1
|
Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 2014; 5:180. [PMID: 24847282 PMCID: PMC4021133 DOI: 10.3389/fphys.2014.00180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022] Open
Abstract
Multidrug/Multixenobiotic resistance (MDR/MXR) is a widespread phenomenon with clinical, agricultural and biotechnological implications, where MDR/MXR transporters that are presumably able to catalyze the efflux of multiple cytotoxic compounds play a key role in the acquisition of resistance. However, although these proteins have been traditionally considered drug exporters, the physiological function of MDR/MXR transporters and the exact mechanism of their involvement in resistance to cytotoxic compounds are still open to debate. In fact, the wide range of structurally and functionally unrelated substrates that these transporters are presumably able to export has puzzled researchers for years. The discussion has now shifted toward the possibility of at least some MDR/MXR transporters exerting their effect as the result of a natural physiological role in the cell, rather than through the direct export of cytotoxic compounds, while the hypothesis that MDR/MXR transporters may have evolved in nature for other purposes than conferring chemoprotection has been gaining momentum in recent years. This review focuses on the drug transporters of the Major Facilitator Superfamily (MFS; drug:H+ antiporters) in the model yeast Saccharomyces cerevisiae. New insights into the natural roles of these transporters are described and discussed, focusing on the knowledge obtained or suggested by post-genomic research. The new information reviewed here provides clues into the unexpectedly complex roles of these transporters, including a proposed indirect regulation of the stress response machinery and control of membrane potential and/or internal pH, with a special emphasis on a genome-wide view of the regulation and evolution of MDR/MXR-MFS transporters.
Collapse
Affiliation(s)
- Sandra C Dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Miguel C Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Paulo J Dias
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
2
|
Sherlach KS, Roepe PD. "Drug resistance associated membrane proteins". Front Physiol 2014; 5:108. [PMID: 24688472 PMCID: PMC3960488 DOI: 10.3389/fphys.2014.00108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Katy S Sherlach
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University Washington, DC, USA
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University Washington, DC, USA
| |
Collapse
|
3
|
Costa C, Nunes J, Henriques A, Mira NP, Nakayama H, Chibana H, Teixeira MC. Candida glabrata drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis. J Antimicrob Chemother 2014; 69:1767-76. [PMID: 24576949 DOI: 10.1093/jac/dku044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The ability of opportunistic pathogenic Candida species to persist and invade specific niches in the human host depends on their resistance to natural growth inhibitors and antifungal therapy. This work describes the role of the Candida glabrata drug:H(+) antiporter CgTpo3 (ORF CAGL0I10384g) in this context. METHODS Deletion and cloning of CgTPO3 was achieved using molecular biology tools. C. glabrata strain susceptibility was assayed based on growth in liquid and solid media and through MIC determination. Radiolabelled compound accumulation or HPLC were used for the assessment of the role of CgTpo3 as a drug or polyamine transporter. Quantitative RT-PCR was used for expression analysis. RESULTS CgTpo3 was found to confer resistance to azole drugs in C. glabrata. This protein was found to be localized to the plasma membrane and to decrease the intracellular accumulation of [(3)H]clotrimazole, playing a direct role in its extrusion from pre-loaded C. glabrata cells. CgTPO3 was further found to confer resistance to spermine, complementing the susceptibility phenotypes exhibited by the deletion of its Saccharomyces cerevisiae homologue, TPO3. In spermine-stressed C. glabrata cells, CgTPO3 is transcriptionally activated in a CgPdr1-dependent manner, contributing to a decrease in the intracellular concentration of this polyamine. Clotrimazole exposure was found to lead to the intracellular accumulation of spermine, and pre-exposure to this polyamine was found consistently to lead to increased clotrimazole resistance. CONCLUSIONS Altogether, these results point to a significant role for CgTpo3 in azole drug resistance and in the tolerance to high polyamine concentrations, such as those found in the urogenital tract.
Collapse
Affiliation(s)
- Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal IBB - Institute for Biotechnology and Bioengineering, Biological Sciences Research Group, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - Joana Nunes
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal IBB - Institute for Biotechnology and Bioengineering, Biological Sciences Research Group, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - André Henriques
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal IBB - Institute for Biotechnology and Bioengineering, Biological Sciences Research Group, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - Nuno P Mira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal IBB - Institute for Biotechnology and Bioengineering, Biological Sciences Research Group, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal IBB - Institute for Biotechnology and Bioengineering, Biological Sciences Research Group, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
4
|
Frede J, Fraser SP, Oskay-Özcelik G, Hong Y, Ioana Braicu E, Sehouli J, Gabra H, Djamgoz MB. Ovarian cancer: Ion channel and aquaporin expression as novel targets of clinical potential. Eur J Cancer 2013; 49:2331-44. [DOI: 10.1016/j.ejca.2013.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/29/2013] [Accepted: 03/10/2013] [Indexed: 01/11/2023]
|
5
|
Costa C, Henriques A, Pires C, Nunes J, Ohno M, Chibana H, Sá-Correia I, Teixeira MC. The dual role of candida glabrata drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance. Front Microbiol 2013; 4:170. [PMID: 23805133 PMCID: PMC3693063 DOI: 10.3389/fmicb.2013.00170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g), from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a green fluorescent protein fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of 3H-flucytosine and, to a moderate extent, of 3H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of 14C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization and multidrug resistance.
Collapse
Affiliation(s)
- Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon Lisbon, Portugal ; Biological Sciences Research Group, Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Candida glabrata drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1. Antimicrob Agents Chemother 2013; 57:3159-67. [PMID: 23629708 DOI: 10.1128/aac.00811-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The widespread emergence of antifungal drug resistance poses a severe clinical problem. Though predicted to play a role in this phenomenon, the drug:H(+) antiporters (DHA) of the major facilitator superfamily have largely escaped characterization in pathogenic yeasts. This work describes the first DHA from the pathogenic yeast Candida glabrata reported to be involved in antifungal drug resistance, the C. glabrata QDR2 (CgQDR2) gene (ORF CAGL0G08624g). The expression of CgQDR2 in C. glabrata was found to confer resistance to the antifungal drugs miconazole, tioconazole, clotrimazole, and ketoconazole. By use of a green fluorescent protein (GFP) fusion, the CgQdr2 protein was found to be targeted to the plasma membrane in C. glabrata. In agreement with these observations, CgQDR2 expression was found to decrease the intracellular accumulation of radiolabeled clotrimazole in C. glabrata and to play a role in the extrusion of this antifungal from preloaded cells. Interestingly, the functional heterologous expression of CgQDR2 in the model yeast Saccharomyces cerevisiae further confirmed the role of this gene as a multidrug resistance determinant: its expression was able to complement the susceptibility phenotype exhibited by its S. cerevisiae homologue, QDR2, in the presence of imidazoles and of the antimalarial and antiarrhythmic drug quinidine. In contrast to the findings reported for Qdr2, CgQdr2 expression does not contribute to the ability of yeast to grow under K(+)-limiting conditions. Interestingly, CgQDR2 transcript levels were seen to be upregulated in C. glabrata cells challenged with clotrimazole or quinidine. This upregulation was found to depend directly on the transcription factor CgPdr1, the major regulator of multidrug resistance in this pathogenic yeast, which has also been found to be a determinant of quinidine and clotrimazole resistance in C. glabrata.
Collapse
|
7
|
The yeast ABC transporter Pdr18 (ORF YNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochem J 2012; 440:195-202. [PMID: 21831043 PMCID: PMC3215286 DOI: 10.1042/bj20110876] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The action of multidrug efflux pumps in MDR (multidrug resistance) acquisition has been proposed to partially depend on the transport of physiological substrates which may indirectly affect drug partition and transport across cell membranes. In the present study, the PDR18 gene [ORF (open reading frame) YNR070w], encoding a putative PDR (pleiotropic drug resistance) transporter of the ATP-binding cassette superfamily, was found to mediate plasma membrane sterol incorporation in yeast. The physiological role of Pdr18 is demonstrated to affect plasma membrane potential and is proposed to underlie its action as a MDR determinant, conferring resistance to the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). The action of Pdr18 in yeast tolerance to 2,4-D, which was found to contribute to reduce [(14)C]2,4-D intracellular accumulation, may be indirect, given the observation that 2,4-D exposure deeply affects the sterol plasma membrane composition, this effect being much stronger in a Δpdr18 background. PDR18 activation under 2,4-D stress is regulated by the transcription factors Nrg1, controlling carbon source availability and the stress response, and, less significantly, Yap1, involved in oxidative stress and MDR, and Pdr3, a key regulator of the yeast PDR network, consistent with a broad role in stress defence. Taken together, the results of the present study suggest that Pdr18 plays a role in plasma membrane sterol incorporation, this physiological trait contributing to an MDR phenotype.
Collapse
|
8
|
Fodale V, Pierobon M, Liotta L, Petricoin E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J 2011; 17:89-95. [PMID: 21427552 DOI: 10.1097/ppo.0b013e318212dd3d] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemotherapy treatments are considered essential tools to defeat cancer progression and dissemination to improve patients' quality of life and survival. Although most malignancies initially respond to chemotherapeutic treatments, after an unpredictable period, tumor cells develop mechanisms of resistance to the treatment. Different cell compartments are involved in the mechanism of chemoresistance, and multiple mechanisms can be activated by single cells at different times of the cancer progression. Alteration of drug metabolism, derangement of intracellular pathways' signaling, cross-talk between different membrane receptors, and modification of apoptotic signaling and interference with cell replication are all mechanisms that the cell uses to overcome the effect of pharmacological compounds.In this review, we describe different adaptation, mostly at the level of the proteome, which cancer cells use to develop resistance to cancer treatment.
Collapse
Affiliation(s)
- Valentina Fodale
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | | | |
Collapse
|
9
|
Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sá-Correia I. Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. MICROBIOLOGY-SGM 2010; 157:945-956. [PMID: 21148207 DOI: 10.1099/mic.0.043661-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast QDR3 gene encodes a plasma membrane drug : H(+) antiporter of the DHA1 family that was described as conferring resistance against the drugs quinidine, cisplatin and bleomycin and the herbicide barban, similar to its close homologue QDR2. In this work, a new physiological role for Qdr3 in polyamine homeostasis is proposed. QDR3 is shown to confer resistance to the polyamines spermine and spermidine, but, unlike Qdr2, also a determinant of resistance to polyamines, Qdr3 has no apparent role in K(+) homeostasis. QDR3 transcription is upregulated in yeast cells exposed to spermine or spermidine dependent on the transcription factors Gcn4, which controls amino acid homeostasis, and Yap1, the main regulator of oxidative stress response. Yap1 was found to be a major determinant of polyamine stress resistance in yeast and is accumulated in the nucleus of yeast cells exposed to spermidine-induced stress. QDR3 transcript levels were also found to increase under nitrogen or amino acid limitation; this regulation is also dependent on Gcn4. Consistent with the concept that Qdr3 plays a role in polyamine homeostasis, QDR3 expression was found to decrease the intracellular accumulation of [(3)H]spermidine, playing a role in the maintenance of the plasma membrane potential in spermidine-stressed cells.
Collapse
Affiliation(s)
- Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Tânia R Cabrito
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Zaitunnissa M Hanif
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Rita C Vargas
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Sandra Tenreiro
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Isabel Sá-Correia
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
10
|
Panagiotopoulou V, Richardson G, Jensen OE, Rauch C. On a biophysical and mathematical model of Pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:201-11. [DOI: 10.1007/s00249-009-0555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/05/2009] [Accepted: 10/09/2009] [Indexed: 11/28/2022]
|
11
|
Rauch C. Toward a mechanical control of drug delivery. On the relationship between Lipinski's 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:829-46. [PMID: 19296096 DOI: 10.1007/s00249-009-0429-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/30/2022]
Abstract
Based on molecular and physiological resemblance, the mechanism that controls drug bioavailability and toxicity also shares strong similarities to the one that controls drug resistance. In both cases, this mechanism relies on the expression of drug transporters and the physico-chemical properties of drugs, which together alter the intracellular accumulation of chemicals in cells or tissues. However, a parameter that is central and has received great attention in the field of bioavailability, but almost none in the field of drug resistance, is the molecular weight of drugs. In the former area, it is well known that to achieve a reasonable bioavailability, drugs must have-among other properties-a molecular weight less than 500, known as Lipinski's 2nd rule. Accordingly, it is worth questioning whether a similar rule exists in the field of drug resistance and what subsequent mechanism would control the membrane permeability to drugs as a function of their molecular weight. I demonstrate here that cytosolic pH fixes the molecular weight of drugs entering cells, by altering the cell membrane mechanical properties and that, both cytosolic pH and membrane mechanical properties are needed and sufficient to explain doxorubicin resistance levels in different cancerous cell lines. Finally, I discuss the efficiency of a drug handling activity by transporters in MDR and suggest ways to control drug delivery mechanically. In addition, and for the first time, the literal expression of a Law similar to Lipinski's 2nd rule will be described as a function of cytosolic pH and lipid number asymmetry.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
12
|
Vargas RC, García-Salcedo R, Tenreiro S, Teixeira MC, Fernandes AR, Ramos J, Sá-Correia I. Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. EUKARYOTIC CELL 2006; 6:134-42. [PMID: 17189489 PMCID: PMC1797947 DOI: 10.1128/ec.00290-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The QDR2 gene of Saccharomyces cerevisiae encodes a putative plasma membrane drug:H(+) antiporter that confers resistance against quinidine, barban, bleomycin, and cisplatin. This work provides experimental evidence of defective K(+) (Rb(+)) uptake in the absence of QDR2. The direct involvement of Qdr2p in K(+) uptake is reinforced by the fact that increased K(+) (Rb(+)) uptake due to QDR2 expression is independent of the Trk1p/Trk2p system. QDR2 expression confers a physiological advantage for the yeast cell during the onset of K(+) limited growth, due either to a limiting level of K(+) in the growth medium or to the presence of quinidine. This drug decreases the K(+) uptake rate and K(+) accumulation in the yeast cell, especially in the Deltaqdr2 mutant. Qdr2p also helps to sustain the decrease of intracellular pH in quinidine-stressed cells in growth medium at pH 5.5 by indirectly promoting H(+) extrusion affected by the drug. The results are consistent with the hypothesis that Qdr2p may also couple K(+) movement with substrate export, presumably with quinidine. Other clues to the biological role of QDR2 in the yeast cell come from two additional lines of experimental evidence. First, QDR2 transcription is activated under nitrogen (NH(4)(+)) limitation or when the auxotrophic strain examined enters stationary phase due to leucine limitation, this regulation being dependent on general amino acid control by Gcn4p. Second, the amino acid pool is higher in Deltaqdr2 cells than in wild-type cells, indicating that QDR2 expression is, directly or indirectly, involved in amino acid homeostasis.
Collapse
Affiliation(s)
- Rita C Vargas
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
13
|
Maitra R, Hamilton JW. Arsenite Regulates Cystic Fibrosis Transmembrane Conductance Regulator and P-glycoprotein: Evidence of Pathway Independence. Cell Physiol Biochem 2005; 16:109-18. [PMID: 16121039 DOI: 10.1159/000087737] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2005] [Indexed: 01/12/2023] Open
Abstract
In the past, people have argued for and against the theory of reciprocal regulation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and P-glycoprotein (Pgp). Data have indicated that this may occur in vitro during drug-induced selection of cells, and in vivo during development. Much of this debate has been caused by a severe lack of mechanistic details involved in such regulation. Our past data indicate that certain Pgp modulators can affect CFTR expression and function. The goal of this study was to investigate the effects of trivalent arsenic (arsenite), a known transcriptional activator of Pgp, on CFTR expression. In vitro analyses in T-84 cells that express basal levels of Pgp and CFTR were conducted using a variety of molecular techniques. Expressions of both genes were altered following treatment with arsenite in a dose- and time-dependent fashion. CFTR expression was suppressed almost three-fold by arsenite, along with a concomitant increase in P-glycoprotein expression. We also report that a member of the MAPK-family, the ERK-mediated signaling cascade is implicated in suppression of CFTR expression following treatment with arsenite. However, this particular pathway is not involved in regulation of P-glycoprotein expression in T-84 cells following treatment with arsenite. Thus, the regulatory pathways that control functional expression of CFTR and P-glycoprotein following arsenite treatment in T-84 cells are distinct and independent.
Collapse
Affiliation(s)
- Rangan Maitra
- Department of Pharmacology and Toxicology, Dartmouth Medical School Hanover, NH 03755-3835, USA
| | | |
Collapse
|
14
|
Abstract
The emergence of drug-resistance poses a major obstacle to the control of malaria. A homolog of the major multidrug-transporter in mammalian cells was identified, Plasmodium falciparum multidrug resistance protein-1, pfmdr1, also known as the P-glycoprotein homolog 1, Pgh-1. Several studies have demonstrated strong, although incomplete, associations between resistance to the widely used antimalarial drug chloroquine and mutation of the pfmdr1 gene in both laboratory and field isolates. Genetic studies have confirmed a link between mutation of the pfmdr1 gene and chloroquine-resistance. Although not essential for chloroquine-resistance, pfmdr1 plays a role in modulating levels of resistance. At the same time it appears to be a significant component in resistance to the structurally related drug quinine. A strong association has been observed between possession of the wildtype form of pfmdr1, amplification of pfmdr1 and resistance to hydrophobic drugs such as the arylaminoalcohol mefloquine and the endoperoxide artemisinin derivatives in field isolates. This is supported by genetic studies. The arylaminoalcohol and endoperoxide drugs are structurally unrelated drugs and this resistance resembles true multidrug resistance. Polymorphism in pfmdr1 and gene amplification has been observed throughout the world and their usefulness in predicting resistance levels is influenced by the history of drug selection of each population.
Collapse
|
15
|
Dragomir A, Roomans GM. Increased chloride efflux in colchicine-resistant airway epithelial cell lines. Biochem Pharmacol 2004; 68:253-61. [PMID: 15193997 DOI: 10.1016/j.bcp.2004.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/15/2004] [Indexed: 11/30/2022]
Abstract
Colchicine has been proposed as a treatment to alleviate chronic lung inflammation in cystic fibrosis patients and clinical trials are ongoing. Our aim was to investigate whether chronic exposure of cystic fibrosis cells to colchicine can affect their ability to transport chloride in response to cAMP. Colchicine-resistant cells were selected by growing in medium containing nanomolar concentrations of the drug. While microtubuli were affected by acute exposure to colchicine, they appeared normal in colchicine-resistant cells. Colchicine-resistant clones had higher expression of multidrug resistance proteins compared to untreated cells. Cystic fibrosis transmembrane conductance regulator (CFTR) labelling by immunocytochemistry showed no significant changes. The intracellular chloride concentration and basal chloride efflux of the cystic fibrosis treated cells increased significantly compared with untreated cells, while for the cAMP-stimulated Cl-efflux there was no significant change. The results suggest that colchicine promotes chloride efflux via alternative chloride channels. Since this is an accepted strategy for pharmacological treatment of cystic fibrosis, the results strengthen the notion that colchicine would be beneficial to these patients.
Collapse
Affiliation(s)
- Anca Dragomir
- Department of Medical Cell Biology, University of Uppsala, Box 571, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
16
|
Sá-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 2002; 98:215-26. [PMID: 12141988 DOI: 10.1016/s0168-1656(02)00133-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The emergence of multidrug resistance (MDR) plays a crucial role in the failure of treatments of tumors and infectious diseases and in the control of plant pathogens, weeds and food-poisoning and food-spoilage microorganisms. Among the mechanisms underlying the MDR phenomenon in various organisms is the action of transmembrane transport proteins that presumably catalyse the active expulsion of structurally and functionally unrelated cytotoxic compounds out of the cell or their intracellular partitioning. On the basis of the complete genome sequence of Saccharomyces cerevisiae, numerous established and putative multidrug transporters were identified in this non-pathogenic, easy to manipulate eukaryotic model system. In yeast, the putative drug:H(+)-antiporters belong to the major facilitator superfamily; they comprise at least 23 proteins that have largely escaped characterisation by classical approaches. Other MDR determinants are membrane transporters belonging to the ATP binding cassette (ABC) superfamily, that utilize the energy of ATP hydrolysis for activity, and factors for transcriptional regulation of all the MDR transporters. This work reviews the current status of knowledge on the poorly characterized H(+)-antiporters, with 12 and 14 predicted spans, DHA12 and DHA14, drug efflux families. Consideration is given to the inventory and phylogenetic characterization, role as MDR determinants, regulation of gene expression, subcellular localisation and activity as solute transporters. Most of the present knowledge on these putative drug:H(+)-antiporters was driven by disclosure of S. cerevisiae genome sequence, in April 1996, being a paradigm of post-genomic research.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | |
Collapse
|
17
|
Ursos LMB, Roepe PD. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med Res Rev 2002; 22:465-91. [PMID: 12210555 DOI: 10.1002/med.10016] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Malarial parasites remain a health problem of staggering proportions. Worldwide, they infect about 500 million, incapacitate tens of millions, and kill approximately 2.5 million (mostly children) annually. Four species infect humans, but most deaths are caused by one particular species, Plasmodium falciparum. The rising number of malarial deaths is due in part to increased drug resistance in P. falciparum. There are many varieties of antimalarial drug resistance, and there may very well be several molecular level contributions to each variety. This is because there are a number of different drugs with different mechanisms of action in use, and more than one molecular event may sometimes be relevant for resistance to any one class of drugs. Thus, "multidrug" resistance in a clinical setting likely entails complex combinations of overlapping resistance pathways, each specific for one class of drug, that then add together to confer the particular multidrug resistance phenotype. Nonetheless, rapid progress has been made in recent years in elucidating mechanisms of resistance to specific classes of antimalarial drugs. As one example, resistance to the antimalarial drug chloroquine, which has been the mainstay therapy for decades, is becoming well understood. This article focuses on recent advances in determining the molecular mechanism of chloroquine resistance, with particular attention to the biochemistry and biophysics of the P. falciparum digestive vacuole, wherein changes in pH have recently been found to be associated with chloroquine resistance.
Collapse
Affiliation(s)
- Lyann M B Ursos
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Program in Tumor Biology, Georgetown University, 37th and O Streets, Washington, D.C. 20057-1227, USA
| | | |
Collapse
|
18
|
Porcelli AM, Scotlandi K, Strammiello R, Gislimberti G, Baldini N, Rugolo M. Intracellular pH regulation in U-2 OS human osteosarcoma cells transfected with P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:125-38. [PMID: 11853886 DOI: 10.1016/s0167-4889(01)00173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.
Collapse
Affiliation(s)
- Anna Maria Porcelli
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Castaing M, Loiseau A, Dani M. Designing multidrug-resistance modulators circumventing the reverse pH gradient in tumours. J Pharm Pharmacol 2001; 53:1021-8. [PMID: 11480537 DOI: 10.1211/0022357011776270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Multidrug-resistant tumours often exhibit a reverse pH gradient (acid outside), as they have an acid extracellular pH (pHe) and a neutral alkaline intracellular pH (pHi). This study was designed to test the hypothesis that the ability of lipophilic drugs to mediate multidrug resistance (MDR) reversal by interacting with the membrane phospholipids may be correlated with pH in resistant tumours. The permeation properties of five MDR modulators were therefore studied at 37 degrees C by quantifying their ability to induce the leakage of Sulfan blue through unilamellar anionic liposomes, over the range pH 6.5-7.7, and in the absence of any membrane potential (pHe = pHi). The dye leakage induced by two calcium blockers (diltiazem and verapamil) and two antiparasitic agents (thioacridine derivative and mepacrine) was found to significantly increase with the pH of the medium (P < 0.001), whereas that induced by a non-ionic detergent (Triton X-100) showed almost no pH-dependent variations. This process was a cooperative one (0.8 < Hill coefficient < 8.5) and the permeation doses inducing 50% dye leakage (PD50) ranged from 1.6 to 36.0 mM. The permeation ability of the MDR modulators (log(1/PD50)) significantly increased with their octanol-buffer distributions (logD) (slope = 0.35+/-0.06; y intercept = 1.65 +/- 0.14; P < 0.0001) and significantly decreased with their net electric charge (z) (slope = -0.48+/-0.07; y intercept = 2.85+/-0.08; P < 0.0001). A highly significant multiple correlation was found to exist between the variations of log(1/PD50) with those of logD and z (dlog(1/PD50)/dlogD = 0.21 +/- 0.05; dlog(1/PD50)/dz = -0.34+/-0.07; y intercept = 2.27+/-0.17; P < 0.000001). The results provide evidence that in resistant tumours (acid pHe and neutral alkaline pHi), the MDR reversal might be enhanced by favourable drug-membrane interactions if the modulators are designed in the form of highly lipophilic (logP approximately equals 4) mono-basic drugs with a near neutral pKa (pKa approximately equals 7-8).
Collapse
Affiliation(s)
- M Castaing
- GERCTOP-ESA6009, Faculté de Pharmacie, Marseille, France.
| | | | | |
Collapse
|
20
|
Nunes PA, Tenreiro S, Sá-Correia I. Resistance and adaptation to quinidine in Saccharomyces cerevisiae: role of QDR1 (YIL120w), encoding a plasma membrane transporter of the major facilitator superfamily required for multidrug resistance. Antimicrob Agents Chemother 2001; 45:1528-34. [PMID: 11302822 PMCID: PMC90500 DOI: 10.1128/aac.45.5.1528-1534.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As predicted based on structural considerations, we show results indicating that the member of the major facilitator superfamily encoded by Saccharomyces cerevisiae open reading frame YIL120w is a multidrug resistance determinant. Yil120wp was implicated in yeast resistance to ketoconazole and quinidine, but not to the stereoisomer quinine; the gene was thus named QDR1. Qdr1p was proved to alleviate the deleterious effects of quinidine, revealed by the loss of cell viability following sudden exposure of the unadapted yeast population to the drug, and to allow the earlier eventual resumption of exponential growth under quinidine stress. However, QDR1 gene expression had no detectable effect on the susceptibility of yeast cells previously adapted to quinidine. Fluorescence microscopy observation of the distribution of the Qdr1-green fluorescent protein fusion protein in living yeast cells indicated that Qdr1p is a plasma membrane protein. We also show experimental evidence indicating that yeast adaptation to growth with quinidine involves the induction of active expulsion of the drug from preloaded cells, despite the fact that this antiarrhythmic and antimalarial quinoline ring-containing drug is not present in the yeast natural environment. However, we were not able to prove that Qdr1p is directly implicated in this export. Results clearly suggest that there are other unidentified quinidine resistance mechanisms that can be used in the absence of QDR1.
Collapse
Affiliation(s)
- P A Nunes
- Centro de Engenharia Biológia e Química, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| | | | | |
Collapse
|
21
|
Tenreiro S, Rosa PC, Viegas CA, Sá-Correia I. Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 2000; 16:1469-81. [PMID: 11113970 DOI: 10.1002/1097-0061(200012)16:16<1469::aid-yea640>3.0.co;2-a] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this work, we report results on the functional analysis of Saccharomyces cerevisiae ORF YGR224w, predicted to code for an integral membrane protein, with 14 potential transmembrane segments, belonging to the major facilitator superfamily (MFS) of transporters which are required for multiple-drug resistance (MDR). This MFS-MDR homologue is required for yeast adaptation to high stress imposed by low-chain organic acids, in particular by acetic acid, and for resistance to azoles, especially to ketoconazole and fluconazole; the encoding gene was thus named the AZR1 gene. These conclusions were based on the higher susceptibility to these compounds of an azr1Delta deletion mutant strain compared with the wild-type and on the increased resistance of both azr1Delta and wild-type strains upon increased expression of the AZR1 gene from a centromeric plasmid clone. AZR1 gene expression reduces the duration of acetic acid-induced latency, although the growth kinetics of adapted cells under acetic acid stress is apparently independent of AZR1 expression level. Fluorescence microscopy observation of the distribution of the Azr1-GFP fusion protein in yeast living cells indicated that Azr1 is a plasma membrane protein. Studies carried out to gain some understanding of how this plasma membrane putative transporter facilitates yeast adaptation to acetic acid did not implicate Azr1p in the alteration of acetic acid accumulation into the cell through the active efflux of acetate.
Collapse
Affiliation(s)
- S Tenreiro
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
22
|
Brôco N, Tenreiro S, Viegas CA, Sá-Correia I. FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcriptional regulator. Yeast 1999; 15:1595-608. [PMID: 10572257 DOI: 10.1002/(sici)1097-0061(199911)15:15<1595::aid-yea484>3.0.co;2-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this work we report the disruption of a Saccharomyces cerevisiae ORF YBR008c (FLR1 gene) within the context of EUROFAN (EUROpean Functional Analysis Network) six-pack programme, using a PCR-mediated gene replacement protocol as well as the results of the basic phenotypic analysis of a deletant strain and the construction of a disruption cassette for inactivation of this gene in any yeast strain. We also show results extending the knowledge of the range of compounds to which FLR1 gene confers resistance to the antimitotic systemic benzimidazole fungicide benomyl and the antitumor agent methotrexate, reinforcing the concept that the FLR1 gene is a multidrug resistance (MDR) determinant. Our conclusions were based on the higher susceptibility to these compounds of flr1Delta compared with wild-type and on the increased resistance of both flr1Delta and wild-type strains upon increased expression of FLR1 gene from a centromeric plasmid clone. The present study also provides, for the first time, evidence that the adaptation of yeast cells to growth in the presence of benomyl involves the dramatic activation of FLR1 gene expression during benomyl-induced latency (up to 400-fold). Results obtained using a FLR1-lacZ fusion in a plasmid indicate that the activation of FLR1 expression in benomyl-stressed cells is under the control of the transcriptional regulator Pdr3p. Indeed, PDR3 deletion severely reduces benomyl-induced activation of FLR1 gene expression (by 85%), while the homologous Pdr1p transcription factor is apparently not involved in this activation.
Collapse
Affiliation(s)
- N Brôco
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
23
|
Abstract
For years, P-glycoprotein (P-gp) has been purported to be a membrane transporter capable of selectively transporting many (but not all) lipophilic anticancer drugs with diverse chemical structures. Because the alleged functions of P-gp provide a straightforward, near-perfect explanation for the molecular mechanism of multidrug resistance associated with P-gp overexpression. However, the exact molecular mechanism for P-gp's purported function has never been clearly understood since its initial discovery some 20 yr ago. In this paper, I develop a novel working hypothesis regarding the mechanism of P-gp's action and suggest that P-gp is an energy-dependent efflux pump only for certain conjugated metabolites (probably sulfates) of the lipophilic anticancer drugs but not for the parent compounds, as was always claimed. According to this hypothesis, P-gp overexpression in most cases is not the "culprit" but instead an "accomplice" in P-gp-associated multidrug resistance. The culprit is probably the enhanced function of the metabolizing enzymes for the lipophilic anticancer drugs. This hypothesis also predicts that one of the important physiological functions of P-gp is to be part of an intracellular machinery (together with the phase I and II metabolizing enzymes) for the metabolism, detoxification, and disposition of lipophilic endogenous chemicals as well as xenobiotics, including cytotoxic anticancer drugs. There exists a considerable body of circumstantial evidence in the literature that lends strong support to this mechanistic hypothesis of P-gp's action as well as to the predicted physiological functions of P-gp. It will be of considerable interest to examine this novel hypothesis experimentally.
Collapse
Affiliation(s)
- B T Zhu
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, USA
| |
Collapse
|
24
|
Weisburg JH, Roepe PD, Dzekunov S, Scheinberg DA. Intracellular pH and multidrug resistance regulate complement-mediated cytotoxicity of nucleated human cells. J Biol Chem 1999; 274:10877-88. [PMID: 10196165 DOI: 10.1074/jbc.274.16.10877] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In previous work (Weisburg, J. H., Curcio, M., Caron, P. C., Raghi, G., Mechetner, E. B., Roepe, P. D., and Scheinberg, D. A. (1996) J. Exp. Med. 183, 2699-2704), we showed that multidrug resistance (MDR) cells created by continuous selection with the vinca alkaloid vincristine (HL60 RV+) or by retroviral infection (K562/human MDR 1 cells) exhibited significant resistance to complement-mediated cytotoxicity (CMC). This resistance was due to the presence of overexpressed P-glycoprotein (P-GP). In this paper, we probe the molecular mechanism of this phenomenon. We test whether the significant elevated intracellular pH (pHi) that accompanies P-GP overexpression is sufficient to confer resistance to CMC and whether this resistance is related to effects on complement function in the cell membrane. Control HL60 cells not expressing P-GP, but comparably elevated in cytosolic pHi by two independent methods (CO2 "conditioning" or isotonic Cl- substitution), are tested for CMC using two different antibody-antigen systems (human IgG and murine IgM; protein and carbohydrate) and two complement sources (rabbit and human). Elevation of pHi by either of these methods or by expression of P-GP confers resistance to CMC. Resistance is not observed when the alkalinization mediated by reverse Cl-/HCO3- exchange upon Cl- substitution is blocked by treatment with dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonate. Continuous photometric monitoring of 2',7'-bis(carboxyethyl)-5, 6-carboxyfluorescein (BCECF), to assess changes in pHi or efflux of the probe through MAC pores, in single cells or cell populations, respectively, verifies changes in pHi upon CO2 conditioning and Cl- substitution and release of BCECF upon formation of MAC pores. Antibody binding and internalization kinetics are similar in both the parental and resistant cell lines as measured by radioimmunoassay, but flow cytometric data showed that net complement deposition in the cell membrane is both delayed and reduced in magnitude in the MDR cells and in the cells with increased pHi. This interpretation is supported by comparison of BCECF release data for the different cells. Dual isotopic labeling of key complement components shows no significant change in molecular stoichiometry of the MACs formed at different pHi. The results are relevant to understanding clinical implications of MDR, the physiology of P-GP, and the biochemistry of the complement cascade and further suggest that the "drug pump" model of P-GP action cannot account for all of its effects.
Collapse
Affiliation(s)
- J H Weisburg
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | |
Collapse
|
25
|
Fritz F, Howard EM, Hoffman MM, Roepe PD. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein. Biochemistry 1999; 38:4214-26. [PMID: 10194338 DOI: 10.1021/bi981929n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently [Hoffman, M. M., and Roepe, P. D. (1997) Biochemistry 36, 11153-11168] we presented evidence for a novel Na+- and Cl--dependent H+ transport process in LR73/hu MDR 1 CHO transfectants that likely explains pHi, volume, and membrane potential changes in eukaryotic cells overexpressing the hu MDR 1 protein. To further explore this process, we have overexpressed human MDR 1 protein in yeast strain 9.3 following a combination of approaches used previously [Kuchler, K., and Thorner, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 2302-2306; Ruetz, S., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11588-11592]. Thus, a truncated hu MDR 1 cDNA was cloned behind a tandem array of sterile 6 (Ste6) and alchohol dehydrogenase (Adh) promoters to create the yeast expression vector pFF1. Valinomycin resistance of intact cells and Western blot analysis with purified yeast plasma membranes confirmed the overexpression of full length, functional, and properly localized hu MDR 1 protein in independently isolated 9.3/pFF1 colonies. Interestingly, relative valinomycin resistance and growth of the 9.3/hu MDR 1 strains are found to strongly depend on the ionic composition of the growth medium. Atomic absorption reveals significant differences in intracellular K+ for 9.3/hu MDR 1 versus control yeast. Transport assays using [3H]tetraphenylphosphonium ([3H]TPP+) reveal perturbations in membrane potential for 9.3/hu MDR 1 yeast that are stimulated by KCl and alkaline pHex. ATPase activity of purified plasma membrane fractions from yeast strains and LR73/hu MDR 1 CHO transfectants constructed previously [Hoffman, M. M., et al. (1996) J. Gen. Physiol. 108, 295-313] was compared. MDR 1 ATPase activity exhibits a higher pH optimum and different salt dependencies, relative to yeast H+ ATPase. Inside-out plasma membrane vesicles (ISOV) fabricated from 9.3/hu MDR 1 and control strains were analyzed for formation of H+ gradients +/- verapamil. Similar pharmacologic profiles are found for verapamil stimulation of MDR 1 ATPase activity and H+ pumping in 9.3/hu MDR 1 ISOV. In sum, these experiments strongly support the notion that hu MDR 1 catalyzes H+ transport in some fashion and lowers membrane potential in yeast when K+ contributes strongly to that potential. In the accompanying paper [Santai, C. T., Fritz, F., and Roepe, P. D. (1999) Biochemistry 38, XXXX-XXXX] the effects of ion gradients on H+ transport by hu MDR 1 are examined.
Collapse
Affiliation(s)
- F Fritz
- Department of Chemistry, Lombardi Cancer Center Program in Tumor Biology, Georgetown University, Washington, D.C. 20057, USA
| | | | | | | |
Collapse
|
26
|
Loo TW, Clarke DM. Molecular dissection of the human multidrug resistance P-glycoprotein. Biochem Cell Biol 1999. [DOI: 10.1139/o99-014] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human multidrug resistance P-glycoprotein is an ATP-dependent drug pump that extrudes a broad range of cytotoxic agents from the cell. Its physiological role may be to protect the body from endogenous and exogenous cytotoxic agents. The protein has clinical importance because it contributes to the phenomenon of multidrug resistance during chemotherapy. In this review, we discuss some of the results obtained by using molecular biology and protein chemistry techniques for studying this important and intriguing protein.Key words: P-glycoprotein, ABC transporters, drug transport, dibromobimane, mutagenesis, disulfide crosslinking, metal-chelate chromatography, ATPase activity.
Collapse
|
27
|
Roepe PD, Martiney JA. Are ion-exchange processes central to understanding drug-resistance phenomena? Trends Pharmacol Sci 1999; 20:62-5. [PMID: 10101966 DOI: 10.1016/s0165-6147(98)01282-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug resistance in malarial parasites is arguably the greatest challenge currently facing infectious disease research. In addressing this problem, researchers have been intrigued by similarities between drug-resistant malarial parasites and tumour cells. For example, it was originally thought that the role of pfMDR (Plasmodium falciparum multidrug resistance) proteins was central in conferring antimalarial multidrug resistance. However, recent work has questioned the precise role of MDR proteins in multidrug resistance. In addition, recent ground-breaking work in identifying mutations associated with antimalarial drug resistance might have led to identification of yet another parallel between drug-resistant tumour cells and malarial parasites, namely, intriguing alterations in transmembrane ion transport, discussed here by Paul Roepe and James Martiney. This further underscores an emerging paradigm in drug-resistance research.
Collapse
Affiliation(s)
- P D Roepe
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | | |
Collapse
|
28
|
Scotlandi K, Manara MC, Serra M, Benini S, Maurici D, Caputo A, De Giovanni C, Lollini PL, Nanni P, Picci P, Campanacci M, Baldini N. The expression of P-glycoprotein is causally related to a less aggressive phenotype in human osteosarcoma cells. Oncogene 1999; 18:739-46. [PMID: 9989824 DOI: 10.1038/sj.onc.1202330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The relationship between P-glycoprotein expression and malignancy is controversial. We have recently found that, in osteosarcoma, multidrug resistance (MDR) is associated with a less aggressive behavior, both in vitro and in clinical settings. In this study, we evaluated whether P-glycoprotein overexpression has a cause-effect relationship with the reduced metastatic potential of MDR cells, or rather reflects a more complex phenotype. MDR1 gene-transfected osteosarcoma cell clones, showing different levels of P-glycoprotein expression, were analysed for their in vitro characteristics and their tumorigenic and metastatic ability in athymic mice. Apart from the different levels of P-glycoprotein, no significant change in the expression of surface antigens or in the differentiative features were observed in the MDR1 gene transfectants compared to the parental cell lines or control clones, obtained by transfection with neo gene alone. In contrast to controls, however, MDR1 transfectants showed a significantly lower ability to grow in semi-solid medium and were completely unable to grow and give lung metastases in athymic mice. These findings indicate that P-glycoprotein overexpression is causally associated with a low malignant potential of osteosarcoma cells, and open new insights on the role and functions of P-glycoprotein activity.
Collapse
Affiliation(s)
- K Scotlandi
- Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schuetz EG, Yasuda K, Arimori K, Schuetz JD. Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys 1998; 350:340-7. [PMID: 9473310 DOI: 10.1006/abbi.1997.0537] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intracellular concentration of many steroids and xenobiotics is influenced by the membrane protein P-glycoprotein (Pgp). It has been inferred that the intracellular retention of many drugs that upregulate Pgp or modulate Pgp function might also be affected by Pgp. However, the ability of Pgp to influence the translocation of these drugs needs to be established to understand Pgp's influence upon their pharmacological effect. We utilized two approaches to determine the interaction of several agents with Pgp: (a) an in vitro system, LLC-PK1 cell lines and derivative LLC cell lines stably expressing on the apical membrane either mouse mdr1a or human MDR1 Pgp grown as polarized epithelium in transwell culture to measure translocation of radiolabeled drugs; and (b) an in vivo system, mdr1a nullizygous and wild-type animals, to compare the contribution of Pgp to in vivo distribution of radiolabeled drugs. In combination these complementary approaches identified erythromycin as a drug whose intracellular retention is influenced by Pgp, while the intracellular accumulation and tissue distribution of retinoic acid and benzo(a)pyrene were unaffected by Pgp.
Collapse
Affiliation(s)
- E G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
30
|
Rebbeor JF, Senior AE. Effects of cardiovascular drugs on ATPase activity of P-glycoprotein in plasma membranes and in purified reconstituted form. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1369:85-93. [PMID: 9528676 DOI: 10.1016/s0005-2736(97)00185-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug interactions with P-glycoprotein (Pgp) were quantitatively assessed using ATPase assay. Two experimental systems were used, (i) plasma membranes isolated from a multidrug-resistant cell line, which contained 30% Pgp as fraction of total membrane protein, and (ii) purified reconstituted Pgp. The cardioactive drugs verapamil, quinidine, diltiazem, nifedipine, and a series of digitalis analogs, interacted directly with Pgp as shown on ATPase in both systems. Apparent affinities of drug binding were calculated. Direct competition was shown between digitoxin and verapamil. Drug-drug interaction in vivo at the level of Pgp is expected from the results. This approach seems well-suited for empirical determination of drug interactions with Pgp, and prediction of drug-drug interactions.
Collapse
Affiliation(s)
- J F Rebbeor
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14642, USA.
| | | |
Collapse
|
31
|
Bray PG, Ward SA. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Ther 1998; 77:1-28. [PMID: 9500157 DOI: 10.1016/s0163-7258(97)00083-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum is the causative agent of the most deadly form of human malaria. Chemotherapy traditionally has been the main line of defense against this parasite, and chloroquine, the drug of choice, has been one of the most successful drugs ever developed. Unfortunately, the evolution and spread of resistance to chloroquine and other quinoline-containing drugs means that these compounds are now virtually useless in many endemic areas. Future prospects for the use of quinoline compounds improved considerably when it was demonstrated that chloroquine resistance could be circumvented in vitro by a number of structurally and functionally unrelated compounds such as verapamil and desipramine. The phenomenon of resistance reversal by compounds such as verapamil is also a key feature of drug resistance in mammalian cells, and this has raised the possibility that the underlying mechanisms of drug resistance of the two cell types could be similar. This hypothesis has prompted a large number of studies into the genetics and biochemistry of resistance to quinoline-containing drugs in P. falciparum. Both the genetic and the biochemical studies have raised issues of controversy and stimulated much debate. These issues are discussed in this review, in the context of a comparison with the genetics and biochemistry of multidrug resistance in mammalian cells.
Collapse
Affiliation(s)
- P G Bray
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | | |
Collapse
|
32
|
Hoffman MM, Roepe PD. Analysis of ion transport perturbations caused by hu MDR 1 protein overexpression. Biochemistry 1997; 36:11153-68. [PMID: 9287158 DOI: 10.1021/bi970530g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In previous work [Luz et al. (1994) Biochemistry 33, 7239-7249; Roepe et al. (1994) Biochemistry 33, 11008-11015] we measured changes in Cl- and HCO3--dependent pHi regulation for LR73 Chinese hamster ovary fibroblasts overexpressing mu MDR 1 protein. However, only one clonal cell line overexpressing the protein but not previously exposed to chemotherapeutic drug (i.e., a "true" transfectant) was examined, since very few MDR cell lines of this nature have been constructed. Recently [Hoffman et al. (1996) J. Gen. Physiol. 108, 295-313] we derived a series of true LR73/hu MDR 1 transfectants that are valuable for defining the MDR phenotype mediated by MDR protein alone, without the additional complexities introduced by exposing cells to chemotherapeutic drugs. Several independently derived clones from these and additional transfection experiments exhibit expression of MDR protein that is higher than that found in other true transfectants, and that is similar to the highest level of overexpression yet recorded for drug selected MDR cells. We examined altered Cl--dependent pHi regulation for these clones using improved single-cell photometry (SCP) techniques. Short-term isotonic Cl- substitution experiments performed in the presence of CO2/HCO3- reveal that mild overexpression of hu MDR 1 protein alters anion exchange (Cl-/HCO3- exchange or AE) for LR73 cells, as expected on the basis of previous work [Luz et al. (1994) Biochemistry 33, 7239-7249]. Interestingly, we now find that several independently selected high-level MDR 1 overexpressing clones acidify quite extensively upon isotonic exchange of Cl- and then rapidly alkalinize upon restoring normal [Cl-]. These data suggest that MDR protein may effectively compete against AE. The MDR protein effect is not dependent on HCO3-/CO2 or K+, is partially inhibited by verapamil, is completely inhibited by substituting K+ or N-methylglucamine (NMG+) for Na+ in the SCP perfusate but is not affected by 100 microM levels of amiloride, bumetanide, chlorothiazide, or stilbene. ATP depletion inhibits the MDR 1 effect. We are unable to restore normal AE activity for the MDR clones via manipulation of Cl- or HCO3- gradients. We thus suggest that MDR protein overexpression provides a novel Na+- and Cl--dependent pathway for transmembrane H+ transport. From analysis of ion dependency and inhibitor sensitivities, we conclude the transport is not via altered regulation of any known K+/H+, Na+/H+, or Cl-/HCO3- antiporters, Na+:K+:2Cl-, Na+:K+:2HCO3-, K+:HCO3-, or Na+:HCO3- co-transporters, or any combination of these. Thus, it appears to represent a novel ATP and Na+-dependent Cl-/H+ antiport process that (1) may be directly mediated by the MDR protein, (2) may represent the modulation of one or more currently unidentified ion transport proteins by MDR protein, (3) may be due to some combination of direct ion transport and regulation of ion transport, or (4) may represent unusual passive H+ movement in response to a novel Cl--dependent electrical perturbation that occurs during our Cl- substitution protocol. The results have important implications for understanding drug resistance mediated by MDR 1 overexpression, as well as the physiologic function of endogenously expressed MDR protein.
Collapse
Affiliation(s)
- M M Hoffman
- Molecular Pharmacology and Therapeutics Program at the Raymond and Beverly Sackler Foundation Laboratory, Memorial Sloan-Kettering Cancer Center, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
33
|
Robinson LJ, Roberts WK, Ling TT, Lamming D, Sternberg SS, Roepe PD. Human MDR 1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry 1997; 36:11169-78. [PMID: 9287159 DOI: 10.1021/bi9627830] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several laboratories have reported that overexpression of the multidrug resistance (MDR) protein is associated with intracellular alkalinization, and several investigators have reported that cells induced to undergo programmed cell death (apoptosis) acidify quite significantly. Because it is difficult to fully explain the resistance to apoptosis-inducing chemotherapeutic drugs that is exhibited by MDR tumor cells solely via altered drug transport alone [Hoffman et al. (1996) J. Gen. Physiol. 108, 295-313], we have investigated whether overexpression of the hu MDR 1 protein alters progression of the apoptotic cascade. LR73 fibroblasts induced to undergo apoptosis either via treatment with the chemotherapeutic drug colchicine or by serum withdrawal exhibit cellular volume changes, intracellular acidification, nuclear condensation, and chromosomal digestion ("ladder formation"), characteristic of apoptosis, in a temporally well-defined pattern. However, multidrug resistant LR73/20E or LR73/27 hu MDR 1 transfectants recently created in our laboratory without selection on chemotherapeutic drug are significantly delayed in the onset of apoptosis as defined by the above criteria, regardless of whether apoptosis is induced by colchicine treatment or by serum withdrawal. Thus, the delay cannot simply be due to the well-known ability of MDR protein overexpression to lower chemotherapeutic drug accumulation in MDR cells. LR73/27V500 "selectants", exhibiting similar levels of MDR protein overexpression but higher multidrug resistance due to selection with the chemotherapeutic drug vincristine, exhibit a slightly longer delay in the progression of apoptosis. Normal apoptotic cascade kinetics are partially restored by pre-treatment of the MDR cells with the MDR protein inhibitor verapamil. Untransfected LR73 cells not expressing MDR protein but elevated in pHi via manipulation of CO2/HCO3- as described [Hoffman et al. (1996) J. Gen. Physiol. 108, 295-313] are inhibited in DNA ladder formation, similar to LR73/hu MDR 1 transfectants. These results uncover an additional mechanism whereby MDR protein overexpression may promote the survival of tumor cells and further support the notion that in some systems intracellular acidification may be either causal or permissive for proper progression of the apoptotic cascade.
Collapse
Affiliation(s)
- L J Robinson
- Molecular Pharmacology and Therapeutics Program at the Raymond and Beverly Sackler Foundation Laboratory, Memorial Sloan-Kettering Cancer Center, Pharmacology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
34
|
Baggetto LG. Biochemical, genetic, and metabolic adaptations of tumor cells that express the typical multidrug-resistance phenotype. Reversion by new therapies. J Bioenerg Biomembr 1997; 29:401-13. [PMID: 9387101 DOI: 10.1023/a:1022459100409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the genetic and metabolic alterations that cancer cells undergo, several allow their survival under extreme environmental conditions. The resulting aberrant metabolism is compatible with tumor progression at the expenses of high energy needs, especially for maintaining high division rate. When treated with chemotherapeutic drugs many cancer cells take advantage of their ability to develop a resistance phenotype, as part of an adaptative mechanism. Two main actors of this multidrug phenotype (MDR) are represented by the P-glycoprotein and by the more recently discovered multidrug-resistance associated protein (MRP), two membrane proteins of the ABC superfamily of transporters that can extrude chemotherapeutic drugs under an ATP-dependent mechanism. We will briefly review the major metabolic aberrations that several cancers develop, followed by the molecular, genetic, structural, and functional aspects related mainly to P-glycoprotein, with a concern for the regulation of mdr gene expression. We will point out the role that membrane cholesterol may play in the MDR phenotype, relate this phenotype to bioenergetic considerations, and review the ways of modulating it by the use of new therapeutic approaches.
Collapse
|
35
|
Bolhuis H, van Veen HW, Poolman B, Driessen AJ, Konings WN. Mechanisms of multidrug transporters. FEMS Microbiol Rev 1997; 21:55-84. [PMID: 9299702 DOI: 10.1111/j.1574-6976.1997.tb00345.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidrug resistance (MDR) in eukaryotic (tumor) cells, where many different drugs fail to perform their therapeutic function. One of the causes of the occurrence of MDR in these cells is the action of transmembrane transport proteins that catalyze the active extrusion of a large number of structurally and functionally unrelated compounds out of the cell. The mode of action of these MDR transporters and their apparent lack of substrate specificity is poorly understood and has been subject to many speculations. In this review we will summarize our current knowledge about the occurrence, mechanism and molecular basis of (multi-)drug resistance especially as found in bacteria.
Collapse
Affiliation(s)
- H Bolhuis
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|