorders.
Collapse
Affiliation(s)
- Marta Magariños
- Instituto de Investigaciones Biomédicas, Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Aburto MR, Magariños M, Leon Y, Varela-Nieto I, Sanchez-Calderon H. AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One 2012; 7:e30790. [PMID: 22292041 PMCID: PMC3264639 DOI: 10.1371/journal.pone.0030790] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/29/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I), through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K). Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS By using a combination of organotypic cultures of chicken (Gallus gallus) otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1) transcription factor. By contrast, our results indicate that post-mitotic p27(Kip)-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.
Collapse
Affiliation(s)
- Maria R. Aburto
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
- Departamento de Biologia, Universidad Autonoma de Madrid, Madrid, Spain
| | - Yolanda Leon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- Departamento de Biologia, Universidad Autonoma de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| | - Hortensia Sanchez-Calderon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| |
Collapse
|
17
|
Fantetti KN, Zou Y, Fekete DM. Wnts and Wnt inhibitors do not influence axon outgrowth from chicken statoacoustic ganglion neurons. Hear Res 2011; 278:86-95. [PMID: 21530628 DOI: 10.1016/j.heares.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The peripheral growth cones of statoacoustic ganglion (SAG) neurons are presumed to sense molecular cues to navigate to their sensory targets during development. Based on previously reported expression data for Frizzled receptors, Wnt ligands, and Wnt inhibitors, we hypothesized that some members of the Wnt morphogen family may function as repulsive cues for SAG neurites. The responses of SAG neurons to mammalian Wnts -1, -4, -5a, -6, and -7b, and the Wnt inhibitors sFRP -1, -2, and -3, were tested in vitro by growing SAG explants from embryonic day 4 (E4) chicken embryos for two days in 3D collagen gels. Average neurite length and density were quantified to determine effects on neurite outgrowth. SAG neurites were strongly repelled by human Sema3E, demonstrating SAG neurons are responsive under these assay conditions. In contrast, SAG neurons showed no changes in neurite outgrowth when cultured in the presence of Wnts and Wnt inhibitors. As an alternative approach, Wnt4 and Wnt5a were also tested in vivo by injecting retroviruses encoding these genes into the chicken otocyst on E3. On E6, no differences were evident in the peripheral projections of SAG axons terminating in infected sensory organs as compared to uninfected organs on the contralateral side of the same embryo. For all Wnt sources, bioactivity was confirmed on E6 chick spinal cord explants by observing enhanced axon outgrowth, as reported previously in the mouse. These results suggest that the tested Wnts do not play a role in guiding peripheral axons in the chicken inner ear.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Department of Biological Sciences, Purdue University, 915 W State St, West Lafayette, IN 47907-1392, USA.
| | | | | |
Collapse
|
18
|
Whitlon DS, Tieu D, Grover M. Purification and transfection of cochlear Schwann cells. Neuroscience 2010; 171:23-30. [PMID: 20837108 DOI: 10.1016/j.neuroscience.2010.08.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/24/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Schwann cells line nerve fibers in the peripheral nervous system (PNS) and synthesize myelin. In addition, they support neuronal survival, neurite growth and regeneration. In dissociated cultures of postnatal mouse spiral ganglia, regenerating neurites spontaneously associate with Schwann cells. However, the mechanisms and consequences of interactions between cochlear Schwann cells and spiral ganglion neurites have not been examined. Further, the similarities and differences between cochlear Schwann cells and other PNS Schwann cells have not been studied. Experiments to examine these questions will rely on the ability to purify and characterize cochlear Schwann cells. Here we present methods for purifying Schwann cells from postnatal mouse cochleas and for transfecting them with expression plasmids. Dissociated spiral ganglia were plated on poly-D-lysine/laminin in medium containing neurotrophins, leukemia inhibitory factor (LIF), N2 supplement and serum and maintained for 5 days. Cells were harvested with trypsin/EDTA and subjected to an immuno-magnetic purification procedure. After 24 h in vitro, cultures were >85% Schwann cells. Nucleofection of purified Schwann cells with pMax-green fluorescent protein (pMax-GFP) plasmid, or with pEGFP-C-vimentin plasmid returned >45% transfection efficiency. These methods will allow the in-depth characterization of cochlear Schwann cells and an evaluation of their biochemical, functional, and genetic mechanisms that may promote neurite growth from the spiral ganglion.
Collapse
Affiliation(s)
- D S Whitlon
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
19
|
Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Dev Biol 2010; 339:166-78. [DOI: 10.1016/j.ydbio.2009.12.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/30/2009] [Accepted: 12/18/2009] [Indexed: 01/02/2023]
|
20
|
Sienknecht UJ, Fekete DM. Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol 2010; 517:751-64. [PMID: 19842206 DOI: 10.1002/cne.22169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular microenvironments. Strikingly, prosensory domains express Wnts transiently. This includes: 1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, and -11); and 2) sensory primordia at stage 25 (Wnt7a and Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
21
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Jones JM, Warchol ME. Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. J Comp Neurol 2009; 516:507-18. [PMID: 19673002 DOI: 10.1002/cne.22128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During the development of the inner ear, auditory and vestibular ganglion neurons are generated in a highly regulated sequential process. First, neuroblasts are specified, delaminate from the epithelium of the otocyst, and migrate to form the auditory-vestibular ganglion (AVG). These neuroblasts then undergo proliferation and differentiate into afferent neurons of the auditory and vestibular ganglia. The zinc finger transcription factor Gata3 has been shown to play a role in cell proliferation and differentiation in various regions of the inner ear. Here we profile the spatiotemporal expression pattern of Gata3 in the developing auditory and vestibular ganglia of the chick embryo. Gata3 is expressed in a distinct population of sensorineural precursor cells within the otic epithelium, but is not expressed in migrating or proliferating neuroblasts. Following terminal mitosis, Gata3 expression is restricted to very few cells in the auditory ganglion and is not expressed in any cells of the vestibular ganglion. Gata3 expression levels then increase in auditory neurons as they mature. The increase of Gata3 in auditory ganglion neurons is accompanied by decreased expression of NeuroD. Our results suggest that Gata3 may be specifically involved in the differentiation of auditory ganglion neurons.
Collapse
Affiliation(s)
- Jennifer M Jones
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
23
|
Abstract
Mechanosensory hair cells in the chick inner ear synapse onto afferent neurons of the statoacoustic ganglion (SAG). During development, these neurons extend a central process to the brain and a peripheral process into one of eight sensory organs. A combination of cues, including chemoattractants and chemorepellents, direct otic axons to their peripheral targets. As a first step in evaluating the role of known axon guidance molecules, Slits and Robos, we examined expression of their transcripts in the chick inner ear from embryonic day 2-11 (Hamburger and Hamilton stages 14-37). Robo2 and slit2 are in migrating neuroblasts and the SAG, while both slits and robos are in the otic epithelium. We speculate that this family of signaling molecules may be involved in repulsion, first of otic neuroblasts and then of otic axons. Later our expression data revealed a potentially novel role for these molecules in maintaining sensory/nonsensory boundaries.
Collapse
Affiliation(s)
- Andrea C Battisti
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906-2054, USA
| | | |
Collapse
|
24
|
Daudet N, Ariza-McNaughton L, Lewis J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 2007; 134:2369-78. [PMID: 17537801 DOI: 10.1242/dev.001842] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch signalling is well-known to mediate lateral inhibition in inner ear sensory patches, so as to generate a balanced mixture of sensory hair cells and supporting cells. Recently, however, we have found that ectopic Notch activity at an early stage can induce the formation of ectopic sensory patches. This suggests that Notch activity may have two different functions in normal ear development, acting first to promote the formation of the prosensory patches, and then later to regulate hair-cell production within the patches. The Notch ligand Serrate1 (Jag1 in mouse and humans) is expressed in the patches from an early stage and may provide Notch activation during the prosensory phase. Here, we test whether Notch signalling is actually required for prosensory patch development. When we block Notch activation in the chick embryo using the gamma-secretase inhibitor DAPT, we see a complete loss of prosensory epithelial cells in the anterior otocyst, where they are diverted into a neuroblast fate via failure of Delta1-dependent lateral inhibition. The cells of the posterior prosensory patch remain epithelial, but expression of Sox2 and Bmp4 is drastically reduced. Expression of Serrate1 here is initially almost normal, but subsequently regresses. The patches of sensory hair cells that eventually develop are few and small. We suggest that, in normal development, factors other than Notch activity initiate Serrate1 expression. Serrate1, by activating Notch, then drives the expression of Sox2 and Bmp4, as well as expression of the Serrate1 gene itself. The positive feedback maintains Notch activation and thereby preserves and perhaps extends the prosensory state, leading eventually to the development of normal sensory patches.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Animals
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Chick Embryo
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Ear, Inner/cytology
- Ear, Inner/embryology
- Embryo, Nonmammalian
- Enzyme Inhibitors/pharmacology
- HMGB Proteins/genetics
- HMGB Proteins/metabolism
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins
- Jagged-1 Protein
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Organ Culture Techniques
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/metabolism
- SOXB1 Transcription Factors
- Serrate-Jagged Proteins
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triglycerides/pharmacology
- gamma-Aminobutyric Acid/analogs & derivatives
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Nicolas Daudet
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
25
|
Sokolowski BHA. Survey of inward ionic currents acquired by the cochleovestibular ganglion of the early-aged embryonic chick. J Neurosci Res 2006; 83:638-46. [PMID: 16447282 DOI: 10.1002/jnr.20769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The acquisition of ion channels is critical to the formation of neuronal pathways in the peripheral and central nervous systems. This study describes the different types of inward currents (Ii) recorded from the soma of isolated cochleovestibular ganglion (CVG) cells of the embryonic chicken, Gallus gallus. Cells were isolated for whole-cell tight-seal recording from embryonic day (ED) 3, an age when the CVG is a cell cluster, to ED 9, an age when the cochlear and vestibular ganglia (CG, VG) are distinct structures. Results show Na+ and Ca2+ currents (INa and ICa) are acquired by ED 3, although INa dominates with greater density levels that peak by ED 6-7 in VG neurons. In the CG, INa acquisition is slower, reaching peak values by ED 8-9. Isolation of ICa, using Ba2+ as the charge carrier, showed both transient (IBaT)- and sustained (IBaL)-type currents on ED 3. Unlike INa, IBa density varied with age and ganglion. Total IBa increased steadily, showing a decline only in CG cells on ED 8-9 as a result of a decrease in IBaT. IBaL density increased over time, reaching a maximum on ED 6-7 in VG cells, followed by a decline on ED 8-9. In comparison, IBaL in CG neurons, did not increase significantly beyond mean values measured on ED 5. The early onset of these currents and the variations in Ca2+ channel expression between the ganglia suggests that intracellular signals relevant to phenotypic differentiation begin within these early time frames.
Collapse
Affiliation(s)
- Bernd H A Sokolowski
- Department of Otolaryngology-HNS, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
26
|
Lilleväli K, Haugas M, Pituello F, Salminen M. Comparative analysis ofGata3 andGata2 expression during chicken inner ear development. Dev Dyn 2006; 236:306-13. [PMID: 17103399 DOI: 10.1002/dvdy.21011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The inner ear is a complex sensory organ with hearing and balance functions. Gata3 and Gata2 are expressed in the inner ear, and to gain more insight into their roles in otic development, we made a detailed expression analysis in chicken embryos. At early stages, their expression was highly overlapping. At later stages, Gata2 expression became prominent in vestibular and cochlear nonsensory epithelia. In contrast to Gata2, Gata3 was mainly expressed in the developing sensory epithelia, reflecting the importance of this factor in the sensory-neural development of the inner ear. While the later expression patterns of both Gata3 and Gata2 were highly conserved between chicken and mouse, important differences were observed especially with Gata3 during early otic development, providing indications of divergent molecular control during placode invagination in mice and chickens. We also found indications that the regulatory hierarchy observed in mouse, where Gata3 is upstream of Gata2 and Fgf10, could be conserved in chicken.
Collapse
Affiliation(s)
- Kersti Lilleväli
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
27
|
Abstract
Members of the Dlx gene family play essential roles in the development of the zebrafish and mouse inner ear, but little is known regarding Dlx genes and avian inner ear development. We have examined the inner ear expression patterns of Dlx1, Dlx2, Dlx3, Dlx5, and Dlx6 during the first 7 days of chicken embryonic development. Dlx1 and Dlx2 expression was seen only in nonneuronal cells of the cochleovestibular ganglion and nerves from stage 21 to stage 32. Dlx3 marks the otic placode beginning at stage 9 and becomes limited to epithelium adjacent to the hindbrain as invagination of the placode begins. Dlx3 expression then resolves to the dorsal otocyst and gradually becomes limited to the endolymphatic sac by stage 30. Dlx5 and Dlx6 expression in the developing inner ear is first seen at stages 12 and 13, respectively, in the rim of the otic pit, before spreading throughout the dorsal otocyst. As morphogenesis proceeds, Dlx5 and Dlx6 expression is seen throughout the forming semicircular canals and endolymphatic structures. During later stages, both genes are seen to mark the distal surface of the forming canals and display expression complementary to that of BMP4 in the vestibular sensory regions. Dlx5 expression is also seen in the lagena macula and the cochlear and vestibular nerves by stage 30. These findings suggest important roles for Dlx genes in the vestibular and neural development of the avian inner ear.
Collapse
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057-1922, USA
| | | | | |
Collapse
|
28
|
Lawoko-Kerali G, Milo M, Davies D, Halsall A, Helyer R, Johnson CM, Rivolta MN, Tones MA, Holley MC. Ventral otic cell lines as developmental models of auditory epithelial and neural precursors. Dev Dyn 2005; 231:801-14. [PMID: 15499550 DOI: 10.1002/dvdy.20187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conditionally immortal cell lines were established from the ventral otocyst of the Immortomouse at embryonic day 10.5 and selected to represent precursors of auditory sensory neural and epithelial cells. Selection was based upon dissection, tissue-specific markers, and expression of the transcription factor GATA3. Two cell lines expressed GATA3 but possessed intrinsically different genetic programs under differentiating conditions. US/VOT-E36 represented epithelial progenitors with potential to differentiate into sensory and nonsensory epithelial cells. US/VOT-N33 represented migrating neuroblasts. Under differentiating conditions in vitro the cell lines expressed very different gene expression profiles. Expression of several cell- and tissue-specific markers, including the transcription factors Pax2, GATA3, and NeuroD, differed between the cell lines in a pattern consistent with that observed between their counterparts in vivo. We suggest that these and other conditionally immortal cell lines can be used to study transient events in development against different backgrounds of cell competence.
Collapse
Affiliation(s)
- G Lawoko-Kerali
- Department of Biomedical Sciences, Addison Building, Western Bank, Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Germiller JA, Smiley EC, Ellis AD, Hoff JS, Deshmukh I, Allen SJ, Barald KF. Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner ear. Dev Dyn 2004; 231:815-27. [PMID: 15517566 DOI: 10.1002/dvdy.20186] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inner ear sensory hair cells (HCs), supporting cells (SCs), and sensory neurons (SNs) are hypothesized to develop from common progenitors in the early embryonic otocyst. Because little is known about the molecular signals that control this lineage specification, we derived a model system of early otic development: conditionally immortalized otocyst (IMO) cell lines from the embryonic day 9.5 Immortomouse. This age is the earliest stage at which the otocyst can easily be separated from surrounding mesenchymal, nervous system, and epithelial cells. At 9.5 days post coitum, there are still pluripotent cells in the otocyst, allowing for the eventual identification of both SN and HC precursors--and possibly an elusive inner ear stem cell. Cell lines derived from primitive precursor cells can also be used as blank canvases for transfections of genes that can affect lineage decisions as the cells differentiate. It is important, therefore, to characterize the "baseline state" of these cell lines in as much detail as possible. We characterized seven representative "precursor-like" IMO cell populations and the uncloned IMO cells, before cell sorting, at the molecular level by polymerase chain reaction (PCR) and immunocytochemistry (IHC), and one line (IMO-2B1) in detail by real-time quantitative PCR and IHC. Many of the phenotypic markers characteristic of differentiated HCs or SCs were detected in IMO-2B1 proliferating cells, as well as during differentiation for up to 30 days in culture. These IMO cell lines represent a unique model system for studying early stages of inner ear development and determining the consequences of affecting key molecular events in their differentiation.
Collapse
Affiliation(s)
- John A Germiller
- Department of Cell and Developmental Biology, Program in Cell and Molecular Biology, Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109-0616, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The publication of a paper entitled "Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium" in the Journal of Neuroscience Research offers the opportunity to call attention to a well-developed line of research on the auditory receptor of birds, which should be of interest to students of regeneration and plasticity of the mature nervous system in higher vertebrates, including mammals. Although hair cell proliferation normally stops before hatching, destruction of the auditory receptors of the chicken may be followed by complete regeneration of hair cells. Most of the new hair cells arise from a new wave of proliferation, but Roberson et al. show that about one-third of the new hair cells are formed without undergoing cell division and thus may differentiate from so-called supporting cells or cells with an "intermediate morphology." This finding suggests some models for regeneration of this neuroepithelium, including the possibility that mature supporting cells could transform directly into hair cells. The present Mini-Review discusses some of the models for neural regeneration that future studies might address in the light of our current knowledge and the new report. The possibility is raised that transitional forms of hair cell and supporting cell precursors may reside in the inner ear in a quiescent state until stimulated by damage.
Collapse
Affiliation(s)
- D Kent Morest
- Department of Neuroscience, The University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
31
|
Lawoko-Kerali G, Rivolta MN, Lawlor P, Cacciabue-Rivolta DI, Langton-Hewer C, van Doorninck JH, Holley MC. GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mech Dev 2004; 121:287-99. [PMID: 15003631 DOI: 10.1016/j.mod.2003.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Revised: 12/18/2003] [Accepted: 12/25/2003] [Indexed: 10/26/2022]
Abstract
The function of the zinc finger transcription factor GATA3 was studied in a newly established, conditionally immortal cell line derived to represent auditory sensory neuroblasts migrating from the mouse otic vesicle at embryonic day E10.5. The cell line, US/VOT-33, expressed GATA3, the bHLH transcription factor NeuroD and the POU-domain transcription factor Brn3a, as do auditory neuroblasts in vivo. When GATA3 was knocked down reversibly with antisense oligonucleotides, NeuroD was reversibly down-regulated. Auditory and vestibular neurons form from neuroblasts that express NeuroD and that migrate from the antero-ventral, otic epithelium at E9.5-10.5. On the medial side, neuroblasts and epithelial cells express GATA3 but on the lateral side they do not. At E13.5 most auditory neurons express GATA3 but no longer express NeuroD, whereas vestibular neurons express NeuroD but not GATA3. Neuroblasts expressing NeuroD and GATA3 were located in the ventral, otic epithelium, the adjacent mesenchyme and the developing auditory ganglion. The results suggest that auditory and vestibular neurons arise from different, otic epithelial domains and that they gain their identity prior to migration. In auditory neuroblasts, NeuroD appears to be dependent on the expression of GATA3.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Cell Differentiation
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Ear, Inner/cytology
- Ear, Inner/embryology
- Female
- GATA3 Transcription Factor
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Oligonucleotides, Antisense/pharmacology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/embryology
Collapse
Affiliation(s)
- Grace Lawoko-Kerali
- Department of Biomedical Sciences, Institute of Molecular Physiology, Addison Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Varela-Nieto I, Morales-Garcia JA, Vigil P, Diaz-Casares A, Gorospe I, Sánchez-Galiano S, Cañon S, Camarero G, Contreras J, Cediel R, Leon Y. Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear. Hear Res 2004; 196:19-25. [PMID: 15464297 DOI: 10.1016/j.heares.2003.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 12/23/2003] [Indexed: 11/27/2022]
Abstract
Insulin-like growth factors (IGFs) have a pivotal role during nervous system development and in its functional maintenance. IGF-I and its high affinity receptor (IGF1R) are expressed in the developing inner ear and in the postnatal cochlear and vestibular ganglia. We recently showed that trophic support by IGF-I is essential for the early neurogenesis of the chick cochleovestibular ganglion (CVG). In the chicken embryo otic vesicle, IGF-I regulates developmental death dynamics by regulating the activity and/or levels of key intracellular molecules, including lipid and protein kinases such as ceramide kinase, Akt and Jun N-terminal kinase (JNK). Mice lacking IGF-I lose many auditory neurons and present increased auditory thresholds at early postnatal ages. Neuronal loss associated to IGF-I deficiency is caused by apoptosis of the auditory neurons, which presented abnormally increased levels of activated caspase-3. It is worth noting that in man, homozygous deletion of the IGF-1 gene causes sensory-neural deafness. IGF-I is thus necessary for normal development and maintenance of the inner ear. The trophic actions of IGF-I in the inner ear suggest that this factor may have therapeutic potential for the treatment of hearing loss.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, "Alberto Sols", Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F. FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 2004; 267:119-34. [PMID: 14975721 DOI: 10.1016/j.ydbio.2003.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.
Collapse
Affiliation(s)
- Berta Alsina
- Biologia del Desenvolupament, Departament de Ciéncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Camarero G, Leon Y, Gorospe I, De Pablo F, Alsina B, Giraldez F, Varela-Nieto I. Insulin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons. Dev Biol 2003; 262:242-53. [PMID: 14550788 DOI: 10.1016/s0012-1606(03)00387-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neurons that connect mechanosensory hair cell receptors to the central nervous system derive from the otic vesicle from where otic neuroblasts delaminate and form the cochleovestibular ganglion (CVG). Local signals interact to promote this process, which is autonomous and intrinsic to the otic vesicle. We have studied the expression and activity of insulin-like growth factor-1 (IGF-1) during the formation of the chick CVG, focusing attention on its role in neurogenesis. IGF-1 and its receptor (IGFR) were detected at the mRNA and protein levels in the otic epithelium and the CVG. The function of IGF-1 was explored in explants of otic vesicle by assessing the formation of the CVG in the presence of anti-IGF-1 antibodies or the receptor competitive antagonist JB1. Interference with IGF-1 activity inhibited CVG formation in growth factor-free media, revealing that endogenous IGF-1 activity is essential for ganglion generation. Analysis of cell proliferation cell death, and expression of the early neuronal antigens Tuj-1, Islet-1/2, and G4 indicated that IGF-1 was required for survival, proliferation, and differentiation of an actively expanding population of otic neuroblasts. IGF-1 blockade, however, did not affect NeuroD within the otic epithelium. Experiments carried out on isolated CVG showed that exogenous IGF-1 induced cell proliferation, neurite outgrowth, and G4 expression. These effects of IGF-1 were blocked by JB1. These findings suggest that IGF-1 is essential for neurogenesis by allowing the expansion of a transit-amplifying neuroblast population and its differentiation into postmitotic neurons. IGF-1 is one of the signals underlying autonomous development of the otic vesicle.
Collapse
Affiliation(s)
- G Camarero
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, E-28029, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Pietri T, Thiery JP, Dufour S. Differential expression of beta3 integrin gene in chick and mouse cranial neural crest cells. Dev Dyn 2003; 227:309-13. [PMID: 12761858 DOI: 10.1002/dvdy.10299] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
RNA in situ hybridization on early chicken embryos revealed that the beta3 integrin gene started to be expressed after Hamburger and Hamilton (HH) stage 6 in the presumptive epidermis adjacent to the neural plate, before closure of the neural tube. The beta3 integrin gene was also strongly expressed in cephalic neural crest cells at the same stage in which they begin their migration but disappeared progressively in these cells along the route they take to the branchial arches. The gene was weakly expressed in the differentiating cranial neural crest cells. The alphaVbeta3 integrin protein complex was also mainly detected in the migratory cephalic neural crest cells. However, during early mouse embryogenesis and in contrast to the chick, the beta3 integrin gene was expressed in the foregut diverticulum and in the heart and not in the cephalic neural crest cells. Therefore, the difference in the beta3 integrin expression suggests that mouse and chicken cranial neural crest cells may have distinct integrin requirements during their ontogenesis.
Collapse
Affiliation(s)
- Thomas Pietri
- UMR 144 Compartimentation et Dynamique Cellulaire, Centre National de la Recherche Scientifique et Institut Curie, Paris, France
| | | | | |
Collapse
|
36
|
Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res 2003; 71:629-47. [PMID: 12584722 DOI: 10.1002/jnr.10498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid. As shown by immunohistochemistry, FGF-2 that was bound to latex microspheres depleted the FGF surface receptor protein, which localized with the microspheres in the cytoplasm and nucleus. For microsphere-bound FGF-2, the surface receptor-mediated responses to FGF-2 appear to be limited and the door opened to another venue of intracellular events or an intracrine mechanism.
Collapse
Affiliation(s)
- Masako M Bilak
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
37
|
Frago LM, Cañón S, de la Rosa EJ, León Y, Varela-Nieto I. Programmed cell death in the developing inner ear is balanced by nerve growth factor and insulin-like growth factor I. J Cell Sci 2003; 116:475-86. [PMID: 12508109 DOI: 10.1242/jcs.00223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve growth factor induces cell death in organotypic cultures of otic vesicle explants. This cell death has a restricted pattern that reproduces the in vivo pattern of apoptosis occurring during inner ear development. In this study, we show that binding of nerve growth factor to its low affinity p75 neurotrophin receptor is essential to achieve the apoptotic response. Blockage of binding to p75 receptor neutralized nerve-growth-factor-induced cell death, as measured by immunoassays detecting the presence of cytosolic oligonucleosomes and by TUNEL assay to visualize DNA fragmentation. Nerve growth factor also induced a number of cell-death-related intracellular events including ceramide generation, caspase activation and poly-(ADP ribose) polymerase cleavage. Again, p75 receptor blockade completely abolished all of these effects. Concerning the intracellular pathway, ceramide increase depended on initiator caspases, whereas its actions depended on both initiator and effector caspases, as shown by using site-specific caspase inhibitors. Conversely, insulin-like growth factor I, which promotes cell growth and survival in the inner ear, abolished apoptosis induced by nerve growth factor. Insulin-like growth factor cytoprotective actions were accomplished, at least in part, by decreasing endogenous ceramide levels and activating Akt. Taken together, these results strongly suggest that regulation of nerve-growth-factor-induced apoptosis in the otocysts occurs via p75 receptor binding and is strictly controlled by the interaction with survival signalling pathways.
Collapse
Affiliation(s)
- Laura M Frago
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Alsina B, Giraldez F, Varela-Nieto I. Growth Factors and Early Development of Otic Neurons: Interactions between Intrinsic and Extrinsic Signals. Curr Top Dev Biol 2003; 57:177-206. [PMID: 14674481 DOI: 10.1016/s0070-2153(03)57006-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Berta Alsina
- DCEXS-Universitat Pomepu Fabra, Dr Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
39
|
Abstract
The neurons of the cochlear ganglion transmit acoustic information between the inner ear and the brain. These placodally derived neurons must produce a topographically precise pattern of connections in both the inner ear and the brain. In this review, we consider the current state of knowledge concerning the development of these neurons, their peripheral and central connections, and their influences on peripheral and central target cells. Relatively little is known about the cellular and molecular regulation of migration or the establishment of precise topographic connection to the hair cells or cochlear nucleus (CN) neurons. Studies of mice with neurotrophin deletions are beginning to yield increasing understanding of variations in ganglion cell survival and resulting innervation patterns, however. Finally, existing evidence suggests that while ganglion cells have little influence on the differentiation of their hair cell targets, quite the opposite is true in the brain. Ganglion cell innervation and synaptic activity are essential for normal development of neurons in the cochlear nucleus.
Collapse
Affiliation(s)
- Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle 98195-7923, USA.
| | | |
Collapse
|
40
|
Hossain WA, Brumwell CL, Morest DK. Sequential interactions of fibroblast growth factor-2, brain-derived neurotrophic factor, neurotrophin-3, and their receptors define critical periods in the development of cochlear ganglion cells. Exp Neurol 2002; 175:138-51. [PMID: 12009766 DOI: 10.1006/exnr.2002.7872] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We studied the interactions of neurotrophin-3 (NT3) with brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2), and their effects on tyrosine kinase C (TrkC) expression during cochlear ganglion development. Otocysts were explanted from white leghorn chicken embryos at stages when the neuronal precursors normally start to migrate. Cultures were fed with various combinations of NT3, BDNF, and FGF-2. NT3 appeared to have a greater effect on neurite outgrowth than on migration and was enhanced by BDNF. The results from in situ hybridization and immunostaining for TrkC receptor revealed up-regulation of the mRNA and protein by combining NT-3 and BDNF. NT-3 combined with FGF-2 produced down-regulation of receptor. Neutralizing antibody to NT3 had an inhibitory effect on neuronal development, suggesting that endogenous NT3 is normally active during the period examined. The findings suggest an interactive role of NT3 in early neuronal development. The trophic synergism of NT3 and BDNF may result from up-regulation of TrkC. This hypothesis is consistent with immunostaining in the embryonic basilar papilla, which localized TrkC to the initial axonal invasion sites. While the growth factors each produce particular trophic effects, the interactions of these factors define a critical sequence of developmental events based on modulation of receptor expression.
Collapse
Affiliation(s)
- W Amin Hossain
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
41
|
Zhou X, Baier C, Hossain WA, Goldenson M, Morest DK. Expression of a voltage-dependent potassium channel protein (Kv3.1) in the embryonic development of the auditory system. J Neurosci Res 2001; 65:24-37. [PMID: 11433426 DOI: 10.1002/jnr.1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study traces the development of a voltage-dependent potassium channel protein (Kv3.1) in the avian homologue of the cochlear nucleus, in the cochleovestibular ganglion, and in the otic epithelium from early developmental stages until near hatching. Immunohistochemistry with antibodies to the carboxy terminus (recognizing the Kv3.1b splice variant) and to the amino terminus (recognizing either form of Kv3.1) was used on Hamburger-Hamilton-staged chicken embryos. There were three periods in the relative levels of immunostaining in these regions. Early (E2-6), when precursor cells proliferate, migrate, and form axons, there was staining when using either antibody. In the middle period (E6-11), marked by hair cell differentiation, dendritic growth, and early synapse formation, staining levels decreased. In the late period (E11-19), when auditory function begins, staining increased rapidly, especially for Kv3.1b. Early Kv3.1 expression occurs in neuronal and hair cell precursors before they differentiate or function. Later, in the otic epithelium, a high level of Kv3.1 in cilia may precede or coincide with the onset of hair cell function. In neurons, some features of its localization correlate with axon outgrowth and synapse formation, others with the onset of neural activity and function.
Collapse
Affiliation(s)
- X Zhou
- Department of Neuroscience, The University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | |
Collapse
|
42
|
Matsunaga T, Davis JG, Greene MI. Adult rat otic placode-derived neurons and sensory epithelium express all four erbB receptors: a role in regulating vestibular ganglion neuron viability. DNA Cell Biol 2001; 20:307-19. [PMID: 11445002 DOI: 10.1089/10445490152122424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The erbB receptor family consists of erbB1/epidermal growth factor receptor, erbB2/neu, erbB3, and erbB4, all of which have been implicated in cell proliferation, differentiation, and survival in several tissues. In the nervous system, these family members can function in a trophic capacity for certain subpopulations of neurons and some types of non-neuronal cells. Vestibular sensory epithelial cells and vestibular ganglion neurons are derived from ectodermal otic placode and are essential components of the peripheral vestibular system, the sensory system for balance. Recent studies in mammals suggest that certain ligands of the epidermal growth factor receptor can induce proliferation of vestibular sensory epithelial cells. We now show that vestibular ganglion neurons and vestibular sensory epithelial cells express all four erbB receptors in adult rats. Cultured vestibular ganglion neurons also expressed all four erbB family members and were therefore used to analyze the effects of modulating erbB signaling on differentiated vestibular ganglion neurons. Transforming growth factor-alpha (a ligand for epidermal growth factor receptor) and sensory and motor neuron-derived factor (a ligand for erbB3 and erbB4) promoted vestibular ganglion neuron viability, whereas epidermal growth factor (another ligand for epidermal growth factor receptor) did not. Glial growth factor 2 (another ligand for erbB3 and erbB4) and an antibody that blocks erbB2/neu-mediated signaling inhibited vestibular ganglion neuron viability. Collectively, these observations indicate that erbB signaling regulates the viability of differentiated otic placode-derived cells in mammals and suggest that exogenous modulation of erbB signaling in peripheral vestibular tissues may prove therapeutically useful in peripheral vestibular disorders.
Collapse
MESH Headings
- Animals
- Cell Survival
- Cells, Cultured
- ErbB Receptors/biosynthesis
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Fluorescent Antibody Technique
- Ganglia, Sensory/cytology
- Ganglia, Sensory/metabolism
- Neurons/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/physiology
- Receptor, ErbB-4
- Reverse Transcriptase Polymerase Chain Reaction
- Saccule and Utricle/metabolism
- Signal Transduction
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- T Matsunaga
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
43
|
Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 2000; 14:2839-54. [PMID: 11090132 PMCID: PMC317056 DOI: 10.1101/gad.840500] [Citation(s) in RCA: 560] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BETA2/NeuroD1 is a bHLH transcription factor that is expressed during development in the mammalian pancreas and in many locations in the central and peripheral nervous systems. During inner ear ontogenesis, it is present in both sensory ganglion neurons and sensory epithelia. Although studies have shown that BETA2/NeuroD1 is important in the development of the hippocampal dentate gyrus and the cerebellum, its functions in the peripheral nervous system and in particular in the inner ear are unclear. Mice carrying a BETA2/NeuroD1 null mutation exhibit behavioral abnormalities suggestive of an inner ear defect, including lack of responsiveness to sound, hyperactivity, head tilting, and circling. Here we show that these defects can be explained by a severe reduction of sensory neurons in the cochlear-vestibular ganglion (CVG). A developmental study of CVG formation in the null demonstrates that BETA2/NeuroD1 does not play a primary role in the proliferation of neuroblast precursors or in their decision to become neuroblasts. Instead, the reduction in CVG neuron number is caused by a combination both of delayed or defective delamination of CVG neuroblast precursors from the otic vesicle epithelium and of enhanced apoptosis both in the otic epithelium and among those neurons that do delaminate to form the CVG. There are also defects in differentiation and patterning of the cochlear duct and sensory epithelium and loss of the dorsal cochlear nucleus. BETA2/NeuroD1 is, thus, the first gene to be shown to regulate neuronal and sensory cell development in both the cochlear and vestibular systems.
Collapse
Affiliation(s)
- M Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hossain WA, Morest DK. Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunohistochemistry and antibody perturbation. J Neurosci Res 2000; 62:40-55. [PMID: 11002286 DOI: 10.1002/1097-4547(20001001)62:1<40::aid-jnr5>3.0.co;2-l] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To study the effect of FGF in the early development of the sensory neurons of the auditory system, we established a culture preparation of ganglionic neuroblasts engaged in migration and process outgrowth. The presumed anlage of the cochlear ganglion was dissected from E11 otocysts, just as the neuronal precursors were migrating. The cultures were divided into 4 groups and supplemented for 7-9 days with either hrFGF-1 or hrFGF-2 or both or with defined medium only (control group). Measurements of the increase in explant growth, neuroblast migration, and neurite outgrowth were made by time-lapse imaging techniques in living cultures. Either FGF-1 or FGF-2 alone stimulated early migration and outgrowth of the ganglion cells by 5-10x. The effect of combining FGF-1 and FGF-2 was greater than either alone, but less than additive, consistent with a shared receptor. BrdU labeling confirmed that the effect was on migration, not on proliferation. Adding a neutralizing antibody for FGF-2 to the cultures inhibited migration and neurite outgrowth, suggesting an endogenous FGF-2 activity in these functions. Immunocytochemical observations in vitro and in situ with antibodies to FGF-1, FGF-2, or FGF receptor (R1) demonstrated immunopositive staining of the migrating ganglionic neuroblasts, their processes, and growth cones at corresponding stages (E13). Also non-neuronal cells, hair cells, and Schwann cells (in situ) expressed FGF-1 and FGF-2. Evidently both FGF-1 and FGF-2 play important roles in the migration and initial differentiation of cochlear ganglion neurons in the mouse.
Collapse
Affiliation(s)
- W A Hossain
- Department of Anatomy and Center for Neurological Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | |
Collapse
|
45
|
Hidalgo-Sánchez M, Alvarado-Mallart R, Alvarez IS. Pax2, Otx2, Gbx2 and Fgf8 expression in early otic vesicle development. Mech Dev 2000; 95:225-9. [PMID: 10906468 DOI: 10.1016/s0925-4773(00)00332-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The inner ear is a suitable system to study the mechanisms involved in the specification of different functional domains during morphogenesis. Using single and double in situ hybridization (ISH) we show that three transcription factors (Otx2, Gbx2and Pax2) and a member of the fibroblast growth factor family (Fgf8) could participate in the compartmentalization of the otic vesicle and in the formation of the acoustic-vestibular ganglion.
Collapse
Affiliation(s)
- M Hidalgo-Sánchez
- INSERM Unité 106, Hôpital de la Salpêtrière, 47, Bld. de l'Hôpital, 75651, Cedex 13, Paris, France
| | | | | |
Collapse
|
46
|
Brumwell CL, Hossain WA, Morest DK, Bernd P. Role for basic fibroblast growth factor (FGF-2) in tyrosine kinase (TrkB) expression in the early development and innervation of the auditory receptor: in vitro and in situ studies. Exp Neurol 2000; 162:121-45. [PMID: 10716894 DOI: 10.1006/exnr.2000.7317] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A previous study showed that basic fibroblast growth factor (FGF-2) promotes the effects of brain-derived neurotrophic factor (BDNF) on migration and neurite outgrowth from the cochleovestibular ganglion (CVG). This suggests that FGF-2 may up-regulate the receptor for BDNF. Thus we have examined TrkB expression during CVG formation and otic innervation in vitro and in the chicken embryo using immunohistochemistry. Following anatomical staging according to Hamburger-Hamilton, results were compared with mRNA expression in vitro using in situ hybridization. In the embryo at stage 16 (E2+) clusters of either lightly stained or immunonegative cells occurred within the otocyst and among those migrating to the CVG. By stage 22 (E3.5), immunostaining was concentrated in the CVG perikarya and invaded the processes growing into the otic epithelium but not into the rhombencephalon. Subsequently TrkB expression decreased in the perikarya and became localized in the leading processes of the fibers invading the epithelium and in the structures participating in synapse formation with the hair cells. In vitro there was moderate immunostaining and modest in situ hybridization for trkB in the neuroblasts migrating from the otocyst under control conditions. In contrast, neuroblasts previously exposed to FGF-2 exhibited accelerated migration and differentiation, with increased trkB mRNA expression. Morphological differentiation was associated with more intense immunostaining of processes than cell bodies. Evidently TrkB shifts its expression sequentially from sites engaged in migration, ganglion cell differentiation, axonal outgrowth, epithelial innervation, and synapse formation. FGF-2 may promote the role of BDNF in these developmental events by upregulating the TrkB receptor.
Collapse
Affiliation(s)
- C L Brumwell
- Department of Anatomy, University of Connecticut Health Center, Farmington, Connecticut, 06030-3405, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Morphogenesis of the inner ear is a complex process in which the balance of cell division and death is presumed to play an important role. Surprisingly, there are no reports of a systematic comparison of these two processes in individual ears at different stages of development. This study presents such an analysis for the chicken otocyst at stages 13-29 (embryonic days 2.5-6). To detect proliferating cells, we used exposure to bromodeoxyuridine. To detect apoptotic cells, we used nuclear condensation and fragmentation or terminal dUTP nick-end labeling (TUNEL). The spatial and temporal locations of proliferating and dying cells were mapped across serial sections, revealing regional differences in proliferation within the otocyst epithelium that are more complex than previously reported. In addition, almost all of the previously identified "hot spots" of cell death correspond spatially to regions of reduced cell proliferation. An exception is the ventromedial hot spot of cell death, which is intermingled with proliferating cells when it first appears at stages 19-23 before becoming a cold spot of proliferation. The results further show that the inferior part of the otocyst has a high level of proliferation, whereas the superior part does not. Since the superior part of the otocyst demonstrates outward expansion that is comparable to the inferior part, it appears that regional outgrowth of the otic vesicle is not necessarily coupled to cell proliferation. This study provides a basis for exploring the regulation and function of cell proliferation and cell death during inner ear morphogenesis.
Collapse
Affiliation(s)
- H Lang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
48
|
Sanz C, León Y, Troppmair J, Rapp UR, Varela-Nieto I. Strict regulation of c-Raf kinase levels is required for early organogenesis of the vertebrate inner ear. Oncogene 1999; 18:429-37. [PMID: 9927199 DOI: 10.1038/sj.onc.1202312] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of organogenesis involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. Here we have investigated the pattern of expression of c-Raf kinase in the inner ear during early developmental stages and the consequences of manipulating c-Raf levels by misexpression of c-raf viral vectors in organotypic cultures of otic vesicle explants. We found that otic vesicles expressed c-Raf and its level remained constant during embryonic days 2 and 3 (E2-E3). c-Raf activity was increased in response to insulin like growth factor-I (IGF-I) and the activation by IGF-I of the c-Raf kinase pathway was a requirement to turn on cell proliferation in the otic vesicle. Overexpression of c-raf in E2.5 explants increased the proliferative response to low serum and IGF-I and blocked differentiation induced by retinoic acid. The increase in c-Raf levels also prevented nerve growth factor (NGF)-dependent induction of programmed cell death. Consistent with these results, the expression of a dominant negative c-Raf mutant potentiated retinoic acid action and decreased the rate of cell proliferation. We conclude that a strict control of c-Raf levels is essential for the co-ordination of the biological processes that operate simultaneously during early inner ear development.
Collapse
Affiliation(s)
- C Sanz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Sokolowski BH, Cunningham AM. Patterns of synaptophysin expression during development of the inner ear in the chick. JOURNAL OF NEUROBIOLOGY 1999; 38:46-64. [PMID: 10027562 DOI: 10.1002/(sici)1097-4695(199901)38:1<46::aid-neu4>3.0.co;2-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The onset of active neural connections between the periphery and the central nervous system is integral to the development of sensory systems. This study presents patterns of synaptogenesis in the chick basilar papilla (i.e., cochlea) by examining the immunohistochemical expression of synaptophysin with a specific monoclonal antibody, SBI 20.10. The initial onset of synaptophysin expression occurs in nerve fibers and ganglion cell bodies at a time when neurites reach the basement membrane of the chick cochlea on embryonic day 6-7 (ED 6-7). By ED 8, synaptophysin positive fibers invade the neural side of the entire length of the cochlea, so that by ED 9-10, fibers are forming multiple terminals on the basolateral ends of retracting receptor or hair cells. In contrast, on the abneural side, immunoreactive terminals are seen first as small, punctate contacts and then as large, synaptophysin positive calyceal endings beneath short hair cells. These terminals are sparse during early development, more numerous by ED 17-19, but still incomplete after 2 weeks posthatching. In comparison, hair cells show synaptophysin immunoreactivity in both supra- and infranuclear regions by ED 11-12, a time when efferent innervation is incomplete. Thus, during development, synaptophysin is expressed at both synaptic and nonsynaptic sites, is relatively selective in its regional distribution, and is expressed in hair cells at a time when auditory function begins. Our results present a framework with which to understand the potential role of synaptophysin in early synaptogenesis of the cochlea.
Collapse
Affiliation(s)
- B H Sokolowski
- University of South Florida, Department of Otolaryngology-Head and Neck Surgery, Tampa 33612, USA
| | | |
Collapse
|
50
|
Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 1998; 125:4645-54. [PMID: 9806914 DOI: 10.1242/dev.125.23.4645] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory patches in the vertebrate inner ear are similar in function to the mechanosensory bristles of a fly, and consist of a similar set of cell types. If they are truly homologous structures, they should also develop by similar mechanisms. We examine the genesis of the neurons, hair cells and supporting cells that form the sensory patches in the inner ear of the chick. These all arise from the otic epithelium, and are produced normally even in otic epithelium cultured in isolation, confirming that their production is governed by mechanisms intrinsic to the epithelium. First, the neuronal sublineage becomes separate from the epithelial: between E2 and E3.5, neuroblasts delaminate from the otocyst. The neuroblasts then give rise to a mixture of neurons and neuroblasts, while the sensory epithelial cells diversify to form a mixture of hair cells and supporting cells. The epithelial patches where this occurs are marked from an early stage by uniform and maintained expression of the Notch ligand Serrate1. The Notch ligand Delta1 is also expressed, but transiently and in scattered cells: it is seen both early, during neuroblast segregation, where it appears to be in the nascent neuroblasts, and again later, in the ganglion and in differentiating sensory patches, where it appears to be in the nascent hair cells, disappearing as they mature. Delta-Notch-mediated lateral inhibition may thus act at each developmental branchpoint to drive neighbouring cells along different developmental pathways. Our findings indicate that the sensory patches of the vertebrate inner ear and the sensory bristles of a fly are generated by minor variations of the same basic developmental program, in which cell diversification driven by Delta-Notch and/or Serrate-Notch signalling plays a central part.
Collapse
Affiliation(s)
- J Adam
- Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|