1
|
Mody H, Vaidya TR, Lezeau J, Taha K, Ait-Oudhia S. In vitro to clinical translation of combinatorial effects of doxorubicin and dexrazoxane in breast cancer: a mechanism-based pharmacokinetic/pharmacodynamic modeling approach. Front Pharmacol 2023; 14:1239141. [PMID: 37927589 PMCID: PMC10620511 DOI: 10.3389/fphar.2023.1239141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Dexrazoxane (DEX) is the only drug clinically approved to treat Doxorubicin-induced cardiotoxicity (DIC), however its impact on the anticancer efficacy of DOX is not extensively studied. In this manuscript, a proof-of-concept in vitro study is carried out to quantitatively characterize the anticancer effects of DOX and DEX and determine their nature of drug-drug interactions in cancer cells by combining experimental data with modeling approaches. First, we determined the static concentration-response of DOX and DEX in breast cancer cell lines, JIMT-1 and MDA-MB-468. With a three-dimensional (3D) response surface analysis using a competitive interaction model, we characterized their interaction to be modestly synergistic in MDA-MB-468 or modestly antagonistic in JIMT-1 cells. Second, a cellular-level, pharmacodynamic (PD) model was developed to capture the time-course effects of the two drugs which determined additive and antagonistic interactions for DOX and DEX in MDA-MB-468 and JIMT-1, respectively. Finally, we performed in vitro to in vivo translation by utilizing DOX and DEX clinical dosing regimen that was previously identified to be maximally cardioprotective, to drive tumor cell PD models. The resulting simulations showed that a 10:1 DEX:DOX dose ratio over three cycles of Q3W regimen of DOX results in comparable efficacy based on MDA-MB-468 (additive effect) estimates and lower efficacy based on JIMT-1 (antagonistic effect) estimates for DOX + DEX combination as compared to DOX alone. Thus, our developed cell-based PD models can be used to simulate different scenarios and better design preclinical in vivo studies to further optimize DOX and DEX combinations.
Collapse
Affiliation(s)
- Hardik Mody
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Jovin Lezeau
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Kareem Taha
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
2
|
Dozic S, Howden EJ, Bell JR, Mellor KM, Delbridge LMD, Weeks KL. Cellular Mechanisms Mediating Exercise-Induced Protection against Cardiotoxic Anthracycline Cancer Therapy. Cells 2023; 12:cells12091312. [PMID: 37174712 PMCID: PMC10177216 DOI: 10.3390/cells12091312] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anthracyclines such as doxorubicin are widely used chemotherapy drugs. A common side effect of anthracycline therapy is cardiotoxicity, which can compromise heart function and lead to dilated cardiomyopathy and heart failure. Dexrazoxane and heart failure medications (i.e., beta blockers and drugs targeting the renin-angiotensin system) are prescribed for the primary prevention of cancer therapy-related cardiotoxicity and for the management of cardiac dysfunction and symptoms if they arise during chemotherapy. However, there is a clear need for new therapies to combat the cardiotoxic effects of cancer drugs. Exercise is a cardioprotective stimulus that has recently been shown to improve heart function and prevent functional disability in breast cancer patients undergoing anthracycline chemotherapy. Evidence from preclinical studies supports the use of exercise training to prevent or attenuate the damaging effects of anthracyclines on the cardiovascular system. In this review, we summarise findings from experimental models which provide insight into cellular mechanisms by which exercise may protect the heart from anthracycline-mediated damage, and identify knowledge gaps that require further investigation. Improved understanding of the mechanisms by which exercise protects the heart from anthracyclines may lead to the development of novel therapies to treat cancer therapy-related cardiotoxicity.
Collapse
Affiliation(s)
- Sanela Dozic
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erin J Howden
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James R Bell
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | - Lea M D Delbridge
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Weeks
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Protection against Doxorubicin-Induced Cardiotoxicity by Ergothioneine. Antioxidants (Basel) 2023; 12:antiox12020320. [PMID: 36829879 PMCID: PMC9951880 DOI: 10.3390/antiox12020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Anthracyclines such as doxorubicin remain a primary treatment for hematological malignancies and breast cancers. However, cardiotoxicity induced by anthracyclines, possibly leading to heart failure, severely limits their application. The pathological mechanisms of anthracycline-induced cardiac injury are believed to involve iron-overload-mediated formation of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation. The dietary thione, ergothioneine (ET), is avidly absorbed and accumulated in tissues, including the heart. Amongst other cytoprotective properties, ET was shown to scavenge ROS, decrease proinflammatory mediators, and chelate metal cations, including Fe2+, preventing them from partaking in redox activities, and may protect against mitochondrial damage and dysfunction. Plasma ET levels are also strongly correlated to a decreased risk of cardiovascular events in humans, suggesting a cardioprotective role. This evidence highlights ET's potential to counteract anthracycline cardiotoxicity. Methods and Findings: We investigated whether ET supplementation can protect against cardiac dysfunction in mice models of doxorubicin-induced cardiotoxicity and revealed that it had significant protective effects. Moreover, ET administration in a mouse breast cancer model did not exacerbate the growth of the tumor or interfere with the chemotherapeutic efficacy of doxorubicin. Conclusion: These results suggest that ET could be a viable co-therapy to alleviate the cardiotoxic effects of anthracyclines in the treatment of cancers.
Collapse
|
4
|
Sawicki KT, Sala V, Prever L, Hirsch E, Ardehali H, Ghigo A. Preventing and Treating Anthracycline Cardiotoxicity: New Insights. Annu Rev Pharmacol Toxicol 2021; 61:309-332. [PMID: 33022184 DOI: 10.1146/annurev-pharmtox-030620-104842] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthracyclines are the cornerstone of many chemotherapy regimens for a variety of cancers. Unfortunately, their use is limited by a cumulative dose-dependent cardiotoxicity. Despite more than five decades of research, the biological mechanisms underlying anthracycline cardiotoxicity are not completely understood. In this review, we discuss the incidence, risk factors, types, and pathophysiology of anthracycline cardiotoxicity, as well as methods to prevent and treat this condition. We also summarize and discuss advances made in the last decade in the comprehension of the molecular mechanisms underlying the pathology.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Division of Cardiology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Hossein Ardehali
- Division of Cardiology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
5
|
Cui S, Ganjawala TH, Abrams GW, Pan ZH. Effect of Proteasome Inhibitors on the AAV-Mediated Transduction Efficiency in Retinal Bipolar Cells. Curr Gene Ther 2021; 19:404-412. [PMID: 32072884 DOI: 10.2174/1566523220666200211111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adeno-associated Virus (AAV) vectors are the most promising vehicles for therapeutic gene delivery to the retina. To develop a practical gene delivery tool, achieving high AAV transduction efficiency in specific cell types is often required. AAV-mediated targeted expression in retinal bipolar cells is needed in certain applications such as optogenetic therapy, however, the transduction efficiency driven by endogenous cell-specific promoters is usually low. Methods that can improve AAV transduction efficiency in bipolar cells need to be developed. OBJECTIVE The study aimed to examine the effect of proteasome inhibitors on AAV-mediated transduction efficiency in retinal bipolar cells. METHODS Quantitative analysis of fluorescent reporter protein expression was performed to assess the effect of two proteasome inhibitors, doxorubicin and MG132, on AAV-mediated transduction efficiency in retinal bipolar cells in mice. RESULTS Our results showed that doxorubicin can increase the AAV transduction efficiency in retinal bipolar cells in a dose-dependent manner. We also observed doxorubicin-mediated cytotoxicity in retinal neurons, but the cytotoxicity could be mitigated by the coapplication of dexrazoxane. Three months after the coapplication of doxorubicin (300 μM) and dexrazoxane, the AAV transduction efficiency in retinal bipolar cells increased by 33.8% and no cytotoxicity was observed in all the layers of the retina. CONCLUSION Doxorubicin could enhance the AAV transduction efficiency in retinal bipolar cells in vivo. The potential long-term cytotoxicity caused by doxorubicin to retinal neurons could be partially mitigated by dexrazoxane. The coapplication of doxorubicin and dexrazoxane may serve as a potential adjuvant regimen for improving AAV transduction efficiency in retinal bipolar cells.
Collapse
Affiliation(s)
- Shengjie Cui
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Tushar H Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Gary W Abrams
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| |
Collapse
|
6
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
7
|
Jirkovská A, Karabanovich G, Kubeš J, Skalická V, Melnikova I, Korábečný J, Kučera T, Jirkovský E, Nováková L, Bavlovič Piskáčková H, Škoda J, Štěrba M, Austin CA, Šimůnek T, Roh J. Structure-Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase IIβ Interactions. J Med Chem 2021; 64:3997-4019. [PMID: 33750129 DOI: 10.1021/acs.jmedchem.0c02157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIβ (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability. Very tight structure-activity relationships were demonstrated on stereoisomeric forms of 4,4'-(butane-2,3-diyl)bis(piperazine-2,6-dione). In contrast to its rac-form 12, meso-derivative 11 (ICRF-193) showed a favorable binding mode to topoisomerase II in silico, inhibited and depleted TOP2B in cardiomyocytes more efficiently than dexrazoxane, and showed the highest cardioprotective efficiency. Importantly, the observed ICRF-193 cardioprotection did not interfere with the antiproliferative activity of anthracycline. Hence, this study identifies ICRF-193 as the new lead compound in the development of efficient cardioprotective agents.
Collapse
Affiliation(s)
- Anna Jirkovská
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Galina Karabanovich
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Jan Kubeš
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Veronika Skalická
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Iuliia Melnikova
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Jan Korábečný
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Králové, Czech Republic
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Tomáš Kučera
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Lucie Nováková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Josef Škoda
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 50003 Hradec Králové, Czech Republic
| | - Caroline A Austin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tomáš Šimůnek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Murabito A, Hirsch E, Ghigo A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front Cardiovasc Med 2020; 7:35. [PMID: 32226791 PMCID: PMC7080657 DOI: 10.3389/fcvm.2020.00035] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac side effects are a major drawback of anticancer therapies, often requiring the use of low and less effective doses or even discontinuation of the drug. Among all the drugs known to cause severe cardiotoxicity are anthracyclines that, though being the oldest chemotherapeutic drugs, are still a mainstay in the treatment of solid and hematological tumors. The recent expansion of the field of Cardio-Oncology, a branch of cardiology dealing with prevention or treatment of heart complications due to cancer treatment, has greatly improved our knowledge of the molecular mechanisms behind anthracycline-induced cardiotoxicity (AIC). Despite excessive generation of reactive oxygen species was originally believed to be the main cause of AIC, recent evidence points to the involvement of a plethora of different mechanisms that, interestingly, mainly converge on deregulation of mitochondrial function. In this review, we will describe how anthracyclines affect cardiac mitochondria and how these organelles contribute to AIC. Furthermore, we will discuss how drugs specifically targeting mitochondrial dysfunction and/or mitochondria-targeted drugs could be therapeutically exploited to treat AIC.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475:373-398. [PMID: 29363591 PMCID: PMC6110615 DOI: 10.1042/bcj20160583] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
Collapse
Affiliation(s)
- Justine L Delgado
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, U.S.A
| | - Chao-Ming Hsieh
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, U.S.A.
| |
Collapse
|
10
|
Attia SM, Alshahrani AY, Al-Hamamah MA, Attia MM, Saquib Q, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Dexrazoxane Averts Idarubicin-Evoked Genomic Damage by Regulating Gene Expression Profiling Associated With the DNA Damage-Signaling Pathway in BALB/c Mice. Toxicol Sci 2017; 160:161-172. [DOI: 10.1093/toxsci/kfx161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Malisza KL, Hasinoff BB. Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Rep 2016; 2:69-73. [DOI: 10.1080/13510002.1996.11747029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice. Toxicol Appl Pharmacol 2016; 295:68-84. [PMID: 26873546 DOI: 10.1016/j.taap.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F1 mice given a weekly intravenous dose of 3mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria.
Collapse
|
13
|
Attia SM, Ahmad SF, Bakheet SA. Impact of dexrazoxane on doxorubicin-induced aneuploidy in somatic and germinal cells of male mice. Cancer Chemother Pharmacol 2015; 77:27-33. [PMID: 26645402 DOI: 10.1007/s00280-015-2925-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Despite dexrazoxane's increasing use in mitigating doxorubicin-induced cardiotoxicity, no data are available in the literature on the potential aneugenicity of drug combination. Therefore, detailed evaluation of aneugenic potential of this combination is essential to provide more insights into aneuploidy induction that may play a role in the development of secondary malignancies and reproductive toxicity after treatment with doxorubicin. Thus, our aim was to determine whether dexrazoxane has influence on the aneuploidy induced by doxorubicin in germinal and somatic cells of male mice. METHODS Sperm BrdU-incorporation assay, sperm FISH assay and the bone marrow micronucleus test complemented by FISH assay were used to determine aneuoploidy. Moreover, the formation of 8-OHdG, one of the oxidative DNA damage by-products, has been evaluated. RESULTS Dexrazoxane was not aneugenic at the doses tested. Pre-treatment of mice with dexrazoxane significantly reduced doxorubicin-induced aneuploidy in a dose-dependent manner. Doxorubicin induced marked biochemical alterations characteristic of oxidative DNA damage, and prior administration of dexrazoxane before doxorubicin challenge ameliorated this biochemical marker. CONCLUSION This study provides evidence that dexrazoxane has a protective role in the abatement of doxorubicin-induced aneuploidy. This activity resides, at least in part, in its radical scavenger activity. Thus, dexrazoxane can avert secondary malignancies and abnormal reproductive outcomes in cured cancer patients exposed to doxorubicin.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Chen Y, Sun L, Wang Y, Zhao X. A dual-fluorescent whole-well imaging approach for screening active compounds against doxorubicin-induced cardiotoxicity from natural products. RSC Adv 2015. [DOI: 10.1039/c5ra20887d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A dual-fluorescent assay for screening compounds against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yaqi Chen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Lijuan Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Yi Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Xiaoping Zhao
- College of Preclinical Medicine
- Zhejiang Chinese Medical University
- Hangzhou 310053
- PR China
| |
Collapse
|
15
|
Roti Roti EC, Ringelstetter AK, Kropp J, Abbott DH, Salih SM. Bortezomib prevents acute doxorubicin ovarian insult and follicle demise, improving the fertility window and pup birth weight in mice. PLoS One 2014; 9:e108174. [PMID: 25251158 PMCID: PMC4176970 DOI: 10.1371/journal.pone.0108174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/22/2014] [Indexed: 01/04/2023] Open
Abstract
Increasing numbers of female patients survive cancer, but succumb to primary ovarian insufficiency after chemotherapy. We tested the hypothesis that Bortezomib (Bort) protects ovaries from doxorubicin (DXR) chemotherapy by treating female mice with Bort 1 hour prior to DXR. By preventing DXR accumulation in the ovary, Bort attenuated DXR-induced DNA damage in all ovarian cell types, subsequent γH2AFX phosphorylation, and resulting apoptosis in preantral follicles. Bort pretreatment extended the number of litters per mouse, improved litter size and increased pup weight following DXR treatment, thus increasing the duration of post-chemotherapy fertility and improving pup health. As a promising prophylactic ovoprotective agent, Bort does not interfere with cancer treatment, and is currently used as a chemotherapy adjuvant. Bort-based chemoprotection may preserve ovarian function in a non-invasive manner that avoids surgical ovarian preservation, thus diminishing the health complications of premature menopause following cancer treatment.
Collapse
Affiliation(s)
- Elon C. Roti Roti
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ashley K. Ringelstetter
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jenna Kropp
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin-Madison, Department of Animal Sciences, Madison, Wisconsin, United States of America
| | - David H. Abbott
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sana M. Salih
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Herman EH, Hasinoff BB, Steiner R, Lipshultz SE. A review of the preclinical development of dexrazoxane. PROGRESS IN PEDIATRIC CARDIOLOGY 2014. [DOI: 10.1016/j.ppedcard.2014.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, Stevenson KE, Fleming MD, Sallan SE, Franco VI, Henkel JM, Asselin BL, Athale UH, Clavell LA, Michon B, Laverdiere C, Larsen E, Kelly KM, Silverman LB. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer 2013; 119:3555-62. [PMID: 23861158 PMCID: PMC3788065 DOI: 10.1002/cncr.28256] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Doxorubicin is associated with progressive cardiac dysfunction, possibly through the formation of doxorubicin-iron complexes leading to free-radical injury. The authors determined the frequency of hemochromatosis (HFE) gene mutations associated with hereditary hemochromatosis and their relationship with doxorubicin-associated cardiotoxicity in survivors of childhood high-risk acute lymphoblastic leukemia. METHODS Peripheral blood was tested for 2 common HFE allelic variants: C282Y and H63D. Serum cardiac troponin-T (cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP), which are biomarkers of cardiac injury and cardiomyopathy, respectively, were assayed during therapy. Left ventricular (LV) structure and function were assessed with echocardiography. RESULTS A total of 184 patients had DNA results for at least 1 variant, and 167 had DNA results for both: 24% carried H63D and 10% carried C282Y. Heterozygous C282Y genotype was associated with multiple elevations in cTnT concentrations (P = .039), but not NT-proBNP. At a median of 2.2 years (range, 1.0 years-3.6 years) after diagnosis, the mean Z-scores for LV fractional shortening (-0.71 [standard error (SE), 0.25]; P = .008), mass (-0.84 [SE, 0.17]; P < .001), and end-systolic (-4.36 [SE, 0.26], P < .001) and end-diastolic (-0.68 [SE, 0.25]; P = .01) posterior wall thickness were found to be abnormal in children with either allele (n = 32). Noncarriers (n = 63) also were found to have below-normal LV mass (-0.45 [SE, 0.15]; P = .006) and end-systolic posterior wall thickness (-4.06 [SE, 0.17]; P < .001). Later follow-up demonstrated similar results. CONCLUSIONS Doxorubicin-associated myocardial injury was associated with C282Y HFE carriers. Although LV mass and wall thickness were found to be abnormally low overall, they were even lower in HFE carriers, who also had reduced LV function. Screening newly diagnosed cancer patients for HFE mutations may identify those at risk for doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Steven E. Lipshultz
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | | | | | - Tracie L. Miller
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Steven D. Colan
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Mark D. Fleming
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stephen E. Sallan
- Boston Children's Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Vivian I. Franco
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Jacqueline M. Henkel
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | | | | | | | - Bruno Michon
- Centre Hospitalier Universitaire de Quebec Quebec City, QC, Canada
| | | | - Eric Larsen
- Maine Children's Cancer Program Portland, ME
| | | | - Lewis B. Silverman
- Boston Children's Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
18
|
Blake E, Allen J, Thorn C, Shore A, Curnow A. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy. Lasers Med Sci 2012; 28:997-1005. [DOI: 10.1007/s10103-012-1188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
19
|
Junjing Z, Yan Z, Baolu Z. Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr 2010; 47:238-45. [PMID: 21103033 PMCID: PMC2966934 DOI: 10.3164/jcbn.10-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/13/2010] [Indexed: 11/30/2022] Open
Abstract
Dexrazoxane (ICRF-187) has been clinically used to reduce doxorubicin-induced cardiotoxicity for more than 20 years. It has been proposed that dexrazoxane may act through its rings-opened hydrolysis product ADR-925, which can either remove iron from the iron-doxorubicin complex or bind to free iron, thus preventing iron-based oxygen radical formation. However, it is not known whether the antioxidant actions of dexrazoxane are totally dependent on its metabolization to its rings-opened hydrolysis product and whether dexrazoxane has any effect on the iron-independent oxygen free radical production. In this study, we examined the scavenging effect of dexrazoxane on hydroxyl, superoxide, lipid, DPPH and ABTS+ free radicals in vitro solution systems. The results demonstrated that dexrazoxane was an antioxidant that could effectively scavenge these free radicals and the scavenging effects of dexrazoxane did not require the enzymatic hydrolysis. In addition, dexrazoxane was capable to inhibit the generation superoxide and hydroxyl radicals in iron free reaction system, indicating that the antioxidant properties of dexrazoxane were not solely dependent on iron chelation. Thus the application of dexrazoxane should not be limited to doxorubicin-induced cardiotoxicity. Instead, as an effective antioxidant that has been clinically proven safe, dexrazoxane may be used in a broader spectrum of diseases that are known to be benefited by antioxidant treatments.
Collapse
Affiliation(s)
- Zhang Junjing
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Academia Sinica, Bejing 100101, China
| | | | | |
Collapse
|
20
|
Schroeder PE, Patel D, Hasinoff BB. The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metab Dispos 2008; 36:1780-5. [PMID: 18515330 DOI: 10.1124/dmd.108.021626] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dexrazoxane (ICRF-187) is clinically used as a doxorubicin cardioprotective agent and to prevent anthracycline extravasation injury. It may act by preventing iron-based oxygen free radical damage through the iron-chelating ability of its metabolite N,N'-[(1S)-1-methyl-1,2-ethanediyl]bis[(N-(2-amino-2-oxoethyl)]glycine (ADR-925). Dexrazoxane undergoes an initial metabolism to its two one-ring open intermediates [N-(2-amino-2-oxoethyl)-N-[(1S)-2-(3,5-dioxo-1-piperazinyl)-1-methylethyl]glycine (B) and N-(2-amino-2-oxoethyl)-N-[(2S)-2-(3,5-dioxo-1-piperazinyl)propyl]glycine (C)] and is then further metabolized to its presumably active metal-chelating form ADR-925. We previously showed that the first ring opening reaction is catalyzed by dihydropyrimidinase and the second by dihydroorotase (DHOase), but not vice versa. To determine whether DHOase was important in the metabolism of dexrazoxane, its metabolism and that of B and C to ADR-925 were measured in rats that were pretreated with the DHOase inhibitor 5-aminoorotic acid. In rats pretreated with 5-aminoorotic acid the area-under-the-curve concentration of ADR-925 was reduced 5.3-fold. In rats treated with a mixture of B and C, the maximum concentration of ADR-925 in the plasma was significantly decreased in rats pretreated with 5-aminoorotic acid, which indicates that DHOase directly metabolized B and C. Both heart and liver tissue levels of ADR-925 in rats were also greatly reduced by pretreatment with 5-aminoorotic acid. Together these results indicate that the metabolism of dexrazoxane and of B and C is mediated by DHOase. These results provide a mechanistic basis for the antioxidant cardioprotective activity of dexrazoxane.
Collapse
|
21
|
Kaiserová H, den Hartog GJM, Simůnek T, Schröterová L, Kvasnicková E, Bast A. Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. Br J Pharmacol 2006; 149:920-30. [PMID: 17031387 PMCID: PMC2014688 DOI: 10.1038/sj.bjp.0706930] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The anticancer drugs doxorubicin and bleomycin are well-known for their oxidative stress-mediated side effects in heart and lung, respectively. It is frequently suggested that iron is involved in doxorubicin and bleomycin toxicity. We set out to elucidate whether iron chelation prevents the oxidative stress-mediated toxicity of doxorubicin and bleomycin and whether it affects their antiproliferative/proapoptotic effects. EXPERIMENTAL APPROACH Cell culture experiments were performed in A549 cells. Formation of hydroxyl radicals was measured in vitro by electron paramagnetic resonance (EPR). We investigated interactions between five iron chelators and the oxidative stress-inducing agents (doxorubicin, bleomycin and H(2)O(2)) by quantifying oxidative stress and cellular damage as TBARS formation, glutathione (GSH) consumption and lactic dehydrogenase (LDH) leakage. The antitumour/proapoptotic effects of doxorubicin and bleomycin were assessed by cell proliferation and caspase-3 activity assay. KEY RESULTS All the tested chelators, except for monohydroxyethylrutoside (monoHER), prevented hydroxyl radical formation induced by H(2)O(2)/Fe(2+) in EPR studies. However, only salicylaldehyde isonicotinoyl hydrazone and deferoxamine protected intact A549 cells against H(2)O(2)/Fe(2+). Conversely, the chelators that decreased doxorubicin and bleomycin-induced oxidative stress and cellular damage (dexrazoxane, monoHER) were not able to protect against H(2)O(2)/Fe(2+). CONCLUSIONS AND IMPLICATIONS We have shown that the ability to chelate iron as such is not the sole determinant of a compound protecting against doxorubicin or bleomycin-induced cytotoxicity. Our data challenge the putative role of iron and hydroxyl radicals in the oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin and have implications for the development of new compounds to protects against this toxicity.
Collapse
Affiliation(s)
- H Kaiserová
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
Schroeder PE, Hasinoff BB. Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal-chelating form in the rat. Drug Metab Dispos 2005; 33:1367-72. [PMID: 15980099 DOI: 10.1124/dmd.105.005546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexrazoxane (ICRF-187) is clinically used as a doxorubicin cardioprotective agent and may act by preventing iron-based oxygen free radical damage through the iron-chelating ability of its fully hydrolyzed metabolite ADR-925 (N,N'-[(1S)-1-methyl-1,2-ethanediyl]-bis[(N-(2-amino-2-oxoethyl)]glycine). Dexrazoxane undergoes initial metabolism to its two one-ring open intermediates and is then further metabolized to its active metal ion-binding form ADR-925. The metabolism of these intermediates to the ring-opened metal-chelating product ADR-925 has been determined in a rat model to identify the mechanism by which dexrazoxane is activated. The plasma concentrations of both intermediates rapidly decreased after their i.v. administration to rats. A maximum concentration of ADR-925 was detected 2 min after i.v. bolus administration, indicating that these intermediates were both rapidly metabolized in vivo to ADR-925. The kinetics of the initial appearance of ADR-925 was consistent with formation rate-limited metabolism of the intermediates. After administration of dexrazoxane or its two intermediates, ADR-925 was detected in significant levels in both heart and liver tissue but was undetectable in brain tissue. The rapid rate of metabolism of the intermediates was consistent with their hydrolysis by tissue dihydroorotase. The rapid appearance of ADR-925 in plasma may make ADR-925 available to be taken up by heart tissue and bind free iron. These studies showed that the two one-ring open metabolites of dexrazoxane were rapidly metabolized in the rat to ADR-925, and thus, these results provide a mechanism by which dexrazoxane is activated to its active metal-binding form.
Collapse
|
23
|
Simůnek T, Klimtová I, Kaplanová J, Sterba M, Mazurová Y, Adamcová M, Hrdina R, Gersl V, Ponka P. Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. Pharmacol Res 2005; 51:223-31. [PMID: 15661572 DOI: 10.1016/j.phrs.2004.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 01/04/2023]
Abstract
Risk of cardiotoxicity is the most serious drawback of the clinical usefulness of anthracycline antineoplastic antibiotics, which however, remain among the most powerful and widely employed anticancer drugs. In this study we have used daunorubicin-induced cardiomyopathy in rabbits as a model to investigate possible cardioprotective effects of pyridoxal isonicotinoyl hydrazone (PIH)-a principal representative of a novel group of aroylhydrazone iron chelators. Three groups of animals were used: a control group (n=11; i.v. saline), daunorubicin-treated animals (n=11; 3mg/kg, i.v.), and animals pretreated with PIH (n=9, 25 mg/kg, i.p.) 60 min before daunorubicin administration. All substances were administered once weekly for 10 weeks. Repeated administration of daunorubicin caused premature death in four animals and induced conspicuous histopathological changes in the myocardium, progressive and significant impairment of systolic heart function (a decrease in left ventricular dP/dt(max), ejection fraction, an increase in the pre-ejection period/left ventricular ejection time index), and a gradual increase in cardiac troponin T plasma concentrations. On the contrary, all the PIH-treated animals have survived all daunorubicin applications. Furthermore, in this group, the daunorubicin-induced cardiac changes were in most functional, biochemical as well as morphological parameters less pronounced than in the group receiving daunorubicin alone. Hence, PIH and other aroylhydrazones merit further investigation as potentially protective agents against anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- T Simůnek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simůnek T, Sterba M, Holecková M, Kaplanová J, Klimtová I, Adamcová M, Gersl V, Hrdina R. Myocardial content of selected elements in experimental anthracycline-induced cardiomyopathy in rabbits. Biometals 2005; 18:163-9. [PMID: 15954742 DOI: 10.1007/s10534-004-4491-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cardiotoxicity represents the main drawback of clinical usefulness of anthracycline antineoplastic drugs. In this study, a content of selected elements (Ca, Mg, K, Se, Fe) in the post-mortem removed samples of the myocardial tissue was studied in three groups of rabbits: 1) control group (i.v. saline; n = 10); 2) daunorubicin-receiving animals (DAU; 3 mg/kg, i.v; n = 11); 3) animals receiving cardioprotective iron-chelating agent dexrazoxane (DEX; 60 mg/kg, i.p.; n = 5) prior to DAU. Drugs were administered once weekly for 10 weeks. 5-7 days after the last administration, cardiac left ventricular contractility (dP/dtmax) was significantly decreased in DAU-treated animals (745 +/- 69 versus 1245 +/- 86 kPa/s in the control group; P < 0.05), while in the DEX + DAU group it was insignificantly increased (1411 +/- 77 kPa/s). Of the myocardial elements' content studied, a significant increase in total Ca against control (16.2 +/- 2.4 versus 10.6 +/- 0.9 microg/g of dry tissue; P < 0.05) was determined in the DAU-group, which was accompanied with significant decreases in Mg and K. In the heart tissue of DEX-pretreated animals, no significant changes of elements' content were found as compared to controls, while the Ca content was in these animals significantly lower than in the DAU group (9.1 +/- 0.4 versus 16.2 +/- 2.4 microg/g; P < 0.05). Hence, in this study we show that systolic heart failure induced by chronic DAU administration is primarily accompanied by persistent calcium overload of cardiac tissue and the protective action of DEX is associated with the restoration of normal myocardial Ca content.
Collapse
Affiliation(s)
- Tomás Simůnek
- Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schroeder PE, Wang GQ, Burczynski FJ, Hasinoff BB. METABOLISM OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE AND ONE OF ITS METABOLITES BY ISOLATED RAT MYOCYTES, HEPATOCYTES, AND BLOOD. Drug Metab Dispos 2005; 33:719-25. [PMID: 15764716 DOI: 10.1124/dmd.104.003186] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The metabolism of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and one of its one-ring open metabolites to its active metal ion binding form N,N'-[(1S)-1-methyl-1,2-ethanediyl-]bis[(N-(2-amino-2-oxoethyl)]glycine (ADR-925) has been investigated in neonatal rat myocyte and adult rat hepatocyte suspensions, and in human and rat blood and plasma with a view to characterizing their hydrolysis-activation. Dexrazoxane is clinically used to reduce the iron-based oxygen free radical-mediated cardiotoxicity of the anticancer drug doxorubicin. Dexrazoxane may act through its hydrolysis product ADR-925 by removing iron from the iron-doxorubicin complex, or binding free iron, thus preventing oxygen radical formation. Our results indicate that dexrazoxane underwent partial uptake and/or hydrolysis by myocytes. A one-ring open metabolite of dexrazoxane underwent nearly complete dihydroorotase-catalyzed metabolism in a myocyte suspension. Hepatocytes that contain both dihydropyrimidinase and dihydroorotase completely hydrolyzed dexrazoxane to ADR-925 and released it into the extracellular medium. Thus, in hepatocytes, the two liver enzymes acted in concert, and sequentially, on dexrazoxane, first to produce the two ring-opened metabolites, and then to produce the metabolite ADR-925. We also showed that the hydrolysis of one of these metabolites was promoted by Ca2+ and Mg2+ in plasma, and thus, further metabolism of these intermediates likely occurs in the plasma after they are released from the liver and kidney. In conclusion, these studies provide a nearly complete description of the metabolism of dexrazoxane by myocytes and hepatocytes to its presumably active form, ADR-925.
Collapse
|
26
|
Hasinoff BB, Wu X, Yang Y. Synthesis and characterization of the biological activity of the cisplatin analogs, cis-PtCl2(dexrazoxane) and cis-PtCl2(levrazoxane), of the topoisomerase II inhibitors dexrazoxane (ICRF-187) and levrazoxane (ICRF-186). J Inorg Biochem 2004; 98:616-24. [PMID: 15041241 DOI: 10.1016/j.jinorgbio.2004.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/10/2004] [Accepted: 01/29/2004] [Indexed: 10/26/2022]
Abstract
The individual stereoisomers cis-PtCl(2)(dexrazoxane) and cis-PtCl(2)(levrazoxane) were synthesized and their structures were determined by X-ray crystallography. Dexrazoxane and levrazoxane inhibit cell growth because they are strong catalytic inhibitors of DNA topoisomerase II, whereas cisplatin acts through the formation of DNA cross-links. It was hypothesized that platinum(II) complexes of dexrazoxane and levrazoxane would retain both activities and yield drugs with a dual mode of action. Both cis-PtCl(2)(dexrazoxane) and cis-PtCl(2)(levrazoxane) inhibited Chinese hamster ovary cell growth, but more weakly than dexrazoxane and levrazoxane did. Based on their weak topoisomerase II inhibitory activity, it was concluded that these compounds did not inhibit cell growth by targeting topoisomerase II. A comparison of the conformation of cis-PtCl(2)(dexrazoxane) to that of dexrazoxane bound to the dimer interface of topoisomerase II showed that the highly constrained cis-PtCl(2)(dexrazoxane) was in a highly unfavorable conformation for binding. Neither of the platinum complexes were able to cross-link DNA. Thus the cell growth inhibitory activity of these complexes was also not likely due to any cisplatin-type cross-linking activity.
Collapse
Affiliation(s)
- Brian B Hasinoff
- Faculty of Pharmacy, University of Manitoba, 50 Sifton Road, Winnipeg, Man. Canada R3T 2N2.
| | | | | |
Collapse
|
27
|
Hasinoff BB, Patel D, Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med 2003; 35:1469-79. [PMID: 14642395 DOI: 10.1016/j.freeradbiomed.2003.08.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The oral iron chelating agent ICL670A (deferasirox) and the clinically approved cardioprotective agent dexrazoxane (ICRF-187) were compared for their ability to protect neonatal rat cardiac myocytes from doxorubicin-induced damage. Doxorubicin is thought to induce oxidative stress on the heart muscle through iron-mediated oxygen radical damage. While dexrazoxane was able to protect myocytes from doxorubicin-induced lactate dehydrogenase release, ICL670A, in contrast, depending upon the concentration, synergistically increased or did not affect the cytotoxicity of doxorubicin. This occurred in spite of the fact that ICL670A quickly and efficiently removed iron(III) from its complex with doxorubicin, and rapidly entered myocytes and displaced iron from a fluorescence-quenched trapped intracellular iron-calcein complex. Continuous exposure of ICL670A to either myocytes or Chinese hamster ovary (CHO) cells resulted in cytotoxicity while treatment of CHO cells with the ferric complex of ICL670A did not. These results suggest that ICL670A was cytotoxic either by removing or withholding iron from critical iron-containing proteins. Electron paramagnetic resonance spectroscopy was used to show that neither ICL670A nor its ferric complex were able to generate free radicals in either oxidizing or reducing systems suggesting that its cytotoxicity is not due to radical generation.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Animals, Newborn
- Antibiotics, Antineoplastic/pharmacology
- Antioxidants/pharmacology
- Benzoates/pharmacology
- CHO Cells
- Chelating Agents/pharmacology
- Cricetinae
- Deferasirox
- Dose-Response Relationship, Drug
- Doxorubicin/metabolism
- Doxorubicin/pharmacology
- Electron Spin Resonance Spectroscopy
- Free Radicals
- Image Processing, Computer-Assisted
- In Situ Nick-End Labeling
- Iron/chemistry
- Iron/metabolism
- Kinetics
- L-Lactate Dehydrogenase/metabolism
- Microscopy, Fluorescence
- Models, Chemical
- Muscle Cells/drug effects
- Myocytes, Cardiac/metabolism
- Oxidative Stress
- Oxygen/metabolism
- Rats
- Rats, Sprague-Dawley
- Spectrometry, Fluorescence
- Time Factors
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Brian B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
28
|
Rodriguez R, Santiago-Mejia J, Fuentes-Vargas M, San-Juan ER. Outstanding neuroprotective efficacy of dexrazoxane in mice subjected to sequential common carotid artery sectioning. Drug Dev Res 2003. [DOI: 10.1002/ddr.10330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Hasinoff BB, Schroeder PE, Patel D. The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Mol Pharmacol 2003; 64:670-8. [PMID: 12920203 DOI: 10.1124/mol.64.3.670] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The clinically approved cardioprotective agent dexrazoxane (ICRF-187) and two of its hydrolyzed metabolites (a one-ring open form of dexrazoxane and ADR-925) were examined for their ability to protect neonatal rat cardiac myocytes from doxorubicin-induced damage. Dexrazoxane may protect against doxorubicin-induced damage to myocytes through its strongly metal-chelating hydrolysis product ADR-925, which could act by displacing iron bound to doxorubicin or chelating free or loosely bound iron, thus preventing site-specific iron-based oxygen radical damage. The results of this study showed that whereas dexrazoxane was able to protect myocytes from doxorubicin-induced lactate dehydrogenase release, neither of the metabolites displayed any protective ability. Dexrazoxane also reduced apoptosis in doxorubicin-treated myocytes. The ability of dexrazoxane and its three metabolites to displace iron from a fluorescence-quenched trapped intracellular iron-calcein complex was also determined to see whether the metabolites were taken up by myocytes. Although ADR-925 was taken up in the absence of calcium in the medium, in the presence of calcium, its uptake was greatly slowed, presumably because it formed a complex with calcium. Both of the one-ring open metabolites were taken up by myocytes and displaced iron from its complex with calcein. These results suggest either that the anionic metabolites do not have the same access to iron pools in critical cellular compartments, that their uptake is slowed in the presence of calcium, or, less likely, that dexrazoxane protects by some other mechanism.
Collapse
Affiliation(s)
- Brian B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada.
| | | | | |
Collapse
|
30
|
Schroeder PE, Davidson JN, Hasinoff BB. Dihydroorotase catalyzes the ring opening of the hydrolysis intermediates of the cardioprotective drug dexrazoxane (ICRF-187). Drug Metab Dispos 2002; 30:1431-5. [PMID: 12433815 DOI: 10.1124/dmd.30.12.1431] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The enzyme kinetics of the hydrolysis of the one-ring open metabolites of the antioxidant cardioprotective agent dexrazoxane [ICRF-187; (+)-1,2-bis(3,5-dioxopiperazin-1-yl)propane] to its active metal ion binding form ADR-925 [N,N'-[(1S)-1-methyl-1,2-ethanediyl]bis[N-(2-amino-2-oxoethyl)glycine] by dihydroorotase (DHOase) has been investigated by high-performance liquid chromatography (HPLC). A spectrophotometric detection HPLC assay for dihydroorotate was also developed. Dexrazoxane is clinically used to reduce the iron-based oxygen free radical-mediated cardiotoxicity of the anticancer drug doxorubicin. DHOase was found to catalyze the ring opening of the metabolites with an apparent V(max) that was 11- and 27-fold greater than its natural substrate dihydroorotate. However, the apparent K(m) for the metabolites was 240- and 550-fold larger than for dihydroorotate. This report is the first that DHOase might be involved in the metabolism of a drug. Furosemide inhibited DHOase, but the neutral 4-chlorobenzenesulfonamide did not. Because dihydroorotate, the one-ring open metabolites, and furosemide all have a carboxylate group, it was concluded that a negative charge on the substrate strengthened binding to the positively charged active site. The presence of DHOase in the heart may explain the cardioprotective effect of dexrazoxane. Thus, dihydropyrimidinase and DHOase acting in succession on dexrazoxane and its metabolites to form ADR-925 provide a mechanism by which dexrazoxane is activated to exert its cardioprotective effects. The ADR-925 thus formed may either remove iron from the iron-doxorubicin complex, or bind free iron, thus preventing oxygen radical formation.
Collapse
|
31
|
Barnabé N, Zastre JA, Venkataram S, Hasinoff BB. Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radic Biol Med 2002; 33:266-75. [PMID: 12106822 DOI: 10.1016/s0891-5849(02)00873-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The iron chelating hydroxypyridinone deferiprone (CP20, L1) and the clinically approved cardioprotective agent dexrazoxane (ICRF-187) were examined for their ability to protect neonatal rat cardiac myocytes from doxorubicin-induced damage. Doxorubicin is thought to induce oxidative stress on the heart muscle, both through reductive activation to its semiquinone form, and by the production of hydroxyl radicals mediated by its complex with iron. The results of this study showed that both deferiprone and dexrazoxane were able to protect myocytes from doxorubicin-induced lactate dehydrogenase release. Deferiprone quickly and efficiently removed iron(III) from its complex with doxorubicin. In addition, this study also showed that deferiprone rapidly entered myocytes and displaced iron from a fluorescence-quenched trapped intracellular iron-calcein complex, suggesting that in the myocyte, deferiprone should also be able to displace iron from its complex with doxorubicin. It was shown by electron paramagnetic resonance spectroscopy that under hypoxic conditions myocytes were able to reduce doxorubicin to its semiquinone free radical. Deferiprone also greatly reduced hydroxyl radical production by the iron(III)-doxorubicin complex in the xanthine oxidase/xanthine superoxide generating system. Together these results suggest that deferiprone may protect against doxorubicin-induced damage to myocytes by displacing iron bound to doxorubicin, or chelating free or loosely bound iron, thus preventing site-specific iron-based oxygen radical damage.
Collapse
Affiliation(s)
- Norman Barnabé
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
32
|
Saadane N, Yue P, Alpert L, Mitmaker B, Kirby GM, Chalifour LE. Diminished molecular response to doxorubicin and loss of cardioprotective effect of dexrazoxane inEgr-1deficient female mice. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) and VP16 are DNA topoisomerase II inhibitors yet only DOX induces an irreversible cardiotoxicity, likely through DOX-induced oxidative stress. Egr-1 is overexpressed after many stimuli that increase oxidative stress in vitro and after DOX-injection into adult mice in vivo. To investigate Egr-1 function in the heart, we compared the molecular and histological responses of wild type (+/+) and Egr-1 deficient (/) female mice to saline, DOX, VP16, the cardioprotectant dexrazoxane (DZR), or DOX+DZR injection. DOX, and to a lesser extent VP16, induced characteristic increases in cardiac muscle and non-muscle genes typical of cardiac damage in +/+ mice, whereas only β-MHC and Sp1 were increased in / mice. DZR-alone treated +/+ mice showed increased cardiomyocyte transnuclear width without a change to the heart to body weight (HW/BW) ratio. However, DZR-alone treated / mice had an increased HW/BW, increased cardiomyocyte transnuclear width, and gene expression changes similar to DOX-injected +/+ mice. DZR pre-injection alleviated DOX-induced gene changes in +/+ mice; in DZR+DOX injected / mice the increases in cardiac and non-muscle gene expression were equal to, or exceeded that, detected after DOX-alone or DZR-alone injections. We conclude that Egr-1 is required for DOX-induced molecular changes and for DZR-mediated cardioprotection.Key words: mice, gene expression, doxorubicin, DNA topoisomerase II inhibitors, cardioprotection.
Collapse
|
33
|
Kwok JC, Richardson DR. The cardioprotective effect of the iron chelator dexrazoxane (ICRF-187) on anthracycline-mediated cardiotoxicity. Redox Rep 2001; 5:317-24. [PMID: 11140743 DOI: 10.1179/135100000101535898] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The cardiotoxic effect of anthracyclines limits their use in the treatment of a variety of cancers. The reason for the high susceptibility of cardiac muscle to anthracyclines remains unclear, but it appears to be due, at least in part, to the interaction of these drugs with intracellular iron (Fe). The suggestion that Fe plays an important role in anthracycline cardiotoxicity has been strengthened by observation that the chelator, dexrazoxane (ICRF-187), has a potent cardioprotective effect. In the present review, the role of Fe in the cardiotoxicity of anthracyclines is discussed together with the possible role of Fe chelation therapy as a cardioprotective strategy that may also result in enhanced antitumour activity.
Collapse
Affiliation(s)
- J C Kwok
- The Iron Metabolism and Chelation Group, The Heart Research Institute, Sydney, New South Wales, Australia
| | | |
Collapse
|
34
|
Langer SW, Sehested M, Jensen PB. Dexrazoxane is a potent and specific inhibitor of anthracycline induced subcutaneous lesions in mice. Ann Oncol 2001; 12:405-10. [PMID: 11332155 DOI: 10.1023/a:1011163823321] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recently, we have shown that dexrazoxane (ICRF-187) is an effective antidote against accidental extravasation of anthracyclines. Thus, it inhibits the lesions induced by subcutaneous (s.c.) daunorubicin, idarubicin, and doxorubicin in mice and has proven to be successful clinically as well. Dexrazoxane is a potent metal ion chelator as well as being a catalytic inhibitor of DNA topoisomerase II. However, the mechanism behind the protection against anthracycline extravasation is not known. MATERIALS AND METHODS Mice were injected s.c. with daunorubicin or doxorubicin. Systemic N-acetylcysteine, alfa-tocoferol, amifostine, merbarone, aclarubicin, ADR-925, and EDTA were administered i.p. immediately hereafter or as a triple-treatment over six hours. Intralesional (i.l.) adjuvants were injected immediately after and into the same area as the anthracycline. The frequency, duration, and sizes of wounds were observed until complete healing of all wounds. RESULTS Triple-treatment with systemic dexrazoxane was superior to single dosage and completely prevented lesions after s.c. daunorubicin and doxorubicin. Low-dose i.l. dexrazoxane was effective in protecting as well. In contrast, none of the other seven adjuvants was effective. Protection was not achieved with local cooling, however, topical ice did not impair the efficacy of dexrazoxane. CONCLUSIONS Dexrazoxane is extremely effective and apparently quite specific in protecting against lesions after s.c. doxorubicin and daunorubicin.
Collapse
Affiliation(s)
- S W Langer
- Laboratory of Experimental Medical Oncology, Finsen Center, Copenhagen University Hospital, Denmark.
| | | | | |
Collapse
|
35
|
Rodriguez R, Gerson R, Santiago-Mejia J. Dexrazoxane-induced reduction in mortality in mice subjected to severe forebrain ischemia. Drug Dev Res 2001. [DOI: 10.1002/1098-2299(200011)51:3<149::aid-ddr2>3.0.co;2-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Diop NK, Vitellaro LK, Arnold P, Shang M, Marusak RA. Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: solid state structure, solution thermodynamics, and DNA cleavage activity. J Inorg Biochem 2000; 78:209-16. [PMID: 10805177 DOI: 10.1016/s0162-0134(00)00013-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigates the solution thermodynamics of the iron complexes of dexrazoxane (ICRF-187, (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane), [Fe(ADR-925)](+/0), and its desmethyl derivative ICRF-154, [Fe(ICRF-247)H2O](+/0). The solid state structure of [Fe(ICRF-247)H2O]+ is also reported. [Fe(ICRF-247)H2O]Br x 0.5NaBr x H2O crystallizes in the P42(1)2 space group with Z = 4, a = 14.9851(8), b = 14.9851(8), c = 8.0825(9) A and R = 0.03(2) for 1839 reflections and exhibits a pentagonal bipyramidal geometry with a labile water molecule occupying the seventh coordination site. Potentiometric titrations (FeL = 8.5 mM, 0.1 M NaNO3, 25 degrees C) reveal stable monomeric complexes (log Kf = 18.2 +/- 0.1, [Fe(ADR-925)]+, and 17.4 +/- 0.1, [Fe(ICRF-247)H2O]+) exist in solution at relatively low pH. Upon addition of base, the iron-bound water is deprotonated; the pKa values for [Fe(ICRF-247)H2O]+ and [Fe(ADR-925)]+ are 5.63 +/- 0.07 and 5.84 +/- 0.07, respectively. At higher pH both complexes undergo mu-oxo dimerization characterized by log Kd values of 2.68 +/- 0.07 for [Fe(ICRF-247)H2O]+ and 2.23 +/- 0.07 for [Fe(ADR-925)]+. In the presence of an oxidant and reductant, both [Fe(ICRF-247)H2O]+ and [Fe(ADR-925)]+ produce hydroxyl radicals that cleave pBR322 plasmid DNA at pH 7 in a metal complex concentration-dependent manner. At low metal complex concentrations (approximately 10(-5) M) where the monomeric form predominates, cleavage by both FeICRF complexes is efficient while at higher concentrations (approximately 5 x 10(-4) M) DNA cleavage is hindered. This change in reactivity is in part accounted for by dimer formation.
Collapse
Affiliation(s)
- N K Diop
- Department of Chemistry, Kenyon College, Gambier, OH 43022, USA
| | | | | | | | | |
Collapse
|
37
|
Hasinoff BB, Tran KT. The displacement of iron(III) from its complexes with the anticancer drugs piroxantrone and losoxantrone by the hydrolyzed form of the cardioprotective agent dexrazoxane. J Inorg Biochem 1999; 77:257-9. [PMID: 10643663 DOI: 10.1016/s0162-0134(99)00194-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Piroxantrone and losoxantrone are new DNA topoisomerase II-targeting anthrapyrazole antitumor agents that display cardiotoxicity both clinically and in animal models. A study was undertaken to see whether dexrazoxane or its hydrolysis product ADR-925 could remove iron(III) from its complexes with piroxantrone or losoxantrone. Their cardiotoxicity may result from the formation of iron(III) complexes of losoxantrone and piroxantrone. Subsequent reductive activation of their iron(III) complexes likely results in oxygen-free radical-mediated cardiotoxicity. Dexrazoxane is in clinical use as a doxorubicin cardioprotective agent. Dexrazoxane presumably acts through its hydrolyzed metal ion binding form ADR-925 by removing iron(III) from its complex with doxorubicin, or by scavenging free iron(III), thus preventing oxygen-free radical-based oxidative damage to the heart tissue. ADR-925 was able to remove iron(III) from its complexes with piroxantrone and losoxantrone, though not as efficiently or as quickly as it could from its complexes with doxorubicin and other anthracyclines. This study provides a basis for utilizing dexrazoxane for the clinical prevention of anthrapyrazole cardiotoxicity.
Collapse
Affiliation(s)
- B B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
38
|
Sawyer DB, Fukazawa R, Arstall MA, Kelly RA. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 1999; 84:257-65. [PMID: 10024299 DOI: 10.1161/01.res.84.3.257] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
-The clinical efficacy of anthracycline antineoplastic agents is limited by a high incidence of severe and usually irreversible cardiac toxicity, the cause of which remains controversial. In primary cultures of neonatal and adult rat ventricular myocytes, we found that daunorubicin, at concentrations </=1 micromol/L, induced myocyte programmed cell death within 24 hours, as defined by several complementary techniques. In contrast, daunorubicin concentrations >/=10 micromol/L induced necrotic cell death within 24 hours, with no changes characteristic of apoptosis. To determine whether reactive oxygen species play a role in daunorubicin-mediated apoptosis, we monitored the generation of hydrogen peroxide with dichlorofluorescein (DCF). However, daunorubicin (1 micromol/L) did not increase DCF fluorescence, nor were the antioxidants N-acetylcysteine or the combination of alpha-tocopherol and ascorbic acid able to prevent apoptosis. In contrast, dexrazoxane (10 micromol/L), known clinically to limit anthracycline cardiac toxicity, prevented daunorubicin-induced myocyte apoptosis, but not necrosis induced by higher anthracycline concentrations (>/=10 micromol/L). The antiapoptotic action of dexrazoxane was mimicked by the superoxide-dismutase mimetic porphyrin manganese(II/III)tetrakis(1-methyl-4-peridyl)porphyrin (50 micromol/L). The recognition that anthracycline-induced cardiac myocyte apoptosis, perhaps mediated by superoxide anion generation, occurs at concentrations well below those that result in myocyte necrosis, may aid in the design of new therapeutic strategies to limit the toxicity of these drugs.
Collapse
Affiliation(s)
- D B Sawyer
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
39
|
MINOTTI GIORGIO, CAIRO GAETANO, MONTI ELENA. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 1999. [DOI: 10.1096/fasebj.13.2.199] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- GIORGIO MINOTTI
- Department of Pharmacology and PharmacognosyG. D'Annunzio University School of Pharmacy Chieti
| | - GAETANO CAIRO
- Department of General PathologyUniversity of Milan School of Medicine Milan
| | - ELENA MONTI
- Department of Structural and Functional BiologyUniversity of Insubria School of Sciences Varese Italy
| |
Collapse
|
40
|
Loyevsky M, Sacci JB, Boehme P, Weglicki W, John C, Gordeuk VR. Plasmodium falciparum and Plasmodium yoelii: effect of the iron chelation prodrug dexrazoxane on in vitro cultures. Exp Parasitol 1999; 91:105-14. [PMID: 9990337 DOI: 10.1006/expr.1998.4371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine if an iron-chelating prodrug that must undergo intracellular hydrolysis to bind iron has antimalarial activity, we examined the action of dexrazoxane on Plasmodium falciparum cultured in human erythrocytes and P. yoelii cultured in mouse hepatocytes. Dexrazoxane was recently approved to protect humans from doxorubucin-induced cardiotoxicity. Using the fluorescent marker calcein, we confirmed that the iron-chelating properties of dexrazoxane are directly related to its ability to undergo hydrolysis. As a single agent, dexrazoxane inhibited synchronized cultures of P. falciparum in human erythrocytes only at suprapharmacologic concentrations (> 200 microM). In combination with desferrioxamine B, dexrazoxane in pharmacologic concentrations (100-200 microM) moderately potentiated inhibition by approximately 20%. In contrast, pharmacologic concentrations of dexrazoxane (50-200 microM) as a single agent inhibited the progression of P. yoelli from sporozoites to schizonts in cultured mouse hepatocytes by 45 to 69% (P < 0.001). These results are consistent with the presence of a dexrazoxane-hydrolyzing enzyme in hepatocytes but not in erythrocytes or malaria parasites. Furthermore, these findings suggest that dexrazoxane must be hydrolyzed to an iron-chelating intermediate before it can inhibit the malaria parasite, and they raise the possibility that the iron chelator prodrug concept might be exploited to synthesize new antimalarial agents.
Collapse
Affiliation(s)
- M Loyevsky
- George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Wiseman LR, Spencer CM. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracycline-based chemotherapy. Drugs 1998; 56:385-403. [PMID: 9777314 DOI: 10.2165/00003495-199856030-00009] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
UNLABELLED Dexrazoxane has been used successfully to reduce cardiac toxicity in patients receiving anthracycline-based chemotherapy for cancer (predominantly women with advanced breast cancer). The drug is thought to reduce the cardiotoxic effects of anthracyclines by binding to free and bound iron, thereby reducing the formation of anthracycline-iron complexes and the subsequent generation of reactive oxygen species which are toxic to surrounding cardiac tissue. Clinical trials in women with advanced breast cancer have found that patients given dexrazoxane (about 30 minutes prior to anthracycline therapy; dexrazoxane to doxorubicin dosage ratio 20:1 or 10:1) have a significantly lower overall incidence of cardiac events than placebo recipients (14 or 15% vs 31%) when the drug is initiated at the same time as doxorubicin. Cardiac events included congestive heart failure (CHF), a significant reduction in left ventricular ejection fraction and/or a > or = 2-point increase in the Billingham biopsy score. These results are supported by the findings of studies which used control groups (patients who received only chemotherapy) for comparison. The drug appears to offer cardiac protection irrespective of pre-existing cardiac risk factors. In addition, cardiac protection has been shown in patients given the drug after receiving a cumulative doxorubicin dose > or = 300 mg/m2. It remains to be confirmed that dexrazoxane does not affect the antitumour activity of doxorubicin: although most studies found that clinical end-points (including tumour response rates, time to disease progression and survival duration) did not differ significantly between treatment groups, the largest study did show a significant reduction in response rates in dexrazoxane versus placebo recipients. Dexrazoxane permits the administration of doxorubicin beyond standard cumulative doses; however, it is unclear whether this will translate into prolonged survival. Preliminary results (from small nonblind studies) indicate that dexrazoxane reduces cardiac toxicity in children and adolescents receiving anthracycline-based therapy for a range of malignancies. The long term benefits with regard to prevention of late-onset cardiac toxicity remain unclear. With the exception of severe leucopenia [Eastern Cooperative Oncology Group (ECOG) grade 3/4 toxicity], the incidence of haematological and nonhaematological adverse events appears similar in patients given dexrazoxane to that in placebo recipients undergoing anthracycline-based chemotherapy. Although preliminary pharmacoeconomic analyses have shown dexrazoxane to be a cost-effective agent in women with advanced breast cancer, they require confirmation. CONCLUSIONS Dexrazoxane is a valuable drug for protecting against cardiac toxicity in patients receiving anthracycline-based chemotherapy. Whether it offers protection against late-onset cardiac toxicity in patients who received anthracycline-based chemotherapy in childhood or adolescence remains to be determined. Further clinical experience is required to confirm that it does not adversely affect clinical outcome, that it is a cost-effective option, and to determine the optimal treatment regimen.
Collapse
Affiliation(s)
- L R Wiseman
- Adis International Limited, Auckland, New Zealand.
| | | |
Collapse
|
42
|
Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C, Preziosi P, Cairo G. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 1998; 12:541-52. [PMID: 9576481 DOI: 10.1096/fasebj.12.7.541] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anticancer therapy with doxorubicin (DOX) is limited by severe cardiotoxicity, presumably reflecting the intramyocardial formation of drug metabolites that alter cell constituents and functions. In a previous study, we showed that NADPH-supplemented cytosolic fractions from human myocardial samples can enzymatically reduce a carbonyl group in the side chain of DOX, yielding a secondary alcohol metabolite called doxorubicinol (DOXol). Here we demonstrate that DOXol delocalizes low molecular weight Fe(II) from the [4Fe-4S] cluster of cytoplasmic aconitase. Iron delocalization proceeds through the reoxidation of DOXol to DOX and liberates DOX-Fe(II) complexes as ultimate by-products. Under physiologic conditions, cluster disassembly abolishes aconitase activity and forms an apoprotein that binds to mRNAs, coordinately increasing the synthesis of transferrin receptor but decreasing that of ferritin. Aconitase is thus converted into an iron regulatory protein-1 (IRP-1) that causes iron uptake to prevail over sequestration, forming a pool of free iron that is used for metabolic functions. Conversely, cluster reassembly converts IRP-1 back to aconitase, providing a regulatory mechanism to decrease free iron when it exceeds metabolic requirements. In contrast to these physiologic mechanisms, DOXol-dependent iron release and cluster disassembly not only abolish aconitase activity, but also affect irreversibly the ability of the apoprotein to function as IRP-1 or to reincorporate iron within new Fe-S motifs. This damage is mediated by DOX-Fe(II) complexes and reflects oxidative modifications of -SH residues having the dual role to coordinate cluster assembly and facilitate interactions of IRP-1 with mRNAs. Collectively, these findings describe a novel mechanism of cardiotoxicity, suggesting that intramyocardial formation of DOXol may perturb the homeostatic processes associated with cluster assembly or disassembly and the reversible switch between aconitase and IRP-1. These results may also provide a guideline to design new drugs that mitigate the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- G Minotti
- Department of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hasinoff BB, Creighton AM, Kozlowska H, Thampatty P, Allan WP, Yalowich JC. Mitindomide is a catalytic inhibitor of DNA topoisomerase II that acts at the bisdioxopiperazine binding site. Mol Pharmacol 1997; 52:839-45. [PMID: 9351975 DOI: 10.1124/mol.52.5.839] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The antitumor drug mitindomide (NSC 284356) was shown to inhibit the decatenation activity of human and Chinese hamster ovary (CHO) topoisomerase II [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.1]. Mitindomide did not induce the formation of topoisomerase II-DNA covalent cleavable complexes in CHO cells. These results taken together indicate that mitindomide is a catalytic/noncleavable complex-forming-type inhibitor of topoisomerase II. The growth inhibitory effects of mitindomide and dexrazoxane toward a sensitive parent CHO cell line and the dexrazoxane-resistant DZR cell line, which is highly (500-fold) resistant to the bisdioxopiperazine dexrazoxane, were measured. The DZR cell line was shown to be 30-fold cross-resistant to mitindomide. Mitindomide, like dexrazoxane, was shown to inhibit cleavable complex formation by the topoisomerase II poison etoposide. The attenuated inhibition of etoposide-induced cleavable complexes in DZR compared with CHO cells was, likewise, very similar for dexrazoxane and mitindomide. Together these results suggest that mitindomide acts at the same site on topoisomerase II as does dexrazoxane and other bisdioxopiperazines. Various molecular parameters obtained by molecular modeling were compared for mitindomide and dexrazoxane. Mitindomide, which is conformationally very rigid, has highly coplanar imide rings, as does dexrazoxane in the solid state. Other molecular parameters, such as the imide nitrogen-to-imide nitrogen bond distances, and polar and nonpolar surface areas were also very similar. Thus, it is concluded that mitindomide exerts its antitumor effects through its inhibition of topoisomerase II by binding to the bisdioxopiperazine binding site.
Collapse
Affiliation(s)
- B B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | | | | | | | | | | |
Collapse
|
44
|
Buss JL, Hasinoff BB. Metal ion-promoted hydrolysis of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and its one-ring open hydrolysis products to its metal-chelating active form. J Inorg Biochem 1997. [DOI: 10.1016/s0162-0134(97)00080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Dickens M, Rajgarhia V, Woo A, Priestley N. Anthracyclines. DRUGS AND THE PHARMACEUTICAL SCIENCES 1997. [DOI: 10.1201/b14856-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Hasinoff BB, Kuschak TI, Creighton AM, Fattman CL, Allan WP, Thampatty P, Yalowich JC. Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochem Pharmacol 1997; 53:1843-53. [PMID: 9256159 DOI: 10.1016/s0006-2952(97)00013-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Chinese hamster ovary (CHO) cell line highly resistant to the non-cleavable complex-forming topoisomerase II inhibitor dexrazoxane (ICRF-187, Zinecard) was selected. The resistant cell line (DZR) was 1500-fold resistant (IC50 = 2800 vs 1.8 microM) to continuous dexrazoxane exposure. DZR cells were also cross-resistant (8- to 500-fold) to other bisdioxopiperazines (ICRF-193, ICRF-154, and ICRF-186), and somewhat cross-resistant (4- to 14-fold) to anthracyclines (daunorubicin, doxorubicin, epirubicin, and idarubicin) and etoposide (8.5-fold), but not to the other non-cleavable complex-forming topoisomerase II inhibitors suramin and merbarone. The cytotoxicity of dexrazoxane to both cell lines was unchanged in the presence of the membrane-active agent verapamil. DZR cells were 9-fold resistant to dexrazoxane-mediated inhibition of topoisomerase II DNA decatenation activity compared with CHO cells (IC50 = 400 vs 45 microM), but were only 1.4-fold (IC50 = 110 vs 83 microM) resistant to etoposide. DZR cells contained one-half the level of topoisomerase II protein compared with parental CHO cells. However, the specific activity for decatenation using nuclear extract topoisomerase II was unchanged. Etoposide (100 microM)-induced topoisomerase II-DNA complexes in DZR cells and isolated nuclei were similarly one-half the level found in CHO cells and in isolated nuclei. However, the ability of 500 microM dexrazoxane to inhibit etoposide (100 microM)-induced topoisomerase II-DNA covalent complexes was reduced 4- to 6-fold in both DZR cells and nuclei compared with CHO cells and nuclei. In contrast, there was no differential ability of aclarubicin or merbarone to inhibit etoposide-induced topoisomerase II-DNA complexes in CHO compared with DZR cells and isolated nuclei. It was concluded that the DZR cell line acquired its resistance to dexrazoxane mainly through an alteration in the topoisomerase II target.
Collapse
Affiliation(s)
- B B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- S Beare
- National Cancer Institute of Canada, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
48
|
Malisza KL, Hasinoff BB. Inhibition of anthracycline semiquinone formation by ICRF-187 (dexrazoxane) in cells. Free Radic Biol Med 1996; 20:905-14. [PMID: 8743977 DOI: 10.1016/0891-5849(95)02188-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The formation of semiquinone free radicals of doxorubicin, epirubicin, daunorubicin, and idarubicin was measured by electron paramagnetic resonance (EPR) spectroscopy in hypoxic suspensions of chinese hamster ovary (CHO) cells. The amount of semiquinone produced was in the order idarubicin >> doxorubicin > daunorubicin > epirubicin. The idarubicin semiquinone signal was both the fastest to be formed and to decay. Idarubicin, which was the most lipophilic of the anthracyclines studied, also displayed the fastest fluorescence-measured cellular uptake of drug. Thus, it was concluded that semiquinone formation was dependent upon the rate of cellular uptake. Lysed cell suspensions were also shown to be capable of producing the doxorubicin semiquinone in the presence of added NADPH. The cardioprotective agent dexrazoxane (ICRF-187) was observed to decrease the amount of doxorubicin semiquinone observed in cell suspensions. Dexrazoxane also decreased the amount of doxorubicin semiquinone observed in the NADPH-lysed cell suspension mixture. Neither bipyridine nor deferoxamine decreased NADPH-dependent doxorubicin semiquinone formation. These results suggest that dexrazoxane does not decrease doxorubicin semiquinone formation through an iron complex formed from hydrolyzed dexrazoxane. Dexrazoxane may be inhibiting an NADPH-dependent enzyme.
Collapse
Affiliation(s)
- K L Malisza
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
49
|
Hasinoff BB, Kuschak TI, Yalowich JC, Creighton AM. A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochem Pharmacol 1995; 50:953-8. [PMID: 7575679 DOI: 10.1016/0006-2952(95)00218-o] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of twelve structurally related bisdioxopiperazines that included ICRF-187 (dexrazoxane), ICRF-159 (razoxane), ICRF-193, and ICRF-154 were examined both for their ability to inhibit the growth of Chinese hamster ovary (CHO) cells and their ability to inhibit the catalytic activity of mammalian DNA topoisomerase II. The bisdioxopiperazines exhibited a wide range in both growth inhibitory effects (30,000-fold), and in their ability to inhibit the catalytic activity of topoisomerase II (150-fold). The cytotoxicity of the bisdioxopiperazines toward CHO cells was highly correlated (correlation coefficient r = 0.86, P = 0.0003) with their inhibition of the catalytic activity of DNA topoisomerase II. This result strongly suggests that DNA topoisomerase II is the functional target of the bisdioxopiperazines. The stereoisomers (+)-ICRF-187 and (-)-ICRF-186 were observed to be equally cytotoxic and equally inhibitory toward DNA topoisomerase II. This result indicates that the bisdioxopiperazine binding site on DNA topoisomerase II is large enough or flexible enough to accommodate either form of the drug. The strongly metal-ion binding fully rings-opened hydrolysis product of ICRF-187, ADR-925, demonstrated no measurable inhibitory activity toward DNA topoisomerase II or cytotoxicity toward CHO cells.
Collapse
Affiliation(s)
- B B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
50
|
Hasinoff BB, Venkataram S, Singh M, Kuschak TI. Metabolism of the cardioprotective agents dexrazoxane (ICRF-187) and levrazoxane (ICRF-186) by the isolated hepatocyte. Xenobiotica 1994; 24:977-87. [PMID: 7900413 DOI: 10.3109/00498259409043295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. The metabolism of dexrazoxane (ICRF-187) and its optical isomer levrazoxane (ICRF-186) by the isolated rat hepatocyte was studied by hplc. 2. 4-Chlorobenzenesulphonamide, which is a strong inhibitor of dihydropyrimidine amidohydrolase (DHPase), caused 82% inhibition of the loss of dexrazoxane from the hepatocyte suspension. 3. Dexrazoxane was metabolized at an initial rate by isolated hepatocytes that was 1.8 times faster than levrazoxane. This ratio is close to that found for purified DHPase, suggesting that DHPase present in the hepatocyte catalyses the ring-opening hydrolysis of these drugs. 4. The ratios of the rates at which each of the one-ring open intermediates of dexrazoxane and levrazoxane were produced in the hepatocyte suspension are also consistent with DHPase being primarily responsible for the metabolism of dexrazoxane and levrazoxane. 5. Thus, the DHPase-catalysed formation of the one-ring opened intermediates enhances the rate at which the presumably active metal-ion binding forms of dexrazoxane are produced in the hepatocyte. 6. The DHPase content of the hepatocyte was estimated to be 1.2 nmol/kg of total hepatocyte mass, or equivalently 5700 molecules of DHPase per hepatocyte.
Collapse
Affiliation(s)
- B B Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|