1
|
Touhami D, Mofikoya AO, Girling RD, Langford B, Misztal PK, Pfrang C. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products. J Chem Ecol 2024; 50:129-142. [PMID: 38195852 PMCID: PMC11043181 DOI: 10.1007/s10886-023-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-β-ocimene, isomers of α and β-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.
Collapse
Affiliation(s)
- Dalila Touhami
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK
| | - Adedayo O Mofikoya
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK.
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Ben Langford
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
| | - Pawel K Misztal
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christian Pfrang
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK.
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Castro-Vargas C, Pandey G, Yeap HL, Lacey MJ, Lee SF, Park SJ, Taylor PW, Oakeshott JG. Diversity and sex differences in rectal gland volatiles of Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). PLoS One 2022; 17:e0273210. [PMID: 36001616 PMCID: PMC9401129 DOI: 10.1371/journal.pone.0273210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Rectal gland volatiles are key mediators of sexual interactions in tephritid fruit flies. We used solid-phase microextraction (SPME) plus gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) to substantially expand rectal gland chemical characterisation of the Queensland fruit fly (Bactrocera tryoni (Diptera: Tephritidae); Qfly). The SPME GC-MS analysis identified 24 of the 30 compounds previously recorded from Qfly rectal glands, plus another 21 compounds that had not previously been reported. A few amides and fatty acid esters dominated the chromatograms of males and females respectively, but we also found other esters, alcohols and aldehydes and a ketone. The GC-FID analyses also revealed over 150 others, as yet unidentified, volatiles, generally in lesser amounts. The GC-FID analyses also showed 49 and 12 compounds were male- and female-specific, respectively, both in single sex (virgin) and mixed sex (mostly mated) groups. Another ten compounds were male-specific among virgins but undetected in mixed sex groups, and 29 were undetected in virgins but male-specific in mixed sex groups. The corresponding figures for females were four and zero, respectively. Most short retention time peaks (including a ketone and an ester) were male-specific, whereas most female-biased peaks (including five fatty acid esters) had long retention times. Our results indicate previously unsuspected diversity of rectal gland volatiles that might have pheromone functions in males, but far fewer in females.
Collapse
Affiliation(s)
- Cynthia Castro-Vargas
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Gunjan Pandey
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail:
| | - Heng Lin Yeap
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Michael J. Lacey
- National Collections and Marine Infrastructure, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT, Australia
| | - Siu Fai Lee
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Soo J. Park
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - John G. Oakeshott
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
3
|
Biogenesis of spiroketals by submerged cultured basidiomycete Trametes hirsuta. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractVolatile spiroketals are well-documented semiochemicals secreted by beetles and wasps for the intra- and interspecies communication. Its use in insect traps and as natural herbicide makes them of commercial interest. Besides insects, fungi are well-known producers, but the fungal biogenesis of spiroketals has remained speculative. Product formation along fatty acid degradation based on non-labeled feeding experiments was assumed. Thus, the observed occurrence of conophthorin and (E)- and (Z)-chalcograns in submerged cultures of the basidiomycete Trametes hirsuta prompted a precursor study aiming at a more detailed insight into their formation. Supplementation of (9Z,12 Z)-octadecadienoic (linoleic) acid resulted in elevated product yields and the identification of a fourth spiroketal, 2,8-dimethyl-1,7-dioxaspiro[5.5]-undecane. However, no intermediates of fatty acid degradation suitable as spiroketal precursors were identified. In addition, the hyphae lacked lipoxygenase activity, which was formerly supposed to be mandatory for spiroketal formation. Supplementation of 1-/2-13C acetate showed incorporation of the label into chalcogran. Therefore, a formation along the polyketide pathway analogous to insects was concluded.
Graphical abstract
Collapse
|
4
|
Sun Y, Dai L, Kang X, Fu D, Gao H, Chen H. Isolation and expression of five genes in the mevalonate pathway of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21760. [PMID: 33231898 DOI: 10.1002/arch.21760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.
Collapse
Affiliation(s)
- Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaotong Kang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Audley JP, Bostock RM, Seybold SJ. Trap Assays of the Walnut Twig Beetle, Pityophthorus juglandis Blackman (Coleoptera: Curculionidae: Scolytinae), Reveal an Effective Semiochemical Repellent Combination. J Chem Ecol 2020; 46:1047-1058. [PMID: 33106973 DOI: 10.1007/s10886-020-01228-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023]
Abstract
Thousand cankers disease (TCD), is an invasive insect-disease complex caused by the walnut twig beetle, Pityophthorus juglandis, and fungal pathogen, Geosmithia morbida. Semiochemical interruption is a viable option for protecting walnut trees from P. juglandis attack. The goal of this study was to test beetle responses to potential repellent compounds. The results of five, flight-intercept assays are reported. Assays 1-3 tested four compounds at variable release rates: (S)-(-)-verbenone, (R)-(+)-verbenone, racemic chalcogran, and racemic trans-conophthorin. Trapping results indicated that the highest release rate tested for each compound was the most effective in reducing the number of beetles caught. (S)-(-)-Verbenone was the least effective, reducing P. juglandis trap catches by 66%. (R)-(+)-Verbenone reduced the number of P. juglandis by 84%. Neither enantiomer of verbenone performed as well as chalcogran or trans-conophthorin, which both reduced the number of beetles caught by ca. 98%. Following individual assays, the most effective compounds were tested in subtractive-combination assays. Combinations of high release rates for (R)-(+)-verbenone, trans-conophthorin, and two stereoisomers of limonene (tested in a previous study) were tested in two assays. The subtractive-combination assays were inconclusive in that trap catches were similar across all treatments. All combination treatments were highly effective, achieving approximately 99% reduction in the number of beetles caught. Based on the trapping results, commercial availability, and cost of the semiochemicals tested, we conclude that a combination of (R)-(+)-limonene, trans-conophthorin, and (R)-(+)-verbenone constitutes an effective tool for reducing P. juglandis trap catches.
Collapse
Affiliation(s)
- Jackson P Audley
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA.
| | - Richard M Bostock
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Steven J Seybold
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
| |
Collapse
|
6
|
Iovinella I, Pierattini EC, Bedini S, Dani FR, Guarino S, Lucchi A, Giannotti P, Cuzzupoli G, Girardi J, Conti B. Semiochemicals for intraspecific communication of the fig weevil Aclees sp. cf. foveatus (Coleoptera: Curculionidae): a first survey. Sci Rep 2020; 10:1092. [PMID: 31974464 PMCID: PMC6978528 DOI: 10.1038/s41598-020-58004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
The fig tree weevil Aclees sp. cf. foveatus (Coleoptera: Curculionidae), introduced in Italy in 2005, is currently causing significant economic and environmental losses to fig tree nurseries and orchards in Central Italy. Fig damages are due to the adults feeding on leaves and fruits, and to the galleries dug by the xylophagous larvae in the trunk, which lead the plants to death. To date, no chemical or biological control methods resulted to be effective against this invasive pest. In order to gain information about possible semiochemicals involved in mate recognition and choice, both the volatile organic compounds (VOCs) and the epicuticular lipids of male and female specimens were analysed. VOCs emissions of specimens were characterized essentially by monoterpenes, while epicuticular lipids contained long chained 2-ketones, alkanes, alkenes, including some methyl alkenes, and several fatty acid propyl esters. The attractiveness of reconstituted VOCs blends of the two sexes was tested in electrophysiological and behavioural assays in laboratory conditions. Both the male and the female reconstituted VOCs drove a significant response towards individuals of the opposite sex, thus demonstrating features of sexual attractants. Our results suggest a possible application of VOCs blends as pheromonic attractants in field monitoring and mass trapping of Aclees sp. cf. foveatus.
Collapse
Affiliation(s)
- Immacolata Iovinella
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Erika Carla Pierattini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy.
| | - Francesca Romana Dani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Salvatore Guarino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi 414, 90129, Palermo, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy
| | - Paolo Giannotti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy
| | - Giorgio Cuzzupoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy
| | - Jessica Girardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126, Pisa, Italy
| |
Collapse
|
7
|
Wester P, Johnson SD, Pauw A. Scent chemistry is key in the evolutionary transition between insect and mammal pollination in African pineapple lilies. THE NEW PHYTOLOGIST 2019; 222:1624-1637. [PMID: 30613998 DOI: 10.1111/nph.15671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Volatile emissions may play a key role in structuring pollination systems of plants with morphologically unspecialised flowers. Here we test for pollination by small mammals in Eucomis regia and investigate whether its floral scent differs markedly from fly- and wasp-pollinated congeners and attracts mammals. We measured floral traits of E. regia and made comparisons with insect-pollinated congeners. We observed floral visitors and examined fur and faeces of live-trapped mammals for pollen. We determined the contributions of different floral visitors to seed set with selective exclusion and established the breeding system with controlled pollination experiments. Using bioassays, we examined whether mammals are attracted by the floral scent and are effective agents of pollen transfer. Eucomis regia differs from closely related insect-pollinated species mainly in floral scent, with morphology, colour and nectar properties being similar. We found that mice and elephant-shrews pollinate E. regia, which is self-incompatible and reliant on vertebrates for seed production. Mammals are strongly attracted to the overall floral scent, which contains unusual sulphur compounds, including methional (which imparts the distinctive potato-like scent and which was shown to be attractive to small mammals). The results highlight the important role of scent chemistry in shifts between insect and mammal pollination systems.
Collapse
Affiliation(s)
- Petra Wester
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
- Institute of Sensory Ecology, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
8
|
Zhao T, Ganji S, Schiebe C, Bohman B, Weinstein P, Krokene P, Borg-Karlson AK, Unelius CR. Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. ISME JOURNAL 2019; 13:1535-1545. [PMID: 30770902 PMCID: PMC6776033 DOI: 10.1038/s41396-019-0370-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
Convergent evolution of semiochemical use in organisms from different Kingdoms is a rarely described phenomenon. Tree-killing bark beetles vector numerous symbiotic blue-stain fungi that help the beetles colonize healthy trees. Here we show for the first time that some of these fungi are able to biosynthesize bicyclic ketals that are pheromones and other semiochemicals of bark beetles. Volatile emissions of five common bark beetle symbionts were investigated by gas chromatography-mass spectrometry. When grown on fresh Norway spruce bark the fungi emitted three well-known bark beetle aggregation pheromones and semiochemicals (exo-brevicomin, endo-brevicomin and trans-conophthorin) and two structurally related semiochemical candidates (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane and endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane) that elicited electroantennogram responses in the spruce bark beetle Ips typographus. When grown on malt agar with 13C d-Glucose, the fungus Grosmannia europhioides incorporated 13C into exo-brevicomin and trans-conophthorin. The enantiomeric compositions of the fungus-produced ketals closely matched those previously reported from bark beetles. The production of structurally complex bark beetle pheromones by symbiotic fungi indicates cross-kingdom convergent evolution of signal use in this system. This signaling is susceptible to disruption, providing potential new targets for pest control in conifer forests and plantations.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden. .,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, 100 44, Stockholm, Sweden. .,School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden
| | - Christian Schiebe
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden
| | - Björn Bohman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden.,School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Paal Krokene
- Department of Plant Molecular Biology, Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | - Anna-Karin Borg-Karlson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - C Rikard Unelius
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden
| |
Collapse
|
9
|
Rasmussen LE. Chemical communication: An integral part of functional Asian elephant (Elephas maximus) society. ECOSCIENCE 2016. [DOI: 10.1080/11956860.1998.11682469] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Milet-Pinheiro P, Ayasse M, Dötterl S. Visual and Olfactory Floral Cues of Campanula (Campanulaceae) and Their Significance for Host Recognition by an Oligolectic Bee Pollinator. PLoS One 2015; 10:e0128577. [PMID: 26060994 PMCID: PMC4465695 DOI: 10.1371/journal.pone.0128577] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed.
Collapse
Affiliation(s)
| | - Manfred Ayasse
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
| | - Stefan Dötterl
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
11
|
Cortez V, Verdú JR, Ortiz AJ, Trigos ÁR, Favila ME. Chemical diversity and potential biological functions of the pygidial gland secretions in two species of Neotropical dung roller beetles. CHEMOECOLOGY 2015. [DOI: 10.1007/s00049-015-0189-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Beck JJ, Baig N, Cook D, Mahoney NE, Marsico TD. Semiochemicals from ex situ abiotically stressed cactus tissue: a contributing role of fungal spores? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12273-12276. [PMID: 25482874 DOI: 10.1021/jf505735g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiochemicals play a central role in communication between plants and insects, such as signaling the location of a suitable host. Fungi on host plants can also play an influential role in communicating certain plant vulnerabilities to an insect. The spiroketal conophthorin is an important semiochemical produced by developing fungal spores. Spiroketals are also used as signals for scolytid communication. Plants and fungi are known to emit varying volatile profiles under biotic and abiotic stress. This paper reports distinctive temporal-volatile profiles from three abiotic treatments, room temperature (control), -15 °C (cold), and -15 °C to room temperature (shock), of cactus tissue plugs. Volatiles from the three treatments included monoterpenes from control plugs, compounds of varying classes and origin at later stages for cold plugs, and known semiochemicals, including spiroketals, at later stages for shock plugs. The results highlight several important findings: a unique tissue source of the spiroketals; abiotic cold-shock stress is indicated as the cause of spiroketal production; and, given previous findings of spirogenesis, fungal spore involvement is a probable biosynthetic origin of the spiroketals. These findings suggest an important role of fungal volatiles as signaling plant vulnerability to insects.
Collapse
Affiliation(s)
- John J Beck
- Foodborne Toxin Detection and Prevention, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , 800 Buchanan Street, Albany, California 94710, United States
| | | | | | | | | |
Collapse
|
13
|
Astashko DA, Ulashchik EA, Tyvorskii VI. Synthesis of (±)-bicolorin, the aggregation pheromone of beech bark beetle Taphrorychus bicolor. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428013120154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
The Chemical Basis of Host-Plant Recognition in a Specialized Bee Pollinator. J Chem Ecol 2013; 39:1347-60. [DOI: 10.1007/s10886-013-0363-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/26/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
15
|
Jaramillo J, Torto B, Mwenda D, Troeger A, Borgemeister C, Poehling HM, Francke W. Coffee berry borer joins bark beetles in coffee klatch. PLoS One 2013; 8:e74277. [PMID: 24073204 PMCID: PMC3779205 DOI: 10.1371/journal.pone.0074277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/30/2013] [Indexed: 11/24/2022] Open
Abstract
Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Juliana Jaramillo
- Institute of Plant Diseases and Plant Protection, Leibniz University Hannover, Hannover, Germany
- International Center of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- * E-mail:
| | - Baldwyn Torto
- International Center of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickson Mwenda
- International Center of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Armin Troeger
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Hans-Michael Poehling
- Institute of Plant Diseases and Plant Protection, Leibniz University Hannover, Hannover, Germany
| | - Wittko Francke
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Byers JA, Birgersson G, Francke W. Aggregation pheromones of bark beetles, Pityogenes quadridens and P. bidentatus, colonizing Scotch pine: olfactory avoidance of interspecific mating and competition. CHEMOECOLOGY 2013. [DOI: 10.1007/s00049-013-0139-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Beck JJ, Mahoney NE, Cook D, Gee WS. Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11869-11876. [PMID: 23153034 DOI: 10.1021/jf304157q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The spiroketal (E)-conophthorin has recently been reported as a semiochemical of the navel orangeworm moth, a major insect pest of California pistachios and almonds. Conophthorin and the isomeric spiroketal chalcogran are most commonly known as semiochemicals of several scolytid beetles. Conophthorin is both an insect- and plant-produced semiochemical widely recognized as a nonhost plant volatile from the bark of several angiosperm species. Chalcogran is the principal aggregation pheromone component of the six-spined spruce bark beetle. Recent research has shown conophthorin is produced by almonds undergoing hull-split, and both spiroketals are produced by mechanically damaged almonds. To better understand the origin of these spiroketals, the volatile emissions of orchard fungal spores on fatty acids common to both pistachios and almonds were evaluated. The volatile emission for the first 13 days of spores placed on a fatty acid was monitored. The spores investigated were Aspergillus flavus (atoxigenic), A. flavus (toxigenic), Aspergillus niger, Aspergillus parasiticus, Penicillium glabrum, and Rhizopus stolonifer. The fatty acids used as growth media were palmitic, oleic, linoleic, and linolenic. Spores on linoleic acid produced both spiroketals, those on linolenic acid produced only chalcogran, and those on palmitic and oleic acid did not produce either spiroketal. This is the first report of the spiroketals conophthorin and chalcogran from a fungal source.
Collapse
Affiliation(s)
- John J Beck
- Plant Mycotoxin Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States.
| | | | | | | |
Collapse
|
18
|
Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies. BMC Genomics 2010; 11:215. [PMID: 20353591 PMCID: PMC2858752 DOI: 10.1186/1471-2164-11-215] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/30/2010] [Indexed: 11/12/2022] Open
Abstract
Background The mountain pine beetle (Dendroctonus ponderosae) is a significant coniferous forest pest in western North America. It relies on aggregation pheromones to colonize hosts. Its three major pheromone components, trans-verbenol, exo-brevicomin, and frontalin, are thought to arise via different metabolic pathways, but the enzymes involved have not been identified or characterized. We produced ESTs from male and female midguts and associated fat bodies and used custom oligonucleotide microarrays to study gene expression patterns and thereby made preliminary identification of pheromone-biosynthetic genes. Results Clones from two un-normalized cDNA libraries were directionally sequenced from the 5' end to yield 11,775 ESTs following sequence cleansing. The average read length was 550 nt. The ESTs clustered into 1,201 contigs and 2,833 singlets (4,034 tentative unique genes). The ESTs are broadly distributed among GO functional groups, suggesting they reflect a broad spectrum of the transcriptome. Among the most represented genes are representatives of sugar-digesting enzymes and members of an apparently Scolytid-specific gene family of unknown function. Custom NimbleGen 4-plex arrays representing the 4,034 tentative unique genes were queried with RNA from eleven different biological states representing larvae, pupae, and midguts and associated fat bodies of unfed or fed adults. Quantitative (Real-Time) RT-PCR (qRT-PCR) experiments confirmed that the microarray data accurately reflect expression levels in the different samples. Candidate genes encoding enzymes involved in terminal steps of biosynthetic pathways for exo-brevicomin and frontalin were tentatively identified. Conclusions These EST and microarray data are the first publicly-available functional genomics resources for this devastating forestry pest.
Collapse
|
19
|
Schwartz BD, Booth YK, Fletcher MT, Kitching W, De Voss JJ. Spiroacetal biosynthesis in fruit flies is complex: distinguishable origins of the same major spiroacetal released by different Bactrocera spp. Chem Commun (Camb) 2010; 46:1526-8. [PMID: 20162170 DOI: 10.1039/b917977a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major spiroacetal ((E,E)-1) of the pestiferous fruit flies, Bactrocera tryoni and Bactrocera cucumis, is biosynthesised from fatty acids by distinguishable pathways which utilise modified beta-oxidation and C-H hydroxylation, generating a putative ketodiol which cyclises.
Collapse
Affiliation(s)
- Brett D Schwartz
- School of Chemistry and Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Australia 4072
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Mori K. Significance of chirality in pheromone science. Bioorg Med Chem 2007; 15:7505-23. [PMID: 17855097 DOI: 10.1016/j.bmc.2007.08.040] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/08/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Pheromones play important roles in chemical communication among organisms. Various chiral and non-racemic pheromones have been identified since the late 1960s. Their enantioselective syntheses could establish the absolute configuration of the naturally occurring pheromones and clarified the relationships between absolute configuration and bioactivity. For example, neither the (R)- nor (S)-enantiomer of sulcatol, the aggregation pheromone of an ambrosia beetle Gnathotrichus sulcatus, is behaviorally active, while their mixture is bioactive. In the case of olean, the olive fruit fly pheromone, its (R)-isomer is active for the males, and the (S)-isomer is active for the females. About 140 chiral pheromones are reviewed with regard to their stereochemistry-bioactivity relationships. Problems encountered in studying chirality of pheromones were examined and analyzed to think about possible future directions in pheromone science.
Collapse
Affiliation(s)
- Kenji Mori
- Photosensitive Materials Research Center, Toyo Gosei Co., Ltd, Wakahagi 4-2-1, Inba-mura, Inba-gun, Chiba 270-609, Japan
| |
Collapse
|
22
|
Greenwood DR, Comeskey D, Hunt MB, Rasmussen LEL. Chemical communication: chirality in elephant pheromones. Nature 2006; 438:1097-8. [PMID: 16371998 DOI: 10.1038/4381097a] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Musth in male elephants is an annual period of heightened sexual activity and aggression that is linked to physical, sexual and social maturation. It is mediated by the release of chemical signals such as the pheromone frontalin, which exists in two chiral forms (molecular mirror images, or enantiomers). Here we show that enantiomers of frontalin are released by Asian elephants in a specific ratio that depends on the animal's age and stage of musth, and that different responses are elicited in male and female conspecifics when the ratio alters. This precise control of communication by molecular chirality offers insight into societal interactions in elephants, and may be useful in implementing new conservation protocols.
Collapse
Affiliation(s)
- David R Greenwood
- HortResearch, Mount Albert Research Centre, Private Bag 92-169, Auckland, New Zealand
| | | | | | | |
Collapse
|
23
|
Snyder MA, Bower NW. Resistance to Bark Beetle Attack in Caribbean Pine: Potential Role of 4-Allylanisole1. Biotropica 2005. [DOI: 10.1111/j.1744-7429.2005.00090.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Abstract
Sex and aggregation pheromones consist of species-specific blends of chemicals. The way in which different species' blends have evolved has been the subject of some debate. Theoretical predictions suggest that differences between species have arisen not through the accruing of small changes, but through major shifts in chemical composition. Using data on the aggregation pheromones of 34 species of bark beetle from two genera, Dendroctonus and Ips, we investigated how the distributions of the chemical components of their pheromone blends mirror their phylogenetic relationships. We tested whether there were consistent patterns that could be used to help elucidate the mode of pheromone evolution. Although there were obvious differences in pheromone blends between the two genera, the differences between species within each genus followed a less clear phylogenetic pattern. In both genera, closely related species are just as different as more distantly related species. Within Dendroctonus, particularly, most chemical components were distributed randomly across the phylogeny. Indeed, for some chemicals, closely related species may actually be more different than would be expected from a random distribution of chemical components. This argues strongly against the idea of minor shifts in pheromone evolution. Instead, we suggest that, within certain phylogenetic constraints, pheromone evolution in bark beetles is characterized by large saltational shifts, resulting in sibling species being substantially phenotypically (i.e. pheromonally) different from one another, thus agreeing with theoretical predictions.
Collapse
|
25
|
Tyvorskii VI, Astashko DA, Kulinkovich OG. A convenient route to 1-(2-oxiranyl)-1,4-diketones and their application to the synthesis of endo-brevicomin, endo-isobrevicomin, frontalin and related compounds via alkylated 6,8-dioxabicyclo[3.2.1]octan-2-ones. Tetrahedron 2004. [DOI: 10.1016/j.tet.2003.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Barkawi LS, Francke W, Blomquist GJ, Seybold SJ. Frontalin: De novo biosynthesis of an aggregation pheromone component by Dendroctonus spp. bark beetles (Coleoptera: Scolytidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:773-788. [PMID: 12878224 DOI: 10.1016/s0965-1748(03)00069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The pheromone component, frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane) is thought to be formed in Dendroctonus spp. bark beetles through the cyclization of oxygenated 6-methyl-6-hepten-2-one (6-MHO). Unlike many of the isoprenoid pheromone components of bark beetles, there is no obvious immediate host conifer precursor for 6-MHO or frontalin. To elucidate the biosynthetic pathway of frontalin, juvenile hormone-treated male Dendroctonus jeffreyi were injected separately with [1-(14)C]acetate, [2-(14)C]mevalonolactone, [1-(14)C]isopentenol, [1-(14)C]:[1-(3)H]isopentenol, and [4,5-(3)H]leucine. Subsequently volatiles were collected on Porapak Q from these males and abdominal tissues were extracted. Radio-HPLC analyses of extracts from males injected with each radiolabeled substrate showed that radioactivity from the injected precursors eluted in a peak with a retention time that matches that of unlabeled frontalin. In all cases, HPLC fractions containing radiolabel that eluted at the same time as a frontalin standard were analyzed by GC-FID and GC-MS to confirm the presence of frontalin. In a separate study, male D. jeffreyi were injected with [1-(13)C]acetate and an abdominal tissue extract from these insects was analyzed by tandem gas chromatography-isotope ratio monitoring-mass spectrometry (GC-IRM-MS), which unequivocally showed incorporation of (13)C into frontalin. Because mevalonate is the key intermediate in the isoprenoid pathway, its incorporation (as mevalonolactone) into frontalin provides compelling evidence that the biosynthesis of frontalin involves that pathway in some form. In the experiment with [1-(14)C]:[1-(3)H]isopentenol, there was no significant difference in the mean percentage incorporation of either radioisotope into frontalin. This supports the role of the classical isoprenoid pathway, as tritium would be lost if only a hybrid pathway were involved. Confirming that de novo synthesis may be general to all Dendroctonus spp., (14)C-acetate was also incorporated into frontalin by females of D. rufipennis and D. simplex. A radiolabeled precursor/pathway inhibitor study showed that the fatty acid synthase inhibitor, 2-octynoic acid, increased (although not significantly) the mass of frontalin produced and significantly increased the percentage incorporation of radioactivity from [1-(14)C]acetate into frontalin. This suggests that as fatty acid biosynthesis is blocked, an increased amount of acetate is funneled into frontalin production via the isoprenoid pathway.
Collapse
Affiliation(s)
- Lana S Barkawi
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Avenue, Saint Paul, MN 55108-6125, USA.
| | | | | | | |
Collapse
|
27
|
Zhang QH, Tolasch T, Schlyter F, Francke W. Enantiospecific antennal response of bark beetles to spiroacetal (E)-conophthorin. J Chem Ecol 2002; 28:1839-52. [PMID: 12449510 DOI: 10.1023/a:1020569303433] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Optically pure synthetic enantiomers of (E)-conophthorin [(E)-7-methyl-1,6-dioxaspiro[4.5]decane], one of the volatiles affecting coniferophagous bark beetles, were tested on antennae of Ips typographus, I. duplicatus, I. subelongatus, Dendroctonus micans, and five Scolytus spp. by using combined gas chromatography-electroantennographic detection (GC-EAD). EAD dose-responses indicated that all three Ips species perceived only the naturally occurring and quantitatively dominant (5S,7S)-enantiomer, while its antipode, (5R,7R)-(E)-conophthorin was antennally inactive. Response thresholds for the Ips species were estimated as between 0.1 ng and 1 ng, or lower. The antennal responses of the Ips species caused by 100 ng of the (5R,7R)-enantiomer might be due to 1% impurity-(the active (5S,7S)-enantiomer) in the (5R,7R)-sample. At the 50-ng level, D. micans and five angiosperm Scolytus species (S. intracatus, S. mali, S. ratzeburgi, S. rugulosus, and S. scolytus) responded strongly to the (5S,7S)-enantiomer, while the (5R,7R)-enantiomer was antennally inactive. Currently updated knowledge on the natural occurrence, and electrophysiological and behavioral activity of (E)-conophthorin is summarized.
Collapse
Affiliation(s)
- Qing-He Zhang
- Department of Crop Science, Swedish University ofAgricultural Sciences, Alnarp.
| | | | | | | |
Collapse
|
28
|
Abstract
Male Asian elephants in musth--an annual period of heightened sexual activity and intensified aggression--broadcast odoriferous, behaviourally influential messages from secretions of the temporal gland. From our observations in the wild, together with instantaneous chemical sampling and captive-elephant playback experiments, we have discovered that young, socially immature males in musth signal their naivety by releasing honey-like odours to avoid conflict with adult males, whereas older musth males broadcast malodorous combinations to deter young males, facilitating the smooth functioning of male society. As elephant--human conflicts can upset this equilibrium, chemically modulating male behaviour may be one way to help the conservation of wild elephants.
Collapse
Affiliation(s)
- L E L Rasmussen
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon 97006-8921, USA.
| | | | | |
Collapse
|
29
|
Takikawa H, Sano S, Mori K. Pheromone Synthesis, CLXXXVI. Synthesis of (1S,2R,5R)-Bicolorin, the Aggregation Pheromone of Male Beech Bark Beetles (Taphrorychus bicolor), and Its (1R,2R,5S) Isomer. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/jlac.199719971211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Kahoro H, Odongo H, Saini RK, Hassanali A, Rai MM. Identification of Components of the Oviposition Aggregation Pheromone of the Gregarious Desert Locust, Schistocerca gregaria (Forskal). JOURNAL OF INSECT PHYSIOLOGY 1997; 43:83-87. [PMID: 12769932 DOI: 10.1016/s0022-1910(96)00051-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acetophenone and veratrole have been identified as two major behaviourally active components of the oviposition aggregation pheromone of the desert locust, Schistocerca gregaria. These compounds were identified from the volatiles of egg pod froth using gas chromatography-electroantennographic (GC-EAD) and gas chromatography-mass spectrometric (GC-MS) analysis. Both compounds were shown to elicit aggregation of gravid females in oviposition bioassays; however, they do not act synergistically. Both acetophenone and veratrole individually at optimum doses induced about 70% egg laying, a value similar to that evoked with froth volatiles.
Collapse
Affiliation(s)
- H Kahoro
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
| | | | | | | | | |
Collapse
|
31
|
Francke W, Schröder F, Kohnle U, Simon M. Synthesis of (1S,2R,5R)-2-Ethyl-1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane, the Aggregation Pheromone of Male Beech Bark Beetles,Taphrorychus bicolor (Col., Scol.). European J Org Chem 1996. [DOI: 10.1002/jlac.199619961005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Francke W, Schröder F, Philipp P, Meyer H, Sinnwell V, Gries G. Identification and synthesis of new bicyclic acetals from the mountain pine beetle, Dendroctonus ponderosae Hopkins (Col.: Scol.). Bioorg Med Chem 1996; 4:363-74. [PMID: 8733614 DOI: 10.1016/0968-0896(96)00013-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Head-space volatiles obtained from male mountain pine beetles, Dendroctonus ponderosae, were analyzed by coupled GC-MS and chiral gas chromatography. 5-Ethyl-7-methyl-6,8-dioxabicyclo[3.2.1]octane (6) was found as a new naturally occurring isomer of brevicomin (1). In addition, several stereoisomers of 7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octan-2-ol (11) and 1-(5-methyl-6,8-dioxabicyclo[3.2.1]octyl)ethanol (12) could be identified. Relative and absolute configurations of the compounds were determined by unambiguous syntheses, which are described.
Collapse
Affiliation(s)
- W Francke
- Institut für Organische Chemie der Universität, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Perez AL, Gries R, Gries G, Oehlschlager AC. Transformation of presumptive precursors to frontalin and exo-brevicomin by bark beetles and west Indian sugarcane weevil (Coleoptera). Bioorg Med Chem 1996; 4:445-50. [PMID: 8733625 DOI: 10.1016/0968-0896(96)00024-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(Z)-6-Nonen-2-one (1) has recently been shown to be the biosynthetic precursor for the aggregation pheromone exo-brevicomin (2) in mountain pine beetle (MPB) males, Dendroctonus ponderosae (Hopkins). We tested the hypotheses that (1) 6-methyl-6-hepten-2-one (3) is the biosynthetic precursor for the aggregation pheromone frontalin (4) in the spruce beetle (SB), Dendroctonus rufipennis (Kirby), and (2) that frontalin and exo-brevicomin are produced from 3 and 1, respectively, only by beetles that utilize them as aggregation pheromones. Exposure of scolytids MPB, SB, pine engraver (PE), Ips pini (Say) and Ips tridens (Mannerheim) and West Indian sugar cane weevil (WISW), Metamasius hemipterus sericeus (Olivier) to deuterio- or protio-3 invariably resulted in the production of deuterio- or protio-4. Similarly, exposure of SB, WISW and I. tridens to 1 resulted in the production of 2. We were unable to demonstrate the presence of 3 in SB volatiles, nor were we able to demonstrate the conversion of 6-methyl-5-hepten-2-one to 3 by SB. Production of enantiomerically enriched frontalin and exo-brevicomin by all the beetles exposed to respective precursors reveals widespread occurrence of nonspecific polysubstrate monooxidases in the Coleoptera.
Collapse
Affiliation(s)
- A L Perez
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|