1
|
Yu C, Peng M, Wang X, Pan X. Photochemical demethylation of methylmercury (MeHg) in aquatic systems: A review of MeHg species, mechanisms, and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123297. [PMID: 38195023 DOI: 10.1016/j.envpol.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Photodemethylation is the major pathway of methylmercury (MeHg) demethylation in surface water before uptake by the food chain, whose mechanisms and influence factors are still not completely understood. Here, we review the current knowledge on photodemethylation of MeHg and divide MeHg photolysis into three pathways: (1) direct photodemethylation, (2) free radical attack, and (3) intramolecular electron or energy transfer. In aquatic environments, dissolved organic matter is involved into all above pathways, and due to its complex compositions, properties and concentrations, DOM poses multiple functions during the PD of MeHg. DOM-MeHg complex (mainly by sulfur-containing molecules) might weaken the C-Hg bond and enhance PD through both direct and indirect pathways. In special, synergistic effects of both strong binding sites and chromophoric moieties in DOM might lead to intramolecular electron or energy transfer. Moreover, DOM might play a role of radical scavenger; while triplet state DOM, which is generated by chromophoric DOM under light, might become a source of free radicals. Apart from DOMs, transition metals, halides, NO3-, NO2-, and carbonates also act as radical initialaters or scavengers, and significantly pose effects on radical demethylation, which is generally mediated by hydroxyl radicals and singlet oxygen. Environmental factors such as pH, light wavelength, light intensity, dissolved oxygen, salinity, and suspended particles also affect the PD of MeHg. This study assessed previously published works on three major mechanisms, with the goal of providing general estimates for photodemethylation under various environment factors according to know effects, and highlighting the current uncertainties for future research directions.
Collapse
Affiliation(s)
- Chenghao Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mao Peng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Tang W, Bai X, Zhou Y, Sonne C, Wu M, Lam SS, Hintelmann H, Mitchell CPJ, Johs A, Gu B, Nunes L, Liu C, Feng N, Yang S, Rinklebe J, Lin Y, Chen L, Zhang Y, Yang Y, Wang J, Li S, Wu Q, Ok YS, Xu D, Li H, Zhang XX, Ren H, Jiang G, Chai Z, Gao Y, Zhao J, Zhong H. A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains. NATURE FOOD 2024; 5:72-82. [PMID: 38177223 DOI: 10.1038/s43016-023-00910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.
Collapse
Affiliation(s)
- Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Xu Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark.
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Holger Hintelmann
- Department of Chemistry and School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Naixian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Wuppertal, Germany
| | - Yan Lin
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Jiaqi Wang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Diandou Xu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hong Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xu-Xiang Zhang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Hongqiang Ren
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China.
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China.
- Department of Environmental Science, Zhejiang University, Hangzhou, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China.
| |
Collapse
|
3
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Azevedo LF, Karpova N, Rocha BA, Barbosa Junior F, Gobe GC, Hornos Carneiro MF. Evidence on Neurotoxicity after Intrauterine and Childhood Exposure to Organomercurials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1070. [PMID: 36673825 PMCID: PMC9858833 DOI: 10.3390/ijerph20021070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Although the molecular mechanisms underlying methylmercury toxicity are not entirely understood, the observed neurotoxicity in early-life is attributed to the covalent binding of methylmercury to sulfhydryl (thiol) groups of proteins and other molecules being able to affect protein post-translational modifications from numerous molecular pathways, such as glutamate signaling, heat-shock chaperones and the antioxidant glutaredoxin/glutathione system. However, for other organomercurials such as ethylmercury or thimerosal, there is not much information available. Therefore, this review critically discusses current knowledge about organomercurials neurotoxicity-both methylmercury and ethylmercury-following intrauterine and childhood exposure, as well as the prospects and future needs for research in this area. Contrasting with the amount of epidemiological evidence available for methylmercury, there are only a few in vivo studies reporting neurotoxic outcomes and mechanisms of toxicity for ethylmercury or thimerosal. There is also a lack of studies on mechanistic approaches to better investigate the pathways involved in the potential neurotoxicity caused by both organomercurials. More impactful follow-up studies, especially following intrauterine and childhood exposure to ethylmercury, are necessary. Childhood vaccination is critically important for controlling infectious diseases; however, the safety of mercury-containing thimerosal and, notably, its effectiveness as preservative in vaccines are still under debate regarding its potential dose-response effects to the central nervous system.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Nina Karpova
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Bruno Alves Rocha
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Fernando Barbosa Junior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Glenda Carolyn Gobe
- Kidney Disease Research Group, School of Medicine, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Maria Fernanda Hornos Carneiro
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
5
|
DiMento BP, Mason RP. Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters. MARINE CHEMISTRY 2017; 196. [PMID: 29515285 PMCID: PMC5836787 DOI: 10.1016/j.marchem.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many studies have recognized abiotic photochemical degradation as an important sink of methylmercury (CH3Hg) in sunlit surface waters, but the rate-controlling factors remain poorly understood. The overall objective of this study was to improve our understanding of the relative importance of photochemical reactions in the degradation of CH3Hg in surface waters across a variety of marine ecosystems by extending the range of water types studied. Experiments were conducted using surface water collected from coastal sites in Delaware, New Jersey, Connecticut, and Maine, as well as offshore sites on the New England continental shelf break, the equatorial Pacific, and the Arctic Ocean. Filtered water amended with additional CH3Hg at environmentally relevant concentrations was allowed to equilibrate with natural ligands before being exposed to natural sunlight. Water quality parameters - salinity, dissolved organic carbon, and nitrate - were measured, and specific UV absorbance was calculated as a proxy for dissolved aromatic carbon content. Degradation rate constants (0.87-1.67 day-1) varied by a factor of two across all water types tested despite varying characteristics, and did not correlate with initial CH3Hg concentrations or other environmental parameters. The rate constants in terms of cumulative photon flux values were comparable to, but at the high end of, the range of values reported in other studies. Further experiments investigating the controlling parameters of the reaction observed little effect of nitrate and chloride, and potential for bromide involvement. The HydroLight radiative transfer model was used to compute solar irradiance with depth in three representative water bodies - coastal wetland, estuary, and open ocean - allowing for the determination of water column integrated rates. Methylmercury loss per year due to photodegradation was also modeled across a range of latitudes from the Arctic to the Equator in the three model water types, resulting in an estimated global demethylation rate of 25.3 Mmol yr-1. The loss of CH3Hg was greatest in the open ocean due to increased penetration of all wavelengths, especially the UV portion of the spectrum which has a greater ability to degrade CH3Hg. Overall, this study provides additional insights and information to better constrain the importance of photochemical degradation in the cycling of CH3Hg in marine surface waters and its transport from coastal waters to the open ocean.
Collapse
|
6
|
Mailloux RJ, Yumvihoze E, Chan HM. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1). Chem Biol Interact 2015; 239:46-55. [PMID: 26111762 DOI: 10.1016/j.cbi.2015.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular environment.
Collapse
Affiliation(s)
- Ryan J Mailloux
- University of Ottawa, Department of Biology, Center for Advanced Research in Environmental Genomics, Ottawa, ON K1N 6N5, Canada
| | - Emmanuel Yumvihoze
- University of Ottawa, Department of Biology, Center for Advanced Research in Environmental Genomics, Ottawa, ON K1N 6N5, Canada
| | - Hing Man Chan
- University of Ottawa, Department of Biology, Center for Advanced Research in Environmental Genomics, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
7
|
Carneiro MFH, Oliveira Souza JM, Grotto D, Batista BL, de Oliveira Souza VC, Barbosa F. A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). ENVIRONMENTAL RESEARCH 2014; 134:218-227. [PMID: 25173055 DOI: 10.1016/j.envres.2014.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
Thimerosal (TM) is an ethylmercury (etHg)-containing preservative used in some vaccines despite very limited knowledge on the kinetics and direct interaction/effects in mammals׳ tissues after exposure. Thus, this study aimed to evaluate the kinetics of Hg species in mice in a time course analysis after intramuscular injection of TM, by estimating Hg half-lives in blood and tissues. Mice were exposed to one single intramuscular dose of 20 µg of Hg as TM. Blood, brain, heart, kidney and liver were collected at 0.5 hour (h), 1 h, 8 h, 16 h, 144 h, 720 h and 1980 h after TM exposure (n=4). Hg species in animal tissues were identified and quantified by speciation analysis via liquid chromatography hyphenated with inductively coupled mass spectrometry (LC-ICP-MS). It was found that the transport of etHg from muscle to tissues and its conversion to inorganic Hg (inoHg) occur rapidly. Moreover, the conversion extent is modulated in part by the partitioning between EtHg in plasma and in whole blood, since etHg is rapidly converted in red cells but not in a plasma compartment. Furthermore, the dealkylation mechanism in red cells appears to be mediated by the Fenton reaction (hydroxyl radical formation). Interestingly, after 0.5 h of TM exposure, the highest levels of both etHg and inoHg were found in kidneys (accounting for more than 70% of the total Hg in the animal body), whereas the brain contributed least to the Hg body burden (accounts for <1.0% of total body Hg). Thirty days after TM exposure, most Hg had been excreted while the liver presented the majority of the remaining Hg. Estimated half-lives (in days) were 8.8 for blood, 10.7 for brain, 7.8 for heart, 7.7 for liver and 45.2 for kidney. Taken together, our findings demonstrated that TM (etHg) kinetics more closely approximates Hg(2+) than methylmercury (meHg) while the kidney must be considered a potential target for etHg toxicity.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Avenida do Café, s/n, Monte Alegre, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Juliana Maria Oliveira Souza
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Avenida do Café, s/n, Monte Alegre, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Denise Grotto
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Avenida do Café, s/n, Monte Alegre, CEP 14040-903 Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade de Sorocaba, Rodovia Raposo Tavares km 92.5, CEP 18023-000 Sorocaba, SP, Brazil.
| | - Bruno Lemos Batista
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Avenida do Café, s/n, Monte Alegre, CEP 14040-903 Ribeirão Preto, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Bloco B, Avenida dos Estados 5001, CEP 0910-170 Santo André, SP, Brazil.
| | - Vanessa Cristina de Oliveira Souza
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Avenida do Café, s/n, Monte Alegre, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Fernando Barbosa
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Avenida do Café, s/n, Monte Alegre, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Carneiro MFH, Grotto D, Barbosa F. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:69-79. [PMID: 24555648 DOI: 10.1080/15287394.2014.865584] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study aimed to determine the concentrations of plasma methylmercury (Me-Hg) and inorganic mercury (I-Hg) in a population exposed to Me-Hg. In addition, associations between each form of mercury (Hg) and gender, age, plasma selenium (Se), and oxidative stress markers were also investigated. The mean plasma I-Hg level was 5.7 μg/L while the mean for plasma Me-Hg was 3.6 μg/L, representing approximately 59 and 41% of the total Hg in blood, respectively. However, several plasma samples contained higher percentages of Me-Hg. Age displayed a direct linkage with plasma I-Hg levels, whereas gender did not correlate with any of the Hg species. In addition, fish intake was only correlated with and a predictor of plasma Me-Hg, suggesting that plasma I-Hg levels originated endogenously through a demethylation reaction that needs to be verified. Further, plasma Me-Hg was markedly correlated with adverse effects to a greater extent than plasma I-Hg and may be considered a valuable, reliable internal dose biomarker for Hg in chronically Me-Hg- exposed individuals.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- a Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Monte Alegre , Ribeirão Preto , SP , Brazil
| | | | | |
Collapse
|
9
|
Fernández-Gómez C, Drott A, Björn E, Díez S, Bayona JM, Tesfalidet S, Lindfors A, Skyllberg U. Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a Boreal lake-wetland gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6279-87. [PMID: 23647363 DOI: 10.1021/es400373s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report experimentally determined first-order rate constants of MeHg photolysis in three waters along a Boreal lake-wetland gradient covering a range of pH (3.8-6.6), concentrations of total organic carbon (TOC 17.5-81 mg L(-1)), total Fe (0.8-2.1 mg L(-1)), specific UV254 nm absorption (3.3-4.2 L mg(-1) m(-1)) and TOC/TON ratios (24-67 g g(-1)). Rate constants determined as a function of incident sunlight (measured as cumulative photon flux of photosynthetically active radiation, PAR) decreased in the order dystrophic lake > dystrophic lake/wetland > riparian wetland. After correction for light attenuation by dissolved natural organic matter (DOM), wavelength-specific (PAR: 400-700 nm, UVA: 320-400 nm and UVB: 280-320 nm) first-order photodegradation rate constants (kpd) determined at the three sites were indistinguishable, with average values (± SE) of 0.0023 ± 0.0002, 0.10 ± 0.024 and 7.2 ± 1.3 m(2) E(-1) for kpdPAR, kpdUVA, and kpdUVB, respectively. The relative ratio of kpdPAR, kpdUVA, and kpdUVB was 1:43:3100. Experiments conducted at varying MeHg/TOC ratios confirm previous suggestions that complex formation with organic thiol groups enhances the rate of MeHg photodegradation, as compared to when O and N functional groups are involved in the speciation of MeHg. We suggest that if the photon fluxes of PAR, UVA, and UVB radiation are separately determined and the wavelength-specific light attenuation is corrected for, the first-order rate constants kpdPAR, kpdUVA, and kpdUVB will be universal to waters in which DOM (possibly in concert with Fe) controls the formation of ROS, and the chemical speciation of MeHg is controlled by the complexation with DOM associated thiols.
Collapse
|
10
|
Kim MK, Zoh KD. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:95-101. [PMID: 23416204 DOI: 10.1016/j.scitotenv.2013.01.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 05/15/2023]
Abstract
Photo-decomposition of methylmercury (MeHg) in surface water is thought to be an important process that reduces the bioavailability of mercury (Hg) to aquatic organisms. In this study, photo-initiated decomposition of MeHg was investigated under UVA irradiation in the presence of natural water constituents including NO3(-), Fe(3+), and HCO3(-) ions, and dissolved organic matter such as humic and fulvic acid. MeHg degradation followed the pseudo-first-order kinetics; the rate constant increased with increasing UVA intensity (0.3 to 3.0 mW cm(-2)). In the presence of NO3(-), Fe(3+), and fulvic acid, the decomposition rate of MeHg increased significantly due to photosensitization by reactive species such as hydroxyl radical. The presence of humic acid and HCO3(-) ions lowered the degradation rate through a radical scavenging effect. Increasing the pH of the solution increased the degradation rate constant by enhancing the generation of hydroxyl radicals. Hydroxyl radicals play an important role in the photo-decomposition of MeHg in water, and natural constituents in water can affect the photo-decomposition of MeHg by changing radical production and inhibition.
Collapse
Affiliation(s)
- Moon-Kyung Kim
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
11
|
Hammerschmidt CR, Fitzgerald WF. Iron-mediated photochemical decomposition of methylmercury in an arctic Alaskan lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6138-43. [PMID: 20704210 DOI: 10.1021/es1006934] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sunlight-induced decomposition is the principal sink for methylmercury (CH(3)Hg(+)) in arctic Alaskan lakes and reduces its availability for accumulation in aquatic food webs. However, the mechanistic chemistry of this process in natural waters is unknown. We examined experimentally the mechanism of photochemical CH(3)Hg(+) decomposition in filter-sterilized epilimnetic waters of Toolik Lake in arctic Alaska (68 degrees 38'N, 149 degrees 36'W), a region illuminated by sunlight almost continuously during the summer. Results from in situ incubation tests indicate that CH(3)Hg(+) is not decomposed principally by either direct photolysis (i.e., no degradation in reagent-grade water) or primary photochemical reactions with dissolved organic material. The preeminent role of labile Fe and associated photochemically produced reactive oxygen species is implicated by tests that show 1) additions of Fe(III) to reagent-grade water enhance CH(3)Hg(+) photodecomposition, 2) strong complexation of ambient Fe(III) with desferrioxamine B inhibits the reaction in lake water, and 3) experimental additions of organic molecules that scavenge hydroxyl radicals specifically among reactive oxygen species (dimethylsulfoxide and formic acid) inhibit CH(3)Hg(+) degradation. Lake-water dilution and Fe(III) addition experiments indicate that Fe is not the limiting reactant for CH(3)Hg(+) photodecomposition in Toolik Lake, which is consistent with prior results indicating that photon flux is a major control. These results demonstrate that CH(3)Hg(+) is decomposed in natural surface water by oxidants, apparently hydroxyl radical, generated from the photo-Fenton reaction.
Collapse
Affiliation(s)
- Chad R Hammerschmidt
- Department of Earth and Environmental Sciences, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
12
|
Nagano M, Yasutake A, Miura K. Demethylation of Methylmercury in Human Neuroblastoma, Glioblastoma and Liver Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masaaki Nagano
- Biochemistry Section, National Institute for Minamata Disease
- Water and Soil Environmental Division, National Institute for Environmental Studies
| | - Akira Yasutake
- Biochemistry Section, National Institute for Minamata Disease
| | - Kyoko Miura
- Department of Environmental Sciences, Wako University
| |
Collapse
|
13
|
Abollino O, Giacomino A, Malandrino M, Marro S, Mentasti E. Voltammetric determination of methylmercury and inorganic mercury with an home made gold nanoparticle electrode. J APPL ELECTROCHEM 2009. [DOI: 10.1007/s10800-009-9830-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Herdman ML, Marcelo A, Huang Y, Niles RM, Dhar S, Kiningham KK. Thimerosal Induces Apoptosis in a Neuroblastoma Model via the cJun N-Terminal Kinase Pathway. Toxicol Sci 2006; 92:246-53. [PMID: 16624850 DOI: 10.1093/toxsci/kfj205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cJun N-terminal kinase (JNK)-signaling pathway is activated in response to a variety of stimuli, including environmental insults, and has been implicated in neuronal apoptosis. In this study, we investigated the role that the JNK pathway plays in neurotoxicity caused by thimerosal, an ethylmercury-containing preservative. SK-N-SH cells treated with thimerosal (0-10 microM) showed an increase in the phosphorylated (active) form of JNK and cJun with 5 and 10 microM thimerosal treatment at 2 and 4 h. To examine activator protein-1 (AP-1) transcription, cells were transfected with a pGL2 vector containing four AP-1 consensus sequences and then treated with thimerosal (0-2.5 microM) for 24 h. Luciferase studies showed an increase in AP-1 transcriptional activity upon thimerosal administration. To determine the components of the AP-1 complex, cells were transfected with a dominant negative to either cFos (A-Fos) or cJun (TAM67). Reporter analysis showed that TAM67, but not A-Fos, decreased AP-1 transcriptional activity, indicating a role for cJun in this pathway. To assess which components are essential to apoptosis, cells were treated with a cell-permeable JNK inhibitor II (SP600125) or transfected with TAM67, and the downstream effectors of apoptosis were analyzed. Cells pretreated with SP600125 showed decreases in activation of caspases 9 and 3, decreases in degradation of poly(ADP-ribose) polymerase (PARP), and decreased levels of proapoptotic Bim, in comparison to cells treated with thimerosal alone. However, cells transfected with TAM67 showed no changes in those same components. Taken together, these results indicate that thimerosal-induced neurotoxicity occurs through the JNK-signaling pathway, independent of cJun activation, leading ultimately to apoptotic cell death.
Collapse
Affiliation(s)
- Michelle L Herdman
- Department of Pharmacology, Joan C. Edwards School of Medicine, Marshall University, 1542 Spring Valley Drive, Huntington, WV 25704, USA
| | | | | | | | | | | |
Collapse
|
15
|
Milaeva ER. The role of radical reactions in organomercurials impact on lipid peroxidation. J Inorg Biochem 2006; 100:905-15. [PMID: 16624415 DOI: 10.1016/j.jinorgbio.2006.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 10/25/2022]
Abstract
The organomercury compounds RHgX and R(2)Hg are broad-spectrum biocidal agents acting via diverse mechanisms in biological systems. Despite the enormous amount of studies carried out in last decades to elucidate the detailed mechanisms of organomercurials toxicity their biomolecular mode of action is still under debate. Among various toxicity mechanisms the action of RHgX and R(2)Hg at the membrane level due to the lipophilic properties of their molecules is discussed. Organomercurials are supposed to induce membrane associated oxidative stress in living organism through different mechanisms including the enhancement of the lipid peroxidation and intracellular generation of reactive oxygen species (ROS), H(2)O(2), O(2)(-), HO(). The perturbation of antioxidative defense system and the peroxidation of unsaturated fatty acids in membrane lipid bilayer are consequences of this impact. On the other hand, the involvement of organomercurials in radical and redox biochemical processes is manifested in carbon to metal bond cleavage that leads to the generation of reactive organic radicals R(). This pathway is discussed as one of the multiple mechanisms of organomercurials toxicity. The goal of this review is to present recent results in the studies oriented towards the role of organomercurials in the xenobiotic-mediated enhancement of radical production and hence in the promotion of lipids peroxidation. The application of natural and synthetic antioxidants as detoxification agents is presented.
Collapse
Affiliation(s)
- E R Milaeva
- Organic Chemistry Department, Moscow State Lomonosov University, Lenin Hill, 119992 Moscow, Russian Federation.
| |
Collapse
|
16
|
Woshner VM, Ohara TM, Eurell JA, Wallig MA, Bratton GR, Suydam RS, Beasley VR. Distribution of inorganic mercury in liver and kidney of beluga and bowhead whales through autometallographic development of light microscopic tissue sections. Toxicol Pathol 2002; 30:209-15. [PMID: 11950164 DOI: 10.1080/019262302753559542] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Inorganic mercury was localized through autometallography (AMG) in kidney and liver of free-ranging, subsistence-harvested beluga (Delphinapterus leucus: n = 20) and bowhead (Balaena mysticetrus: n = 5) whales. AMG granules were not evident in bowhead tissues, confirming nominal mercury (Hg) concentrations (range = 0.011 to 0.038 microg/g ww for total Hg). In belugas, total Hg ranged from 0.30 to 17.11 and from 0.33 to 82.47 microg/g ww in liver and kidney, respectively. AMG granules were restricted to cortical tubular epithelial cytoplasm in belugas with lower tissue burdens; whales with higher tissue burdens had granules throughout the uriniferous tubular epithelium. In liver, AMG granular densities differed between lobular zones, concentrating in stellate macrophages and bile cannalicular domains of hepatocytes. AMG granules aggregated in periportal regions in belugas with lower hepatic Hg concentrations, yet among whales with higher Hg, AMG granule deposition extended to pericentral and midzonal regions of liver lobules. Mean areas occupied by AMG granules correlated well with hepatic Hg concentrations and age. In beluga livers, AMG staining density was not associated with lipofuscin quantity (an index of oxidative damage). Occasionally, AMG granules and lipofuscin were colocalized, but more often were not, implying that Hg was not a prominent factor in hepatic lipofuscin deposition in belugas.
Collapse
|
17
|
Queiroz ML, Pena SC, Salles TS, de Capitani EM, Saad ST. Abnormal antioxidant system in erythrocytes of mercury-exposed workers. Hum Exp Toxicol 1998; 17:225-30. [PMID: 9617635 DOI: 10.1177/096032719801700405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To investigate the effects of chronic exposure to mercury we studied the red cell antioxidant system in mercury-exposed workers through the evaluation of reduced glutathione, catalase and superoxide dismutase systems. Of these workers, some were being exposed at the time and had presented urinary mercury levels considered safe for occupational exposure for at least 3 months prior to the initiation of this study, and others had been on leave for at least 6 months because of intoxication symptoms. Reduced glutathione levels were lower and catalase activity was higher in the workers which were still being exposed, compared to those on leave and controls. No differences were observed between the workers on leave and controls.
Collapse
Affiliation(s)
- M L Queiroz
- Departamento de Farmacologia, Universidade Estadual de Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
Yasutake A, Nakano A, Miyamoto K, Eto K. Chronic effects of methylmercury in rats. I. Biochemical aspects. TOHOKU J EXP MED 1997; 182:185-96. [PMID: 9362101 DOI: 10.1620/tjem.182.185] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To examine chronic effects of methylmercury (MeHg), male Wistar rats were fed on MeHg-contaminated diet, 0, 1 and 5 ppm Hg, under a restricted feeding schedule of 16 g/rat/day for 6 days a week. Rats were killed at 6-month intervals for examination of Hg accumulation, tissue levels of glutathione, metallothionein and lipid peroxide, as well as anti-oxidative enzyme activities. The survival of the 5 ppm Hg group, 50% of which died by the end of 32nd month of the exposure, was somewhat shorter than control and 1 ppm Hg groups, 50% of which survived for 34 months. Although the rats showed no neurological signs or decreased body weight gain even in 5 ppm Hg-exposed group until the end of the 2nd year, crossing of hind limb was evident after 2.5 years in all three groups. Accordingly, the neurological sign observed here possibly due to aging rather than MeHg toxicity. Tissue Hg levels showed a dose-dependent accumulation except for the kidney, where the highest Hg accumulation was observed among tissues examined. Renal Hg levels in the 1 ppm group showed about 40% of those in the 5 ppm group. Significant effects by MeHg were evident only in the kidney, where glutathione and metallothionein levels increased in both MeHg-exposed groups. However, lipid peroxide levels elevated only in 1 ppm group. Among the antioxidative enzymes examined, the renal glutathione peroxidase was found to be the most labile enzyme against MeHg exposure. Renal dysfunction suggested by increased plasma creatinine levels was also significant in 5 ppm Hg rats at 2 years. Furthermore, anemia which would be caused by reduced erythropoietin production in the kidney was also evident in this group. The present study suggested that the kidney was the most susceptible organ against MeHg toxicity under the present exposure schedule and that the renal dysfunction might at least partly account for the shortened survival in 5 ppm Hg rats.
Collapse
Affiliation(s)
- A Yasutake
- National Institute for Minamata Disease, Japan
| | | | | | | |
Collapse
|
19
|
Hansen JC, Danscher G. Organic mercury: an environmental threat to the health of dietary-exposed societies? REVIEWS ON ENVIRONMENTAL HEALTH 1997; 12:107-116. [PMID: 9273927 DOI: 10.1515/reveh.1997.12.2.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As a natural element, mercury is ubiquitous in the environment. The largest amount of mercury, amounting to approximately 100,000 tons per year, originates from the degassing of the earth's crust. To this amount, such anthropogenic activities as combustion of fossil fuels and releases from industrial activities add approximately 20,000 tons of mercury every year. The emitted mercury, both natural and anthropogenic, is in an inorganic form, predominantly as the metallic vapor (Hgzero). In aquatic environments, however, inorganic mercury is microbiologically transformed into the lipophilic organic compound, methylmercury. The transformation from the hydrophilic to the lipophilic state makes mercury more prone to biomagnification in aquatic food chains. Consequently, populations with a traditionally high dietary intake of food originating from either fresh-water or marine environments have the highest exposure to methylmercury. Because of their traditional pursuit of marine mammals, the Inuits belong to the highest dietary exposure group /1/. This situation is particularly true for the Polar Eskimos in North West Greenland. This population has the most traditional lifestyle among the Inuits and hunts predatory species of whales, such as beluga and narwhal, a combination that results in a high level of exposure to methylmercury. Polar Eskimos in North West Greenland, living in areas with no 'accidental' mercury pollution, but with a high dietary access to methylmercury thus exemplify a population group with a current potential environmental health problem.
Collapse
Affiliation(s)
- J C Hansen
- Department of Environmental and Occupational Medicine, University of Aarhus, Denmark.
| | | |
Collapse
|
20
|
Ogura H, Takeuchi T, Morimoto K. A comparison of the 8-hydroxydeoxyguanosine, chromosome aberrations and micronucleus techniques for the assessment of the genotoxicity of mercury compounds in human blood lymphocytes. Mutat Res 1996; 340:175-82. [PMID: 8692180 DOI: 10.1016/s0165-1110(96)90047-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We compared the mechanism of action of micronuclei (MN), unstable chromosome aberrations, and 8-hydroxydeoxyguanosine (8-OHdG) levels to evaluate the genotoxicity of methyl mercuric chloride (CH3HgCl) and mercuric chloride (HgCl2) in human peripheral lymphocytes. The chromosome aberrations in human peripheral lymphocytes exposed to various concentrations of CH3HgCl or HgCl2 increased in a concentration-dependent manner and were significantly higher than the control when the cells were incubated with 1 x 10(-5) M (HgCl2) or 2 x 10(-6) M (CH3HgCl). The increase in the incidence of micronucleated lymphocytes was significant among the exposed groups, being 2 x 10(-5) M (HgCl2) and 5 x 10(-6) M (CH3HgCl) compared with the control. CH3HgCl was about 4-fold more potent than HgCl2. We determined the 8-OHdG levels in human peripheral blood mononuclear cells(PBMC) and found that they were significantly higher in the exposed groups at 1 x 10(-5) M (HgCl2) and 5 x 10(-6) M (CH3HgCl) compared with the control. A detectable (p < 0.05) increase in the level of 8-OHdG was induced by CH3HgCl at a concentration that was about 50% of the amount of HgCl2 required to produce a similar response. The data confirmed the value of the MN and/or chromosome aberration assays for assessing of HgCl2- and/or CH3HgCl-induced genotoxicity, and indicated that they are about the same concentration as the 8-OHdG assay. The presence of genotoxic effects in peripheral blood lymphocytes exposed to the mercuric compounds indicated by the chromosome aberrations and the MN assays could be partly due either to the disturbance of the spindle mechanism, or to the elevated level of 8-OHdG brought by the generation of reactive oxygen species.
Collapse
Affiliation(s)
- H Ogura
- Department of Hygiene and Preventive Medicine, Osaka University School of Medicine, Japan
| | | | | |
Collapse
|
21
|
Hansen JC, Danscher G. Quantitative and qualitative distribution of mercury in organs from arctic sledgedogs: an atomic absorption spectrophotometric and histochemical study of tissue samples from natural long-termed high dietary organic mercury-exposed dogs from Thule, Greenland. PHARMACOLOGY & TOXICOLOGY 1995; 77:189-95. [PMID: 8884882 DOI: 10.1111/j.1600-0773.1995.tb01011.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organs from 10 sledgedogs fed methyl mercury-containing organs and meat from predatory marine animals also eaten by humans in the Thule district of Greenland, were examined histochemically for cellular distribution of mercury, and the organ concentrations of mercury were quantified by atomic absorption spectrometry (total Hg). In selected organs the methyl mercuric level was determined by gaschromatography. The highest concentration of total mercury was found in mesenterial lymph nodes followed by liver and kidneys, which indicates that the lymphatic system might play an important role in the regulating transport of mercury to target organs. The concentrations were age-related, and the results suggest that demethylation takes place in all organs except skeletal muscles, but lowest in CNS. The distribution of mercury at cellular and subcellular levels was studied by the autometallographic technique. The atomic absorption spectrometric and autometallographic results were in good agreement. The brain mean concentration in the oldest group was 438 micrograms/kg, a level much lower than what has been reported to cause effects in the human central nervous system. However, if humans over a period of e.g. 50 years eat Arctic marine meat and accumulate mercury in the same way as dogs, the possibility that this may have health implications cannot be entirely excluded.
Collapse
Affiliation(s)
- J C Hansen
- Department of Environmental and Occupational Medicine, Centre of Arctic Medical Research, Steno Institute, University of Aarhus, Denmark
| | | |
Collapse
|
22
|
Ohba R, Nakayama I, Suda I, Ueda S. Participation of reactive oxygens in the formation of a purple pigment, hordeumin, from barley bran-fermented broth. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)92749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Affiliation(s)
- M Sugiyama
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| |
Collapse
|
24
|
Suda I, Suda M, Hirayama K. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light. Arch Toxicol 1993; 67:365-8. [PMID: 8368946 DOI: 10.1007/bf01973709] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photodegradation of methyl mercury (MeHg) and ethyl Hg (EtHg) in sea water was studied by sunlight or ultraviolet (UV) light exposure, and by determining inorganic Hg produced by degradation. Sea water containing 1 microM MeHg or EtHg was exposed to sunlight or UV light. N-Acetyl-L-cysteine was added to the solution for preventing Hg loss during the light exposure. MeHg and EtHg in sea water were degraded by sunlight (> 280 nm), UV light A (320-400 nm) and UV light B (280-320 nm), though the amounts of inorganic Hg produced from MeHg were 1/6th to 1/12th those from EtHg. Inorganic Hg production was greater with increasing concentration of sea water. Degradation of MeHg and EtHg by the UV light A exposure was inhibited by singlet oxygen (1O2) trappers such as NaN3, 1,4-diazabicyclo[2,2,2]octane, histidine, methionine and 2,5-dimethylfuran. On the other hand, inhibitors or scavengers of superoxide anion, hydrogen peroxide or hydroxyl radical did not inhibit the photodegradation of alkyl Hg. These results suggested that 1O2 generated from sea water exposed to sunlight, UV light A or UV light B was the reactive oxygen species mainly responsible for the degradation of MeHg and EtHg.
Collapse
Affiliation(s)
- I Suda
- Kyushu National Agricultural Experiment Station, MAFF, Kumamoto, Japan
| | | | | |
Collapse
|
25
|
Abstract
Intoxication with elemental mercury vapor or with methylmercury results in the accumulation of mercuric mercury (Hg2+) in the brain. Submicromolar concentrations of Hg2+ were shown previously to inhibit glutamate uptake in astrocyte cultures selectively and reversibly. This finding suggests that blockade of the inactivation of synaptically released glutamate is a potential mechanism of the CNS toxicity of Hg2+. The present study shows further that Hg2+ (< or = 1 microM): (i) markedly inhibits the clearance of extracellular glutamate both by astrocyte cultures and by spinal cord cultures; (ii) reduces glutamine content and export in astrocyte cultures; (iii) has little effect on neuronal viability in spinal cord cultures in the absence of excitotoxic accumulations of glutamate; (iv) does not impair the sensitivity of neurons to the excitotoxic action of glutamate. Also, it is noted that Hg2+ (< or = 1 microM) has not been shown to impair transmitter release acutely in existing studies of presynaptic actions. Thus, the available evidence from in vitro studies is consistent with the hypothesis that low concentrations of mercuric mercury in the brain can cause neurotoxicity by selectively inhibiting the uptake of synaptically released glutamate, with consequent elevation of glutamate levels in the extracellular space.
Collapse
Affiliation(s)
- N Brookes
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| |
Collapse
|
26
|
Suda I, Hirayama K. Degradation of methyl and ethyl mercury into inorganic mercury by hydroxyl radical produced from rat liver microsomes. Arch Toxicol 1992; 66:398-402. [PMID: 1332650 DOI: 10.1007/bf02035129] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liver microsomes were prepared from Wistar rat by the Ca2+ aggregation method. Under various conditions, ethyl mercury chloride (EtHgCl) or methyl mercury chloride (MeHgCl) was incubated with the microsomal preparations. After the incubation, the amounts of inorganic Hg and hydroxyl radical (.OH) in the preparations were determined. Although the preparations alone produced a small amount of inorganic Hg and .OH, the addition of NADPH to the preparations increased both inorganic Hg and .OH production, which were further accelerated by the addition of KCN. The addition of Fe(III)EDTA, a .OH formation promoter, to the microsome-NADPH-KCN system increased inorganic Hg production, whereas the addition of diethylenetriamine pentaacetic acid, a .OH formation inhibitor, decreased inorganic Hg production. When .OH scavengers such as mannitol and dimethyl sulfoxide were added to this system, the inorganic Hg production decreased. These results suggested that the .OH produced from liver microsomes was responsible for the degradation of MeHg and EtHg. Since both .OH and inorganic Hg production decreased with a concomitant decrease in NADPH-cytochrome P-450 reductase activities, it is suggested that this enzyme may be involved in the microsomal degradation of MeHg and EtHg.
Collapse
Affiliation(s)
- I Suda
- Department of Pharmacology, Kumamoto University Medical School, Japan
| | | |
Collapse
|
27
|
Suda I, Takahashi H. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical. Arch Toxicol 1992; 66:34-9. [PMID: 1316115 DOI: 10.1007/bf02307267] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygens was studied in vitro by using peroxidase-hydrogen peroxide (H2O2)-halide and rose bengal-ultraviolet light A systems. For this purpose, the direct determination method for inorganic Hg was employed. Both systems could effectively degrade EtHg, and MeHg to some extent. Degradation of MeHg and EtHg with the myeloperoxidase (MPO)-H2O2-chloride system was inhibited by MPO inhibitors (cyanide and azide), catalase, hypochlorous acid (HOCI) scavengers (glycine, alanine, serine and taurine), 1,4-diazabicyclo[2,2,2]octane and 2,5-dimethylfuran, but not by hydroxyl radical scavengers (ethanol and mannitol). Iodide was more effective than chloride as the halide component. Lactoperoxidase (LPO) could substitute for MPO in the iodide, but not the chloride system. With MPO-H2O2-chloride, MPO-H2O2-iodide and LPO-H2O2-iodide systems, we observed the increased degradation of EtHg in deuterium oxide (D2O) medium better than that in H2O medium. The D2O effect upon MeHg degradation was extremely weak. These results suggested that HOCl (or HOI) might be also capable of degrading MeHg and EtHg, besides the hydroxyl radical already reported by us. Singlet oxygen could degrade EtHg but not MeHg.
Collapse
Affiliation(s)
- I Suda
- Department of Pharmacology, Kumamoto University Medical School, Japan
| | | |
Collapse
|
28
|
Suda I, Totoki S, Uchida T, Takahashi H. Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Arch Toxicol 1992; 66:40-4. [PMID: 1316116 DOI: 10.1007/bf02307268] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In connection with the dealkylation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygen-producing systems, we examined the ability of phagocytic cells to degrade MeHg or EtHg into inorganic mercury in vitro by collecting them from blood or peritoneal cavity of several species of animal. EtHg was readily degraded by human polymorphonuclear leukocytes (PMN), rat PMN, guinea-pig PMN, rabbit PMN, guinea-pig macrophages (M phi), human monocytes and guinea-pig eosinophils. In contrast, rat hepatocytes and the M phi hybridoma clone 39 cells were weaker in their degrading ability. Degradation of MeHg by these cells was always much weaker than EtHg, under identical conditions; however, by increasing the cell numbers, MeHg was appreciably degraded by human PMN, rat PMN and rabbit PMN. The reactive oxygen species mainly responsible for alkyl Hg degradation seemed to be hydroxyl radicals produced by M phi, and hypochlorous acid produced by PMN, monocytes and eosinophils. It was also suggested that the degradation of alkyl Hg by these cells might be an intraphagosomal event.
Collapse
Affiliation(s)
- I Suda
- Department of Pharmacology, Kumamoto University Medical School, Japan
| | | | | | | |
Collapse
|