1
|
Kotsyuba E, Dyachuk V. Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia. Int J Mol Sci 2023; 24:ijms24021202. [PMID: 36674710 PMCID: PMC9865615 DOI: 10.3390/ijms24021202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Mollusks comprise one of the largest phylum of marine invertebrates. With their great diversity of species, various degrees of mobility, and specific behavioral strategies, they haveoccupied marine, freshwater, and terrestrial habitats and play key roles in many ecosystems. This success is explained by their exceptional ability to tolerate a wide range of environmental stresses, such as hypoxia. Most marine bivalvemollusksare exposed to frequent short-term variations in oxygen levels in their marine or estuarine habitats. This stressfactor has caused them to develop a wide variety of adaptive strategies during their evolution, enabling to mobilize rapidly a set of behavioral, physiological, biochemical, and molecular defenses that re-establishing oxygen homeostasis. The neuroendocrine system and its related signaling systems play crucial roles in the regulation of various physiological and behavioral processes in mollusks and, hence, can affect hypoxiatolerance. Little effort has been made to identify the neurotransmitters and genes involved in oxygen homeostasis regulation, and the molecular basis of the differences in the regulatory mechanisms of hypoxia resistance in hypoxia-tolerant and hypoxia-sensitive bivalve species. Here, we summarize current knowledge about the involvement of the neuroendocrine system in the hypoxia stress response, and the possible contributions of various signaling molecules to this process. We thusprovide a basis for understanding the molecular mechanisms underlying hypoxic stress in bivalves, also making comparisons with data from related studies on other species.
Collapse
|
2
|
Effect of Air Exposure-Induced Hypoxia on Neurotransmitters and Neurotransmission Enzymes in Ganglia of the Scallop Azumapecten farreri. Int J Mol Sci 2022; 23:ijms23042027. [PMID: 35216143 PMCID: PMC8878441 DOI: 10.3390/ijms23042027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The nervous system expresses neuromolecules that play a crucial role in regulating physiological processes. Neuromolecule synthesis can be regulated by oxygen-dependent enzymes. Bivalves are a convenient model for studying air exposure-induced hypoxia. Here, we studied the effects of hypoxia on the expression and dynamics of neurotransmitters, and on neurotransmitter enzyme distribution, in the central nervous system (CNS) of the scallop Azumapecten farreri. We analyzed the expression of the neurotransmitters FMRFamide and serotonin (5-HT) and the choline acetyltransferase (CHAT) and universal NO-synthase (uNOS) enzymes during air exposure-induced hypoxia. We found that, in early-stage hypoxia, total serotonin content decreased in some CNS regions but increased in others. CHAT-lir cell numbers increased in all ganglia after hypoxia; CHAT probably appears de novo in accessory ganglia. Short-term hypoxia caused increased uNOS-lir cell numbers, while long-term exposure led to a reduction in their number. Thus, hypoxia weakly influences the number of FMRFamide-lir neurons in the visceral ganglion and does not affect peptide expression in the pedal ganglion. Ultimately, we found that the localization and level of synthesis of neuromolecules, and the numbers of cells expressing these molecules, vary in the scallop CNS during hypoxia exposure. This indicates their possible involvement in hypoxia resistance mechanisms.
Collapse
|
3
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|
4
|
Kotsyuba E, Kalachev A, Kameneva P, Dyachuk V. Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Front Neuroanat 2020; 14:35. [PMID: 32714154 PMCID: PMC7344229 DOI: 10.3389/fnana.2020.00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
In bivalves neurotransmitters are involved in a variety of behaviors, but their diversity and distribution in the nervous system of these organisms remains somewhat unclear. Here, we first examined immunohistochemically the distributions of neurons containing different neurotransmitters, neuropeptides, and related enzymes, as well as the proliferative status of neurons in the ganglia of the mussel Crenomytilus grayanus. H-Phe-Met-Arg-Phe-NH2 (FMRFamide), choline acetyltransferase (ChAT), γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH) were found to be expressed by neurons in all the ganglia, whereas serotonin (5-HT) neurons were found only in the cerebropleural and pedal, but not visceral ganglia. Moreover, incubation of living mussels in the presence of a 5-HT precursor (5-HTP) confirmed the absence of 5-HT-containing neurons from the visceral ganglia, indicating that the "serotonin center" of the visceral nervous system is located in the cerebral ganglia. Furthermore, immunostaining of molecules related to neurotransmission together with α-acetylated tubulin demonstrated that this cytoskeletal protein may be a potential pan-neuronal marker in bivalves. Adult mussel neurons do not proliferate, but a population of proliferating PCNA-LIP cells which do not express any of the neurotransmitters examined, perhaps glia cells, was detected in the ganglia. These novel findings suggest that the nervous system of bivalves contains a broad variety of signal molecules most likely involved in the regulation of different physiological and behavioral processes. In addition, proliferating cells may maintain and renew glial cells and neurons throughout the lives of bivalves.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Polina Kameneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| |
Collapse
|
5
|
Boulais M, Demoy-Schneider M, Alavi SMH, Cosson J. Spermatozoa motility in bivalves: Signaling, flagellar beating behavior, and energetics. Theriogenology 2019; 136:15-27. [PMID: 31234053 DOI: 10.1016/j.theriogenology.2019.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
Though bivalve mollusks are keystone species and major species groups in aquaculture production worldwide, gamete biology is still largely unknown. This review aims to provide a synthesis of current knowledge in the field of sperm biology, including spermatozoa motility, flagellar beating, and energy metabolism; and to illustrate cellular signaling controlling spermatozoa motility initiation in bivalves. Serotonin (5-HT) induces hyper-motility in spermatozoa via a 5-HT receptor, suggesting a serotoninergic system in the male reproductive tract that might regulate sperm physiology. Acidic pH and high concentration of K+ are inhibitory factors of spermatozoa motility in the testis. Motility is initiated at spawning by a Na+-dependent alkalization of intracellular pH mediated by a Na+/H+ exchanger. Increase of 5-HT in the testis and decrease of extracellular K+ when sperm is released in seawater induce hyperpolarization of spermatozoa membrane potential mediated by K+ efflux and associated with an increase in intracellular Ca2+ via opening of voltage-dependent Ca2+ channels under alkaline conditions. These events activate dynein ATPases and Ca2+/calmodulin-dependent proteins resulting in flagellar beating. It may be possible that 5-HT is also involved in intracellular cAMP rise controlling cAMP-dependent protein kinase phosphorylation in the flagellum. Once motility is triggered, flagellum beats in asymmetric wave pattern leading to circular trajectories of spermatozoa. Three different flagellar wave characteristics are reported, including "full", "twitching", and "declining" propagation of wave, which are described and illustrated in the present review. Mitochondrial respiration, ATP content, and metabolic pathways producing ATP in bivalve spermatozoa are discussed. Energy metabolism of Pacific oyster spermatozoa differs from previously studied marine species since oxidative phosphorylation synthetizes a stable level of ATP throughout 24-h motility period and the end of movement is not explained by a low intracellular ATP content, revealing different strategy to improve oocyte fertilization success. Finally, our review highlights physiological mechanisms that require further researches and points out some advantages of bivalve spermatozoa to extend knowledge on mechanisms of motility.
Collapse
Affiliation(s)
- Myrina Boulais
- University of Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont d'Urville, F-29280, Plouzané, France.
| | - Marina Demoy-Schneider
- University of French Polynesia, UMR 241 EIO, BP 6570, 98702, Faa'a Aéroport, Tahiti, French Polynesia
| | | | - Jacky Cosson
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| |
Collapse
|
6
|
Liu Z, Li M, Yi Q, Wang L, Song L. The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Front Physiol 2018; 9:1456. [PMID: 30555334 PMCID: PMC6282093 DOI: 10.3389/fphys.2018.01456] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Marine bivalves, which include many species worldwide, from intertidal zones to hydrothermal vents and cold seeps, are important components of the ecosystem and biodiversity. In their living habitats, marine bivalves need to cope with a series of harsh environmental stressors, including biotic threats (bacterium, virus, and protozoan) and abiotic threats (temperature, salinity, and pollutants). In order to adapt to these surroundings, marine bivalves have evolved sophisticated stress response mechanisms, in which neuroendocrine regulation plays an important role. The nervous system and hemocyte are pillars of the neuroendocrine system. Various neurotransmitters, hormones, neuropeptides, and cytokines have been also characterized as signal messengers or effectors to regulate humoral and cellular immunity, energy metabolism, shell formation, and larval development in response to a vast array of environmental stressors. In this review substantial consideration will be devoted to outline the vital components of the neuroendocrine system identified in bivalves, as well as its modulation repertoire in response to environmental stressors, thereby illustrating the dramatic adaptation mechanisms of molluscs.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
7
|
Kingston ACN, Chappell DR, Miller HV, Lee SJ, Speiser DI. Expression of G Proteins in the Eyes and Parietovisceral Ganglion of the Bay Scallop Argopecten irradians. THE BIOLOGICAL BULLETIN 2017; 233:83-95. [PMID: 29182502 DOI: 10.1086/694448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multitude of image-forming eyes are spread across the bodies of certain invertebrates. Recent efforts have characterized how these eyes function, but less progress has been made toward describing the neural structures associated with them. Scallops, for example, have a distributed visual system that includes dozens of eyes whose optic nerves project to the lateral lobes of the parietovisceral ganglion (PVG). To identify sensory receptors and chemical synapses associated with the scallop visual system, we studied the expression of four G protein α subunits (Gαi, Gαo, Gαq, and Gαs) in the eyes and PVG of the bay scallop Argopecten irradians (Lamarck, 1819). In the eyes of A. irradians, we noted expression of Gαo by the ciliary photoreceptors of the distal retina, expression of Gαq by the rhabdomeric photoreceptors of the proximal retina, and the expression of Gαo and Gαq by the cells of the cornea; we did not, however, detect expression of Gαi or Gαs in the eyes. In the PVG of A. irradians, we noted widespread expression of Gαi, Gαo, and Gαq. The expression of Gαs was limited to fine neurites in the lateral and ventral central lobes, as well as large unipolar neurons in the dorsal central lobes. Our findings suggest that light detection by the eyes of A. irradians is conferred primarily by photoreceptors that express Gαo or Gαq, that the corneal cells of scallops may contain sensory receptors and/or receive neural input, and that G protein labeling is useful for visualizing substructures and identifying specific populations of cells within the nervous systems of invertebrates.
Collapse
|
8
|
Bidel F, Corvaisier S, Jozet-Alves C, Pottier I, Dauphin F, Naud N, Bellanger C. An HPLC-ECD method for monoamines and metabolites quantification in cuttlefish (cephalopod) brain tissue. Biomed Chromatogr 2016; 30:1175-83. [PMID: 26613377 DOI: 10.1002/bmc.3663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 11/09/2022]
Abstract
The cuttlefish belongs to the mollusk class Cephalopoda, considered as the most advanced marine invertebrates and thus widely used as models to study the biology of complex behaviors and cognition, as well as their related neurochemical mechanisms. Surprisingly, methods to quantify the biogenic monoamines and their metabolites in cuttlefish brain remain sparse and measure a limited number of analytes. This work aims to validate an HPLC-ECD method for the simultaneous quantification of dopamine, serotonin, norepinephrine and their main metabolites in cuttlefish brain. In comparison and in order to develop a method suitable to answer both ecological and biomedical questions, the validation was also carried out on a phylogenetically remote species: mouse (mammals). The method was shown to be accurate, precise, selective, repeatable and sensitive over a wide range of concentrations for 5-hydroxyindole-3-acetic acid, serotonin, dopamine, 3,4-dihydroxyphenylacetic acid and norepinephrine in the both extracts of cuttlefish and mouse brain, though with low precision and recovery for 4-hydroxy-3-methoxyphenylethylene glycol. Homovanillic acid, accurately studied in rodents, was not detectable in the brain of cuttlefish. Overall, we described here the first fully validated HPLC method for the routine measurement of both monoamines and metabolites in cuttlefish brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Flavie Bidel
- Normandie Université, CS F-14032 Caen, France.,Groupe Mémoire et Plasticité comportementale, EA 4259, Campus Horowitz, Université de Caen Normandie, Esplanade de la Paix, CS F-14032, Caen, cedex, France
| | - Sophie Corvaisier
- Normandie Université, CS F-14032 Caen, France.,Groupe Mémoire et Plasticité comportementale, EA 4259, Campus Horowitz, Université de Caen Normandie, Esplanade de la Paix, CS F-14032, Caen, cedex, France
| | - Christelle Jozet-Alves
- Normandie Université, CS F-14032 Caen, France.,Groupe Mémoire et Plasticité comportementale, EA 4259, Campus Horowitz, Université de Caen Normandie, Esplanade de la Paix, CS F-14032, Caen, cedex, France
| | - Ivannah Pottier
- Normandie Université, CS F-14032 Caen, France.,ABTE, EA4651, F-14032, Caen, cedex, France.,Centre François Baclesse, 3 Avenue du Général Harris BP 5026, -14076, Caen, cedex 05, France
| | - François Dauphin
- Normandie Université, CS F-14032 Caen, France.,Groupe Mémoire et Plasticité comportementale, EA 4259, Campus Horowitz, Université de Caen Normandie, Esplanade de la Paix, CS F-14032, Caen, cedex, France
| | - Nadège Naud
- Normandie Université, CS F-14032 Caen, France.,Groupe Mémoire et Plasticité comportementale, EA 4259, Campus Horowitz, Université de Caen Normandie, Esplanade de la Paix, CS F-14032, Caen, cedex, France
| | - Cécile Bellanger
- Normandie Université, CS F-14032 Caen, France.,Groupe Mémoire et Plasticité comportementale, EA 4259, Campus Horowitz, Université de Caen Normandie, Esplanade de la Paix, CS F-14032, Caen, cedex, France
| |
Collapse
|
9
|
Klouche MS, De Deurwaerdère P, Dellu-Hagedorn F, Lakhdar-Ghazal N, Benomar S. Monoamine content during the reproductive cycle of Perna perna depends on site of origin on the Atlantic Coast of Morocco. Sci Rep 2015; 5:13715. [PMID: 26349428 PMCID: PMC4563368 DOI: 10.1038/srep13715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 07/22/2015] [Indexed: 11/09/2022] Open
Abstract
Bivalve molluscs such as Perna perna display temporal cycles of reproduction that result from the complex interplay between endogenous and exogenous signals. The monoamines serotonin, dopamine and noradrenaline represent possible endocrine and neuronal links between these signals allowing the molluscs to modulate reproductive functions in conjunction with environmental constraints. Here, we report a disruption of the reproductive cycle of mussels collected from two of three sites along the Moroccan atlantic coast soiled by industrial or domestic waste. Using high pressure liquid chromatography, we show that the temporal pattern of monoamine content in the gonads, pedal and cerebroid ganglia varied throughout the reproductive cycle (resting, developing, maturing, egg-laying) of mussels from the unpolluted site. Marked modification of monoamine tissue content was found between sites, notably in noradrenaline content of the gonads. Discriminant statistics revealed a specific impact of mussel location on the temporal variations of noradrenaline and serotonin levels in gonads and cerebroid ganglia. Correlation analyses showed profound and temporal changes in the monoamine content between organs and ganglia, at the two sites where the reproduction was disrupted. We suggest that environmental constraints lead to profound changes of monoaminergic systems, which thereby compromises the entry of mussels into their reproductive cycle.
Collapse
Affiliation(s)
- Mounia S Klouche
- Unit of Research on Biological Rhythms, Neuroscience and Environment; Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives UMR 5293, 33000 Bordeaux, France
| | - Françoise Dellu-Hagedorn
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine UMR 5287
| | - Nouria Lakhdar-Ghazal
- Unit of Research on Biological Rhythms, Neuroscience and Environment; Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Soumaya Benomar
- Unit of Research on Biological Rhythms, Neuroscience and Environment; Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
10
|
Zhou Z, Wang L, Shi X, Zhang H, Gao Y, Wang M, Kong P, Qiu L, Song L. The modulation of catecholamines to the immune response against bacteria Vibrio anguillarum challenge in scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1065-1071. [PMID: 21979298 DOI: 10.1016/j.fsi.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Catecholamines are pivotal signal molecules in the neuroendocrine-immune regulatory network, and implicated in the modulation of immune response. In the present study, the activities of some immune-related enzymes and the concentration of catecholamines were determined in circulating haemolymph of scallops Chlamys farreri after bacteria Vibrio anguillarum challenge. The activities of superoxide dismutase (SOD), catalase (CAT) and lysozyme (LYZ) increased significantly and reached 610 U mg(-1) at 12 h, 37.6 U mg(-1) at 6 h and 261.5 U mg(-1) at 6 h after bacteria challenge, respectively. The concentration of norepinephrine, epinephrine and dopamine also increased significantly and reached 114.9 ng mL(-1) at 12 h, 86.9 ng mL(-1) at 24 h and 480.4 pg mL(-1) at 12 h after bacteria challenge, respectively. Meanwhile, the activities of these immune-related enzymes in haemolymph were monitored in those scallops which were challenged by bacteria V. anguillarum and stimulated simultaneously with norepinephrine, epinephrine and adrenoceptor antagonist. The injection of norepinephrine and epinephrine repressed significantly the induction of bacteria challenge on the activities of immune-related enzymes, and they were reduced to about half of that in the control groups. The blocking of α and β-adrenoceptor by antagonist only repressed the increase of CAT and LYZ activities significantly, while no significant effect was observed on the increase of SOD activities. The collective results indicated that scallop catecholaminergic neuroendocrine system could be activated by bacteria challenge to release catecholamines after the immune response had been triggered, and the immune response against bacteria challenge could been negatively modulated by norepinephrine, epinephrine, and adrenoceptor antagonist. This information is helpful to further understand the immunomodulation of catecholamines in scallops.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kodirov SA. The neuronal control of cardiac functions in Molluscs. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:102-16. [PMID: 21736949 PMCID: PMC5480900 DOI: 10.1016/j.cbpa.2011.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 05/12/2011] [Accepted: 06/17/2011] [Indexed: 01/19/2023]
Abstract
In this manuscript, I review the current and relevant classical studies on properties of the Mollusca heart and their central nervous system including ganglia, neurons, and nerves involved in cardiomodulation. Similar to mammalian brain hemispheres, these invertebrates possess symmetrical pairs of ganglia albeit visceral (only one) ganglion and the parietal ganglia (the right ganglion is bigger than the left one). Furthermore, there are two major regulatory drives into the compartments (pericard, auricle, and ventricle) and cardiomyocytes of the heart. These are the excitatory and inhibitory signals that originate from a few designated neurons and their putative neurotransmitters. Many of these neurons are well-identified, their specific locations within the corresponding ganglion are mapped, and some are termed as either heart excitatory (HE) or inhibitory (HI) cells. The remaining neurons are classified as cardio-regulatory, and their direct and indirect actions on the heart's function have been documented. The cardiovascular anatomy of frequently used experimental animals, Achatina, Aplysia, Helix, and Lymnaea is relatively simple. However, as in humans, it possesses all major components including even trabeculae and atrio-ventricular valves. Since the myocardial cells are enzymatically dispersible, multiple voltage dependent cationic currents in isolated cardiomyocytes are described. The latter include at least the A-type K(+), delayed rectifier K(+), TTX-sensitive Na(+), and L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of Biophysics, Saint Petersburg University, Saint Petersburg 199034, Russia.
| |
Collapse
|
12
|
Zhou Z, Yang J, Wang L, Zhang H, Gao Y, Shi X, Wang M, Kong P, Qiu L, Song L. A dopa decarboxylase modulating the immune response of scallop Chlamys farreri. PLoS One 2011; 6:e18596. [PMID: 21533240 PMCID: PMC3076384 DOI: 10.1371/journal.pone.0018596] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/05/2011] [Indexed: 01/11/2023] Open
Abstract
Background Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. Methodology The full-length cDNA encoding DDC (designated CfDDC) was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, P<0.05) at 3 h and reached the peak at 12 h (9.8-fold, P<0.05), and then recovered to the baseline level. The recombinant protein of CfDDC (rCfDDC) was expressed in Escherichia coli BL21 (DE3)-Transetta, and 1 mg rCfDDC could catalyze the production of 1.651±0.22 ng dopamine within 1 h in vitro. When the haemocytes were incubated with rCfDDC-coated agarose beads, the haemocyte encapsulation to the beads was increased significantly from 70% at 6 h to 93% at 24 h in vitro in comparison with that in the control (23% at 6 h to 25% at 24 h), and the increased haemocyte encapsulation was repressed by the addition of rCfDDC antibody (which is acquired via immunization 6-week old rats with rCfDDC). After the injection of DDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (P<0.05) of blank group at 12 h and 0.47-fold (P<0.05) at 24 h, respectively. Conclusions These results collectively suggested that CfDDC, as a homologue of DDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jialong Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LS); (LW)
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Pengfei Kong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LS); (LW)
| |
Collapse
|
13
|
López-Sánchez JA, Maeda-Martínez AN, Croll RP, Acosta-Salmón H. Monoamine fluctuations during the reproductive cycle of the Pacific lion's paw scallop Nodipecten subnodosus. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:425-8. [DOI: 10.1016/j.cbpa.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/25/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
|
14
|
Kotsyuba EP. Effects of temperature stress on NO-synthase and tyrosine hydroxylase activities in the central nervous system of bivalve molluscs. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
In vitro effects of noradrenaline on Sydney rock oyster (Saccostrea glomerata) hemocytes. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:691-7. [DOI: 10.1016/j.cbpa.2008.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 08/13/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
|
16
|
Chen M, Yang H, Xu B, Wang F, Liu B. Catecholaminergic responses to environmental stress in the hemolymph of zhikong scallopChlamys farreri. ACTA ACUST UNITED AC 2008; 309:289-96. [DOI: 10.1002/jez.458] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Cao A, Ramos-Martínez JI, Barcia R. In hemocytes from Mytilus galloprovincialis Lmk., treatment with corticotropin or growth factors conditions catecholamine release. Int Immunopharmacol 2007; 7:1395-402. [PMID: 17761343 DOI: 10.1016/j.intimp.2007.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 11/21/2022]
Abstract
The cells in charge of the innate immune response in the sea mussel Mytilus galloprovincialis Lmk. are the hemocytes, which have the capacity to release catecholamines when subjected to stressing conditions. Hemocytes were kept in culture before stimulation. That is, their behaviour was not studied immediately after extraction from the mollusc, as happens in most studies. This avoids the interference and variability caused by the conditions in which mussels may be when collected. This work describes the great variability found in the pattern of catecholamine release when the hemocytes are stimulated with either corticotropins or growth factors. Dopamine, adrenaline and noradrenaline release differs with each of the inducers assayed, with stimulation time and with the season of hemocyte collection. One of the results presented is particularly remarkable; such is the great amount of adrenaline and noradrenaline released to the medium when the hemocytes obtained in summer are stimulated with transforming growth factor-beta1 (TGF-beta1) for 60 min.
Collapse
Affiliation(s)
- Asunción Cao
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Facultad de Veterinaria, Campus de Lugo, E-27002 Lugo, Spain
| | | | | |
Collapse
|
18
|
Braubach OR, Dickinson AJG, Evans CCE, Croll RP. Neural control of the velum in larvae of the gastropod, Ilyanassa obsoleta. ACTA ACUST UNITED AC 2007; 209:4676-89. [PMID: 17114401 DOI: 10.1242/jeb.02556] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Larval molluscs commonly use ciliated vela to swim and feed. In this study we used immunohistochemistry to demonstrate innervation of velar cilia and muscles by monoaminergic and peptidergic fibres in the caenogastropod, Ilyanassa obsoleta. Photoelectric recordings from pre-oral cilia on isolated pieces of velum revealed that serotonin increased, whereas catecholamines (dopamine and norepinephrine) decreased beat frequency at concentrations of 10(-6) to 10(-9) mol l(-1). Catecholamines also increased the frequency of momentary, isolated arrests of pre-oral cilia, but failed to suppress beating of the post-oral cilia at these concentrations. The neuropeptides, FMRFamide and Leu-enkephalin, did not affect the frequency of ciliary beating or of isolated ciliary arrests, but did induce numerous muscular contractions, which were accompanied by sustained ciliary arrests. In terms of whole animal behaviour, serotonin caused larvae to concentrate toward the top of a water column and to increase feeding, whereas catecholamines caused larvae to concentrate toward the bottom of a water column and decrease feeding. Monoamine analogues which facilitated or opposed the effects of synthetic transmitters on larval behaviour, further suggested that these transmitters are released endogenously to control velar function. Finally, applications of peptides to whole larvae caused increased frequency of locomotory arrests. Together these findings demonstrate several potential roles for the nervous system in controlling larval behaviour in gastropods.
Collapse
Affiliation(s)
- Oliver R Braubach
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | | | | | |
Collapse
|
19
|
Beninger PG, Le Pennec M. Chapter 3 Structure and function in scallops. SCALLOPS: BIOLOGY, ECOLOGY AND AQUACULTURE 2006. [DOI: 10.1016/s0167-9309(06)80030-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Cao A, Ramos-Martínez JI, Barcia R. In vitro effects of LPS, IL-2, PDGF and CRF on haemocytes of Mytilus galloprovincialis Lmk. FISH & SHELLFISH IMMUNOLOGY 2004; 16:215-225. [PMID: 15123325 DOI: 10.1016/s1050-4648(03)00080-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 05/01/2003] [Accepted: 05/28/2003] [Indexed: 05/24/2023]
Abstract
The cells in charge of the innate immune response in the marine mussel Mytilus galloprovincialis Lmk. are the haemocytes. These cells respond in different ways to agents such as lipopolysaccharide (LPS), interleukin-2 (IL-2), platelet-derived growth factor (PDGF) and corticotropin releasing factor (CRF). After stimulation of the haemocytes, the expression of molecules reactive with monoclonal antibodies raised to the alpha chain of the IL-2 receptor, present in their membrane, differed depending on the agent used. The same happened with regard to the levels of dopamine, adrenaline and noradrenaline released to the medium by the haemocytes. It should also be noted that no catecholamine release was detected and the level of expression of IL-2Ralpha showed no significant variation in cultured cells that had not been treated with inducers. These facts would indicate that most haemocytes were in the same starting condition at the moment that the stimulation was performed. Therefore, cultured haemocytes can be a highly reliable model in the study of the innate immune system.
Collapse
Affiliation(s)
- Asunción Cao
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Facultad de Veterinaria, Campus de Lugo, E-27002 Lugo, Spain
| | | | | |
Collapse
|
21
|
Stuart JN, Zhang X, Jakubowski JA, Romanova EV, Sweedler JV. Serotonin catabolism depends upon location of release: characterization of sulfated and gamma-glutamylated serotonin metabolites in Aplysia californica. J Neurochem 2003; 84:1358-66. [PMID: 12614336 DOI: 10.1046/j.1471-4159.2003.01617.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serotonin is a vital neurotransmitter for the functioning of the nervous system in species throughout the animal phyla. Despite its ubiquitous nature, the metabolism of this molecule has yet to be completely elucidated in even the most basic of organisms. Two novel serotonin catabolites, serotonin-O-sulfate and gamma-glu-serotonin-O-sulfate, are chemically characterized using capillary electrophoresis with wavelength-resolved fluorescence detection and electrospray mass spectrometry, and the formation of gamma-glu-serotonin in Aplysia californica is confirmed. These novel compounds appear to be synthesized enzymatically, and known mammalian enzymes exist for all serotonin transformations observed here. The pathway of serotonin inactivation depends upon the type of neuronal tissue subjected to neurotransmitter incubation, with assorted serotonin products observed in distinct locations. Initially demonstrated to be in the metacerebral cell (MCC) soma, the new serotonin metabolite serotonin-O-sulfate may contribute to important functions in the serotonergic system beyond simple serotonin inactivation.
Collapse
Affiliation(s)
- Jeffrey N Stuart
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
22
|
Masseau I, Bannon P, Anctil M, Dubé F. Localization and quantification of gonad serotonin during gametogenesis of the surf clam, Spisula solidissima. THE BIOLOGICAL BULLETIN 2002; 202:23-33. [PMID: 11842012 DOI: 10.2307/1543219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the surf clam, Spisula solidissima, serotonin was reported to induce spawning when injected into the gonads. At nanomolar concentrations, it facilitates the fertilizability of oocyte by sperm, at micromolar concentration, it triggers the meiotic maturation of prophase 1-arrested oocytes, thus mimicking the effect of sperm. To further understand the role of serotonin in the gametogenic and spawning processes, we used both immunohistochemistry and high-pressure liquid chromatography linked with electrochemical detection to detect serotonin in the gonads of the surf clam. We found serotonin-containing varicose fibers covering the surface of the germinal epithelium in both sexes. The area occupied by the serotonergic innervation field encircling gonad acini varied according to the gonadal stages (active phase, ripe phase, partially spawned phase, spent phase). We also found large variations in the serotonin concentration between specimens during the gametogenic cycle. The serotonin concentration was correlated with gonad growth: it decreased in the ripe phase in comparison with the previous phase, the active phase. We attribute the decrease to the increase of total gonad mass in this stage. In contrast, as spawning begins, the total gonad mass declines while the gonad serotonin concentration increases to a level similar to that found in active phase. The finding that prior to spawning, serotonin is present in the gonads within fibers exhibiting distinct varicosities suggests that it is implicated in spawning.
Collapse
Affiliation(s)
- Isabelle Masseau
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
23
|
Lacoste A, De Cian MC, Cueff A, Poulet SA. Noradrenaline and α-adrenergic signaling induce thehsp70gene promoter in mollusc immune cells. J Cell Sci 2001; 114:3557-64. [PMID: 11682614 DOI: 10.1242/jcs.114.19.3557] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of heat shock proteins (hsp) is a homeostatic mechanism induced in both prokaryotic and eukaryotic cells in response to metabolic and environmental insults. A growing body of evidence suggests that in mammals, the hsp response is integrated with physiological responses through neuroendocrine signaling. In the present study, we have examined the effect of noradrenaline (NA) on the hsp70 response in mollusc immune cells. Oyster and abalone hemocytes transfected with a gene construct containing a gastropod hsp70 gene promoter linked to the luciferase reporter-gene were exposed to physiological concentrations of NA, or to various α- and β-adrenoceptor agonists and antagonists. Results show that NA and α-adrenergic stimulations induced the expression of luciferase in transfected mollusc immunocytes. Furthermore, exposure of hemocytes to NA or to the α-adrenoceptor agonist phenylephrine (PE) resulted in the expression of the inducible isoform of the hsp70 protein. Pertussis toxin (PTX), the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor calphostin C, the Ca2+-dependent PKC inhibitor Gö 6976 and the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 blocked the PE-mediated induction of the hsp70 gene promoter. These results suggest that α-adrenergic signaling induces the transcriptionnal upregulation of hsp70 in mollusc hemocytes through a PTX-sensitive G-protein, PLC, Ca2+-dependent PKC and PI 3-kinase. Thus, a functional link exists between neuroendocrine signaling and the hsp70 response in mollusc immune cells.
Collapse
Affiliation(s)
- A Lacoste
- Station Biologique de Roscoff, CNRS-Université Paris VI-INSU, Place Georges Teissier, BP 74, F-29682 Roscoff Cedex, France.
| | | | | | | |
Collapse
|
24
|
Lacoste A, Malham SK, Cueff A, Poulet SA. Stress-induced catecholamine changes in the hemolymph of the oyster Crassostrea gigas. Gen Comp Endocrinol 2001; 122:181-8. [PMID: 11316423 DOI: 10.1006/gcen.2001.7629] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stress response is a series of coordinated physiological reactions increasing an organism's capacity to maintain homeostasis in the presence of threatening agents. This fundamental process is known to involve hormonal signaling to rapidly modulate key physiological functions in vertebrates, but data are lacking concerning neuroendocrine responses to stress in invertebrates. The present study examined circulating catecholamine (CA) responses to stress in oysters. Mechanical disturbances (consisting of shaking the animals) and temperature or salinity variations were applied to the animals because these three types of stressors are commonly encountered by oysters in aquaculture or in their natural habitat. Results show that both circulating noradrenaline (NA) and dopamine (DA) concentrations increased in response to stress. The catecholaminergic response to acute mechanical stressors was rapid (less than 5 min), transient (a return to basal CA levels was observed after 60-90 min), and reflected both the intensity and duration of the perturbation. In contrast, responses to temperature and salinity variations were long lasting (up to 72 h). CA concentrations varied from 1.61 +/- 0.30 ng NA/ml and 0.41 +/- 0.05 ng DA/ml to maximal values of 22.07 +/- 0.97 ng NA/ml and 2.24 +/- 0.19 ng DA/ml. Such CA concentrations are known to induce physiological responses in bivalves, suggesting that stress-induced NA and DA changes exert a regulatory function in oysters.
Collapse
Affiliation(s)
- A Lacoste
- Station Biologique de Roscoff, CNRS-Université Paris VI-INSU, Place Georges Teissier, Roscoff cedex, F-29682, France
| | | | | | | |
Collapse
|
25
|
Lacoste A, Malham SK, Cueff A, Jalabert F, Gélébart F, Poulet SA. Evidence for a form of adrenergic response to stress in the mollusc Crassostrea gigas. J Exp Biol 2001; 204:1247-55. [PMID: 11249835 DOI: 10.1242/jeb.204.7.1247] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Catecholamines and pro-opiomelanocortin (POMC)-derived peptides, some of the central regulators of the stress-response systems of vertebrates, are also present in invertebrates. However, studies are needed to determine how these hormones participate in the organisation of neuroendocrine stress-response axes in invertebrates. Our present work provides evidence for the presence of an adrenergic stress-response system in the oyster Crassostrea gigas. Noradrenaline and dopamine are released into the circulation in response to stress. Storage and release of these hormones take place in neurosecretory cells presenting morphological and biochemical similarities with vertebrate chromaffin cells. Both in vivo and in vitro experiments showed that applications of the neurotransmitters acetylcholine or carbachol caused no significant release of noradrenaline or dopamine. Moreover, the nicotinic antagonists hexamethonium and α -bungarotoxin and the muscarinic antagonist atropine caused no significant inhibition of catecholamine release in stressed oysters. Adrenocorticotropic hormone (ACTH) induced a significant release of noradrenaline, but the release of dopamine in response to ACTH was not significant. These results suggest that, unlike that of vertebrates, the adrenergic stress-response system of oysters is not under the control of acetylcholine and that other factors, such as the neuropeptide ACTH, might control this system.
Collapse
Affiliation(s)
- A Lacoste
- Station Biologique de Roscoff, CNRS, INSU, Université Pierre et Marie Curie, Paris 6, BP 74, F-29682 ROSCOFF, France.
| | | | | | | | | | | |
Collapse
|
26
|
Pires A, Guilbault TR, Mitten JV, Skiendzielewski JA. Catecholamines in larvae and juveniles of the prosobranch gastropod, Crepidula fornicata. Comp Biochem Physiol C Toxicol Pharmacol 2000; 127:37-47. [PMID: 11081411 DOI: 10.1016/s0742-8413(00)00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated roles of catecholamines in metamorphosis of the prosobranch gastropod, Crepidula fornicata. Levels of DOPA, norepinephrine (NE) and dopamine (DA) were measured by high-pressure liquid chromatography (HPLC) in competent larvae and juvenile siblings that metamorphosed in response to the natural adult-derived cue or to elevated K+. Competent larvae contained 1.58 +/- 0.26 (S.E.M.) x 10(-2) pmol DOPA, 0.91 +/- 0.45 x 10(-2) pmol NE, and 0.290 +/- 0.087 pmol DA (mean values per microg total protein, n = 4 batches of larvae). Levels of DA per individual were not different between larvae and juvenile siblings; levels of NE were higher in juveniles. The tyrosine hydroxylase (TH) inhibitor alpha-methyl-DL-m-tyrosine (alpha-MMT) depleted DOPA and DA to approximately half of control values without affecting levels of NE. Depletion of DOPA and DA was accompanied by inhibition of metamorphosis in response to the natural cue but not to elevated K+. The dopamine-beta-hydroxylase inhibitor diethyldithiocarbamate (DDTC) induced high frequencies of metamorphosis at concentrations of 0.1-10 microM. In juveniles induced by 10 microM DDTC, levels of both NE and DA averaged approximately 80% of those in control larvae. Catecholamines may function as endogenous regulators of metamorphosis in C. fornicata.
Collapse
Affiliation(s)
- A Pires
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Catecholamines have previously been detected in numerous tissues and are thought to control a wide variety of physiological functions in bivalve molluscs. In the present study, alumina extraction and high-performance liquid chromatography reveal the presence of significant concentrations of 3,4-dihydroxyphenylalanine (DOPA), dopamine, and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hemolymph of the sea scallop, Placopecten magellanicus. The concentration of dopamine in the hemolymph averaged 223.8 ng/ml, (+/-48.4, SEM), equivalent to 10(-7) to 10(-6) M. Neither epinephrine nor norepinephrine was reliably detected in significant quantities. Previous studies have demonstrated physiological responses to dopamine with thresholds of 10(-9) to 10(-6) M, thus suggesting that this catecholamine may have an endocrine function. Furthermore, monitoring hemolymph concentrations of catechols might provide a sensitive measure of the physiological status of bivalves. For example, drugs known to affect catechol concentrations in other tissues also effect hemolymph levels. Administration of monoamine oxidase inhibitors such as pargyline, deprenyl, and clorgyline at 10(-4) M for 1 day of incubation followed by a 2-day wash resulted in decreased hemolymph concentrations of DOPAC and increased concentrations of its precursors, DOPA and dopamine. Incubation in 10(-4) M 3,5-dinitrocatechol, a catecholamine-O-methyl transferase blocker, for 1 day followed by a 2-day wash significantly increased the concentration of dopamine and DOPAC in the hemolymph. Scallops incubated in 10(-5) M alpha-methyl-p-tyrosine, a blocker of tyrosine hydroxylase, for 1 day followed by a 3-day wash in artificial seawater had significantly reduced concentrations of DOPA, dopamine, and DOPAC in the hemolymph. In addition to responding to pharmacological agents, dopamine levels also decreased significantly following thermal induction of spawning, thus suggesting that hemolymph concentrations of catechols might provide indices of reproductive activity and/or stress.
Collapse
Affiliation(s)
- A K Pani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | |
Collapse
|
28
|
Croll RP, Voronezhskaya EE, Hiripi L, Elekes K. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: II. Postembryonic development of central and peripheral cells. J Comp Neurol 1999; 404:297-309. [PMID: 9952349 DOI: 10.1002/(sici)1096-9861(19990215)404:3<297::aid-cne2>3.0.co;2-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Catecholamines have long been thought to play important roles in different mollusc neural functions. The present study used glyoxylate- and aldehyde-induced histofluorescence to identify central and peripheral catecholaminergic neurons in the snail Lymnaea stagnalis. The majority of these cells were also found to react to antibodies raised against tyrosine hydroxylase. A minority of the catecholaminergic neurons, however, exhibited no such immunoreactivity. The number of central catecholaminergic neurons nearly doubled (from about 45 to about 80 cells) during the first 2-3 days of postembryonic development. Thereafter, catecholaminergic neurons again doubled in number and generally grew by about 100-200% in soma diameter as the snails grew by 1,000% in overall linear measurements. In contrast to the relatively meager addition of central catecholaminergic neurons, several thousand catecholaminergic somata were added to different peripheral tissues during postembryonic development. These small, centrally projecting neurons were particularly concentrated in the lips, esophagus, anterior margin of the foot, and different regions of the male and female reproductive tracts. Chromatographic analyses indicated that dopamine was the major catecholamine present in the central ganglia, foot, and esophagus, although detectable levels of norepinephrine (approximately 20% of dopamine levels) were also found in the ganglia. The total content but not the concentration of dopamine increased within the tissue samples during postembryonic development. The companion study (Voronezhskaya et al. [1999] J. Comp. Neurol. 404:285-296) and the present study furnish a complete description of central and peripheral catecholaminergic neurons from their first appearance in early embryonic development to adulthood.
Collapse
Affiliation(s)
- R P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
29
|
Pani AK, Croll RP. Pharmacological analysis of monoamine synthesis and catabolism in the scallop, Placopecten magellanicus. GENERAL PHARMACOLOGY 1998; 31:67-73. [PMID: 9595282 DOI: 10.1016/s0306-3623(97)00448-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. The efficacies of various agents that affect monoamine synthesis, oxidation and methylation were evaluated in the scallop, Placopecten magellanicus, through the use of high performance liquid chromatography with electrochemical detection. 2. Central ganglia, labial palps and feet from animals bathed in 10(-5) M or 10(-4) M alpha-methyl-p-tyrosine for 1 day followed by 3-6 day recovery in artificial sea water had significantly reduced concentrations of 3,4-dihydroxyphenylalanine, norepinephrine, epinephrine, dopamine and 3,4-dihydroxyphenylacetic acid. 3. Central ganglia, labial palps and feet from scallops incubated in 10(-5) M or 10(-4) M para-chlorophenylalanine for 1 day followed by a 3-6 day wash in artificial sea water had significantly reduced concentrations of 5-hydroxytryptophan, 5-hydroxytryptamine and 5-hydroxy-3-indoleacetic acid. 4. Monamine oxidase inhibitors (administered at 10(-4) M for 1 day followed by a 2-day recovery) significantly decreased the concentrations of 3,4-dihydroxyphenylalanine and 5-hydroxy-3-indolacetic acid and increased the concentrations of their corresponding precursors in tissues. Deprenyl, a monoamine oxidase type B inhibitor, generally had more potent effects than pargyline, which inhibits monoamine oxidase type B and type A. Clorgyline, a monoamine oxidase type A specific inhibitor, showed few significant effects on the levels of the monoamines or their precursors or metabolites. 5. Bath application of 10(-4) M 3,5-dinitrocatechol, a blocker of catechol-O-methyl transferase, resulted in significant decreases in the concentrations of normetanephrine and metanephrine in nervous and other tissues and increased the levels of their corresponding precursors, dopamine, norepinephrine and epinephrine. 6. Generally, treatments that appeared to directly cause changes in levels of catecholaminergic compounds indirectly resulted in inverse changes in levels of indolaminergic compounds, and vice versa. This suggests an interaction between these transmitter systems. 7. The detection of monoaminergic compounds and dramatic changes in their concentrations following various drug effects strongly suggests the presence of mammalian-type metabolic pathways leading to synthesis and subsequent inactivation of monoamines.
Collapse
Affiliation(s)
- A K Pani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
30
|
Moroz LL, Sudlow LC, Jing J, Gillette R. Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 1997; 382:176-88. [PMID: 9183687 DOI: 10.1002/(sici)1096-9861(19970602)382:2<176::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution of serotonin (5-HT)-immunoreactive elements in peripheral organs of the sea-slugs Pleurobranchaea californica and Tritonia diomedea was studied in cryostat sections. For Pleurobranchaea, 5-HT-immunoreactive (5-HT-IR) neuron cell bodies were found only in the central nervous system (CNS); 5-HT-IR cell bodies were not observed in foot, tentacles, rhinophores, oral veil, mouth, buccal mass, esophagus, gills, salivary glands, skin, reproductive system, and acidic glands, nor in peripheral tentacle and rhinophore ganglia. However, 5-HT-IR neuronal processes were widely distributed in these structures and the patterns of 5-HT-IR elements were characteristic for each particular peripheral tissue. 5-HT-IR elements were most dense in the sole of the foot and the reproductive system, followed by rhinophores, tentacles, oral veil, mouth, buccal mass, and esophagus. The sensory epithelium of rhinophores, tentacles, and mouth showed a highly structured glomerular organization of 5-HT-IR fibers, suggesting a role for 5-HT in sensory signaling. A much lower density of 5-HT-IR innervation was observed in gills, skin, salivary, and acidic glands. 5-HT-IR was observed in neuropil of tentacle and rhinophore ganglia with many transverse 5-HT-IR axons running to peripheral sensory areas. The distribution of 5-HT-IR elements in Tritonia was similar to that of Pleurobranchaea. A significant suggestion of the data is that central serotonergic neurons may modulate afferent pathways from sensory epithelia at the periphery.
Collapse
Affiliation(s)
- L L Moroz
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|