1
|
Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024; 125:108580. [PMID: 38522559 DOI: 10.1016/j.reprotox.2024.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia.
| | - Ksenija Geršak
- Medical Faculty, University of Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia; Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Šlajmerjeva 3, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| |
Collapse
|
2
|
A Novel Antibacterial Component and the Mechanisms of an Amaranthus tricolor Leaf Ethyl Acetate Extract against Acidovorax avenae subsp. citrulli. Int J Mol Sci 2021; 23:ijms23010312. [PMID: 35008738 PMCID: PMC8745224 DOI: 10.3390/ijms23010312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the present investigation was to determine the active ingredients in Amaranthus tricolor L. leaves and develop a biological pesticide. Organic solvent extraction, column chromatography, liquid chromatography, ODS-C18 reverse elution, Sephadex LH-20 gel filtration, H spectrum, and C spectrum were used to isolate the pure product for an assessment of the agricultural activity and bacteriostatic mechanisms. The results showed that the activity of the crude extract following carbon powder filtration was 1.63-fold that of the non-filtered extract. Further isolation was performed to obtain two pure products, namely, hydroxybenzoic acid (HBA) and benzo[b]furan-2-carboxaldehyde (BFC), and their molecular formulas and molecular weights were C7H6O3 and 138.12, and C9H6O2 and 146.12, respectively. Our study is the first to determine that HBA has bacteriostatic activity (MIC 125 μg/mL) and is also the first to isolate BFC from A. tricolor. The ultrastructure observation results showed that HBA caused the bacteria to become shriveled, distorted, and deformed, as well as exhibit uneven surfaces. After HBA treatment, 70 differentially expressed metabolites were detected in the bacteria, of which 9 were downregulated and 61 were upregulated. The differentially expressed metabolites were mainly strigolactones, organic acids and derivatives, fatty acids, benzene and substituted benzene derivatives, amino acids and associated metabolites, and alcohols and amines. Among all of the downregulated differentially expressed metabolites, MEDP1280 was the most critical, as it participates in many physiological and biochemical processes. The enrichment analysis showed that the differentially expressed metabolites mainly participate in tyrosine metabolism, biosynthesis of amino acids, cysteine and methionine metabolism, and arginine and proline metabolism. Additionally, HBA was found to disrupt cell membrane permeability and integrity, causing the leakage of substances and apoptosis. The physiological and biochemical test results showed that HBA could increase the pyruvate levels in bacteria but could decrease the activities of respiratory enzymes (malate dehydrogenase (MDH) and NADH oxidase) and antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX)). Inverse molecular docking was used to study the binding between HBA and respiratory and antioxidant enzymes. The results showed that HBA could bind to MDH, NADH oxidase, SOD, and GSH-PX, suggesting that these enzymes may be the effector targets of HBA. Conclusion: The optimal active ingredient in A. tricolor that can inhibit Acidovorax avenae subsp. citrulli was identified as HBA. HBA mainly disrupts the cell membrane, damages the metabolic system, and inhibits respiration and antioxidant enzyme activity to control bacterial growth. These results provide a reference for the further development of biological pesticides.
Collapse
|
3
|
Vrijens K, Van Overmeire I, De Cremer K, Neven KY, Carollo RM, Vleminckx C, Van Loco J, Nawrot TS. Weight and head circumference at birth in function of placental paraben load in Belgium: an ENVIRONAGE birth cohort study. Environ Health 2020; 19:83. [PMID: 32664952 PMCID: PMC7359508 DOI: 10.1186/s12940-020-00635-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/03/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Parabens are a group of esters of para-hydroxybenzoic acid utilized as antimicrobial preservatives in many personal care products. Epidemiological studies regarding the adverse effects of parabens on fetuses are limited. The aim of this study was to determine the association between placental paraben exposure and birth outcomes. We assessed paraben concentrations in placental tissue, which potentially gives a better understanding of fetal exposure than the maternal urinary concentrations which are the current golden standard. METHODS Placental tissue was collected immediately after birth from 142 mother-child pairs from the ENVIRONAGE birth cohort. The placental concentrations of four parabens (methyl (MeP), ethyl (EtP), propyl (PrP), and butyl (BuP)) were determined by ultra-performance liquid chromatography coupled with tandem mass-spectrometry. Generalized linear regression models were used to determine the association between paraben exposure levels and birth outcomes. RESULTS The geometric means of placental MeP, EtP, PrP, and BuP were 1.84, 2.16, 1.68 and 0.05 ng/g tissue, respectively. The sum of parabens (∑ parabens, including MeP, EtP and PrP) was negatively associated with birth weight in newborn girls (- 166 g, 95% CI: - 322, - 8.6, p = 0.04) after adjustment for a priori selected covariates. The sum of parabens was negatively associated with head circumference (- 0.6 cm, 95% CI: - 1.1, - 0.2, p = 0.008) and borderline associated with birth length (- 0.6 cm, 95% CI:-1.3, 0.1, p = 0.08). In newborn girls the placental concentration of EtP was negatively associated with head circumference (- 0.6 cm, 95% CI:-1.1, - 0.1, p = 0.01) and borderline significantly associated with birth weight and birth length. Lastly, placental EtP and ∑parabens were negatively associated with placental weight in newborn girls but not in newborn boys (- 45.3 g, 95% CI:-86.2, - 4.4, p = 0.03). CONCLUSION The negative association between maternal paraben exposure and birth outcomes warrants further research and follow-up over time to determine long term effects of gestational exposure to parabens.
Collapse
Affiliation(s)
- Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Ilse Van Overmeire
- Sciensano, Chemical and physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Koen De Cremer
- Sciensano, Chemical and physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Kristof Y. Neven
- Center for Environmental Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Riccardo M. Carollo
- Center for Environmental Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Christiane Vleminckx
- Sciensano, Chemical and physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Joris Van Loco
- Sciensano, Chemical and physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Tim S. Nawrot
- Center for Environmental Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Carlsson G, Pohl J, Athanassiadis I, Norrgren L, Weiss J. Thyroid disruption properties of three indoor dust chemicals tested in Silurana tropicalis tadpoles. J Appl Toxicol 2019; 39:1248-1256. [PMID: 31066086 DOI: 10.1002/jat.3810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/08/2022]
Abstract
Indoor dust contains a multitude of industrial chemicals, and ingestion of dust is considered an important exposure route to organic contaminants. Some of these contaminants have been shown to interfere with the thyroid system, which may result in significant consequences on public health. The amphibian metamorphosis is a thyroid hormone-dependent process, which can be used as an in vivo model for studies on thyroid hormone-disrupting potency. Three contaminants of indoor dust were tested on metamorphosing Silurana (Xenopus) tropicalis tadpoles. The tested chemicals were Tris (1,3-dichloroisopropyl) phosphate (TDCiPP), tetrabromobisphenol-A (TBBPA) and propylparaben (PrP). Measurements reflecting general growth, development progress and thyroid epithelial cell height were performed on the exposed tadpoles as well as chemical analyses of the exposure water. It was shown that TDCiPP acts as a thyroid hormone-disrupting chemical in metamorphosing tadpoles by causing increased epithelial cell height in thyroid glands after exposure to a nominal concentration of 0.010 mg/L and in higher concentrations. TBBPA caused reductions in general growth of tadpoles at the nominal concentration 0.125 mg/L, and PrP caused acute toxicity at the nominal concentration 12.5 mg/L. However, no evident indications of specific thyroid-disrupting effects caused by TBBPA or PrP were observed.
Collapse
Affiliation(s)
- Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leif Norrgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jana Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Aker AM, Ferguson KK, Rosario ZY, Mukherjee B, Alshawabkeh AN, Calafat AM, Cordero JF, Meeker JD. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environ Health 2019; 18:28. [PMID: 30940137 PMCID: PMC6444601 DOI: 10.1186/s12940-019-0459-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/28/2019] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Prenatal exposure to some phenols and parabens has been associated with adverse birth outcomes. Hormones may play an intermediate role between phenols and adverse outcomes. We examined the associations of phenol and paraben exposures with maternal reproductive and thyroid hormones in 602 pregnant women in Puerto Rico. Urinary triclocarban, phenol and paraben biomarkers, and serum hormones (estriol, progesterone, testosterone, sex-hormone-binding globulin (SHBG), corticotropin-releasing hormone (CRH), total triiodothyronine (T3), total thyroxine (T4), free thyroxine (FT4) and thyroid-stimulating hormone (TSH)) were measured at two visits during pregnancy. METHODS Linear mixed models with a random intercept were constructed to examine the associations between hormones and urinary biomarkers. Results were additionally stratified by study visit. Results were transformed to hormone percent changes for an inter-quartile-range difference in exposure biomarker concentrations (%Δ). RESULTS Bisphenol-S was associated with a decrease in CRH [(%Δ -11.35; 95% CI: -18.71, - 3.33), and bisphenol-F was associated with an increase in FT4 (%Δ: 2.76; 95% CI: 0.29, 5.22). Butyl-, methyl- and propylparaben were associated with decreases in SHBG [(%Δ: -5.27; 95% CI: -9.4, - 1.14); (%Δ: -3.53; 95% CI: -7.37, 0.31); (%Δ: -3.74; 95% CI: -7.76, 0.27)]. Triclocarban was positively associated with T3 (%Δ: 4.08; 95% CI: 1.18, 6.98) and T3/T4 ratio (%Δ: 4.67; 95% CI: -1.37, 6.65), and suggestively negatively associated with TSH (%Δ: -10.12; 95% CI: -19.47, 0.32). There was evidence of susceptible windows of vulnerability for some associations. At 24-28 weeks gestation, there was a positive association between 2,4-dichlorophenol and CRH (%Δ: 9.66; 95% CI: 0.67, 19.45) and between triclosan and estriol (%Δ: 13.17; 95% CI: 2.34, 25.2); and a negative association between triclocarban and SHBG (%Δ: -9.71; 95% CI:-19.1, - 0.27) and between bisphenol A and testosterone (%Δ: -17.37; 95% CI: -26.7, - 6.87). CONCLUSION Phenols and parabens are associated with hormone levels during pregnancy. Further studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Amira M. Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| | - Kelly K. Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
- Epidemiology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, Durham, USA
| | - Zaira Y. Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | | | | | - José F. Cordero
- College of Public Health, University of Georgia, Athens, GA USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
6
|
Aker AM, Johns L, McElrath TF, Cantonwine DE, Mukherjee B, Meeker JD. Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: A repeated measures study. ENVIRONMENT INTERNATIONAL 2018; 113:341-349. [PMID: 29366524 PMCID: PMC5866216 DOI: 10.1016/j.envint.2018.01.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND A number of phenols and parabens are added to consumer products for a variety of functions, and have been found at detectable levels in the majority of the U.S. POPULATION Among other functions, thyroid hormones are essential in fetal neurodevelopment, and could be impacted by the endocrine disrupting effects of phenols and parabens. The present study investigated the association between ten maternal urinary phenol and paraben biomarkers (bisphenol S, triclosan, triclocarban, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, and ethyl, butyl, methyl and propyl paraben) and four plasma thyroid hormones in 439 pregnant women in a case-control sample nested within a cohort study based in Boston, MA. METHODS Urine and blood samples were collected from up to four visits during pregnancy (median weeks of gestation at each visit: Visit 1: 9.64, Visit 2: 17.9, Visit 3: 26.0, Visit 4: 35.1). Linear mixed models were constructed to take into account the repeated measures jointly, followed by multivariate linear regression models stratified by gestational age to explore potential windows of susceptibility. RESULTS We observed decreased total triiodothyronine (T3) in relation to an IQR increase in benzophenone-3 (percent change [%Δ] = -2.07; 95% confidence interval [CI] = -4.16, 0.01), butyl paraben (%Δ = -2.76; 95% CI = -5.25, -0.26) and triclosan (%Δ = -2.53; 95% CI = -4.75, -0.30), and triclocarban at levels above the LOD (%Δ = -5.71; 95% CI = -10.45, -0.97). A 2.41% increase in T3 was associated with an IQR increase in methyl paraben (95% CI = 0.58, 4.24). We also detected a negative association between free thyroxine (FT4) and propyl paraben (%Δ = -3.14; 95% CI = -6.12, -0.06), and a suggestive positive association between total thyroxine (T4) and methyl paraben (%Δ = 1.19; 95% CI = -0.10, 2.47). Gestational age-specific multivariate regression analyses showed that the magnitude and direction of some of the observed associations were dependent on the timing of exposure. CONCLUSION Certain phenols and parabens were associated with altered thyroid hormone levels during pregnancy, and the timing of exposure influenced the association between phenol and paraben, and hormone concentrations. These changes may contribute to downstream maternal and fetal health outcomes. Additional research is required to replicate the associations, and determine the potential biological mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Amira M Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Lauren Johns
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Thomas F McElrath
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Cantonwine
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Aker AM, Watkins DJ, Johns LE, Ferguson KK, Soldin OP, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. ENVIRONMENTAL RESEARCH 2016; 151:30-37. [PMID: 27448730 PMCID: PMC5071140 DOI: 10.1016/j.envres.2016.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 07/02/2016] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, "Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)". METHODS Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16-20 weeks and 24-28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. RESULTS An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI -18.31,-0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16-20 weeks), and suggestively positively associated with estradiol at the second time point (24-28 weeks). CONCLUSIONS Within this ongoing birth cohort, certain phenols and parabens were associated with altered reproductive and thyroid hormone levels during pregnancy. These changes may contribute to adverse health effects in mothers or their offspring, but additional research is required.
Collapse
Affiliation(s)
- Amira M Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Lauren E Johns
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Offie P Soldin
- Department of Medicine, Georgetown University, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| | - Liza V Anzalota Del Toro
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - Akram N Alshawabkeh
- College of Engineering, Northeastern University, 110 Forsyth St, Boston, MA 02115, USA
| | - José F Cordero
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Maqbool F, Mostafalou S, Bahadar H, Abdollahi M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci 2015; 145:265-73. [PMID: 26497928 DOI: 10.1016/j.lfs.2015.10.022] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases.
Collapse
Affiliation(s)
- Faheem Maqbool
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran; Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sara Mostafalou
- School of Pharmacy, Ardebil University of Medical Sciences, Ardebil, Iran
| | - Haji Bahadar
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Koeppe ES, Ferguson KK, Colacino JA, Meeker JD. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:299-305. [PMID: 23340023 PMCID: PMC3572338 DOI: 10.1016/j.scitotenv.2012.12.052] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 04/15/2023]
Abstract
Triclosan and parabens are broad spectrum antimicrobials used in a range of consumer products. In vitro and animal studies have suggested the potential for these compounds to disrupt thyroid function, though studies in humans have been limited. The objective of the study was to assess the relationship of urinary concentrations of triclosan and parabens with serum thyroid measures in a large, representative sample of the US population. We conducted an exploratory, cross-sectional analysis of data on urinary biomarkers of triclosan and paraben exposure and serum thyroid measures obtained from 1831 subjects (ages≥12 years) as part of the 2007-2008 National Health and Nutrition Examination Survey (NHANES). We found evidence of some inverse associations between parabens and circulating thyroid hormone levels in adults, with the strongest and most consistent associations among females. We also observed a positive association between triclosan and total triiodothyonine (T3) concentrations in adolescents. These results, in accordance with the in vitro and animal literature, suggest that paraben, and potentially triclosan, exposures may be associated with altered thyroid hormone levels in humans. Further research is needed for confirmation and to determine the potential clinical and public health significance of these findings.
Collapse
Affiliation(s)
- Erika S. Koeppe
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - Kelly K. Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| |
Collapse
|
10
|
Hartoft-Nielsen ML, Boas M, Bliddal S, Rasmussen AK, Main K, Feldt-Rasmussen U. Do Thyroid Disrupting Chemicals Influence Foetal Development during Pregnancy? J Thyroid Res 2011; 2011:342189. [PMID: 21918727 PMCID: PMC3170895 DOI: 10.4061/2011/342189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/13/2011] [Accepted: 06/02/2011] [Indexed: 11/20/2022] Open
Abstract
Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus. Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals—endocrine disrupting chemicals (EDCs)—has been shown to cause almost constant exposure of humans with possible harmful influence on health and hormone regulation. EDCs may affect thyroid hormone homeostasis by different mechanisms, and though the effect of each chemical seems scarce, the added effects may cause inappropriate consequences on, for example, foetal neurodevelopment.
This paper focuses on thyroid hormone influence on foetal development in relation to the chemicals suspected of thyroid disrupting properties with possible interactions with maternal thyroid homeostasis. Knowledge of the effects is expected to impact the general debate on the use of these chemicals. However, more studies are needed to elucidate the issue, since human studies are scarce.
Collapse
Affiliation(s)
- Marie-Louise Hartoft-Nielsen
- Department of Medical Endocrinology PE-2131, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
11
|
Meeker JD, Yang T, Ye X, Calafat AM, Hauser R. Urinary concentrations of parabens and serum hormone levels, semen quality parameters, and sperm DNA damage. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:252-7. [PMID: 20876036 PMCID: PMC3040614 DOI: 10.1289/ehp.1002238] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 09/28/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Parabens are commonly used as antimicrobial preservatives in cosmetics, pharmaceuticals, and food and beverage processing. Widespread human exposure to parabens has been recently documented, and some parabens have demonstrated adverse effects on male reproduction in animal studies. However, human epidemiologic studies are lacking. OBJECTIVE We investigated relationships between urinary concentrations of parabens and markers of male reproductive health in an ongoing reproductive epidemiology study. METHODS Urine samples collected from male partners attending an infertility clinic were analyzed for methyl paraben (MP), propyl paraben (PP), butyl paraben (BP), and bisphenol A (BPA). Associations with serum hormone levels (n = 167), semen quality parameters (n = 190), and sperm DNA damage measures (n = 132) were assessed using multivariable linear regression. RESULTS Detection rates in urine were 100% for MP, 92% for PP, and 32% for BP. We observed no statistically significant associations between MP or PP and the outcome measures. Categories of urinary BP concentration were not associated with hormone levels or conventional semen quality parameters, but they were positively associated with sperm DNA damage (p for trend = 0.03). When urinary BPA quartiles were added to the model, BP and BPA were both positively associated with sperm DNA damage (p for trend = 0.03). Assessment of paraben concentrations measured on repeated urine samples from a subset of the men (n = 78) revealed substantial temporal variability. CONCLUSIONS We found no evidence for a relationship between urinary parabens and hormone levels or semen quality, although intraindividual variability in exposure and a modest sample size could have limited our ability to detect subtle relationships. Our observation of a relationship between BP and sperm DNA damage warrants further investigation.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
12
|
Soni MG, Taylor SL, Greenberg NA, Burdock GA. Evaluation of the health aspects of methyl paraben: a review of the published literature. Food Chem Toxicol 2002; 40:1335-73. [PMID: 12387298 DOI: 10.1016/s0278-6915(02)00107-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methyl paraben (CAS No. 99-76-3) is a methyl ester of p-hydroxybenzoic acid. It is a stable, non-volatile compound used as an antimicrobial preservative in foods, drugs and cosmetics for over 50 years. Methyl paraben is readily and completely absorbed through the skin and from the gastrointestinal tract. It is hydrolyzed to p-hydroxybenzoic acid, conjugated, and the conjugates are rapidly excreted in the urine. There is no evidence of accumulation. Acute toxicity studies in animals indicate that methyl paraben is practically non-toxic by both oral and parenteral routes. In a population with normal skin, methyl paraben is practically non-irritating and non-sensitizing. In chronic administration studies, no-observed-effect levels (NOEL) as high as 1050 mg/kg have been reported and a no-observed-adverse-effect level (NOAEL) in the rat of 5700 mg/kg is posited. Methyl paraben is not carcinogenic or mutagenic. It is not teratogenic or embryotoxic and is negative in the uterotrophic assay. The mechanism of cytotoxic action of parabens may be linked to mitochondrial failure dependent on induction of membrane permeability transition accompanied by the mitochondrial depolarization and depletion of cellular ATP through uncoupling of oxidative phosphorylation. Parabens are reported to cause contact dermatitis reactions in some individuals on cutaneous exposure. Parabens have been implicated in numerous cases of contact sensitivity associated with cutaneous exposure; however, the mechanism of this sensitivity is unknown. Sensitization has occurred when medications containing parabens have been applied to damaged or broken skin. Allergic reactions to ingested parabens have been reported, although rigorous evidence of the allergenicity of ingested paraben is lacking.
Collapse
Affiliation(s)
- M G Soni
- Burdock Group, Vero Beach, FL 32962, USA.
| | | | | | | |
Collapse
|