1
|
Mercedes-Camacho AY, Mullins AB, Mason MD, Xu GG, Mahoney BJ, Wang X, Peng JW, Etzkorn FA. Kinetic isotope effects support the twisted amide mechanism of Pin1 peptidyl-prolyl isomerase. Biochemistry 2013; 52:7707-13. [PMID: 24116866 DOI: 10.1021/bi400700b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Pin1 peptidyl-prolyl isomerase catalyzes isomerization of pSer/pThr-Pro motifs in regulating the cell cycle. Peptide substrates, Ac-Phe-Phe-phosphoSer-Pro-Arg-p-nitroaniline, were synthesized in unlabeled form, and with deuterium-labeled Ser-d3 and Pro-d7 amino acids. Kinetic data were collected as a function of Pin1 concentration to measure kinetic isotope effects (KIEs) on catalytic efficiency (kcat/Km). The normal secondary (2°) KIE value measured for the Ser-d3 substrate (kH/kD = 1.6 ± 0.2) indicates that the serine carbonyl does not rehybridize from sp(2) to sp(3) in the rate-determining step, ruling out a nucleophilic addition mechanism. The normal 2° KIE can be explained by hyperconjugation between Ser α-C-H/D and C═O and release of steric strain upon rotation of the amide bond from cis to syn-exo. The inverse 2° KIE value (kH/kD = 0.86 ± 0.08) measured for the Pro-d7 substrate indicates rehybridization of the prolyl nitrogen from sp(2) to sp(3) during the rate-limiting step of isomerization. No solvent kinetic isotope was measured by NMR exchange spectroscopy (kH2O/kD2O = 0.92 ± 0.12), indicating little or no involvement of exchangeable protons in the mechanism. These results support the formation of a simple twisted amide transition state as the mechanism for peptidyl prolyl isomerization catalyzed by Pin1. A model of the reaction mechanism is presented using crystal structures of Pin1 with ground state analogues and an inhibitor that resembles a twisted amide transition state.
Collapse
|
2
|
Bracho-Valdés I, Moreno-Alvarez P, Valencia-Martínez I, Robles-Molina E, Chávez-Vargas L, Vázquez-Prado J. mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. IUBMB Life 2011; 63:896-914. [PMID: 21905202 DOI: 10.1002/iub.558] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 12/11/2022]
Abstract
The mammalian target of rapamycin, best known as mTOR, is a phylogenetically conserved serine/threonine kinase that controls life-defining cellular processes such as growth, metabolism, survival, and migration under the influence of multiple interacting proteins. Historically, the cellular activities blocked by rapamycin in mammalian cells were considered the only events controlled by mTOR. However, this paradigm changed with the discovery of two signaling complexes differentially sensitive to rapamycin, whose catalytic component is mTOR. The one sensitive to rapamycin, known as mTORC1, promotes protein synthesis in response to growth factors and nutrients via the phosphorylation of p70S6K and 4EBP1; while the other, known as mTORC2, promotes cell migration and survival via the activation of Rho GTPases and the phosphorylation of AKT, respectively. Although mTORC2 kinase activity is not inhibited by rapamycin, hours of incubation with this antibiotic can impede the assembly of this signaling complex. The direct mechanism by which mTORC2 leads to cell migration depends on its interaction with P-Rex1, a Rac-specific guanine nucleotide exchange factor, while additional indirect pathways involve the intervention of PKC or AKT, multifunctional ubiquitous serine/threonine kinases that activate effectors of cell migration upon being phosphorylated by mTORC2 in response to chemotactic signals. These mTORC2 effectors are altered in metastatic cancer. Numerous clinical trials are testing mTOR inhibitors as potential antineoplasic drugs. Here, we briefly review the actions of mTOR with emphasis on the controlling role of mTORC1 and mTORC2-interacting proteins and highlight the mechanisms linked to cell migration.
Collapse
Affiliation(s)
- Ismael Bracho-Valdés
- Department of Pharmacology, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508.Col. San Pedro Zacatenco, 07000 México D.F., México
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
A convergent synthesis of alpha-ketoamide inhibitors of Pin1 is described. An alpha-hydroxyorthothioester derivative of Ser was reacted directly with an amine synthon. The reaction was catalyzed by HgO and HgCl(2) to form alpha-hydroxyamide. Thus, hydrolysis and coupling were combined in one step with 80% yield. Two diastereomers of a phospho-Ser-Pro alpha-ketoamide analogue were synthesized. The IC(50) values of 100 and 200 microM were surprisingly weak for Pin1 peptidyl prolyl isomerase.
Collapse
Affiliation(s)
- Guoyan G Xu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
4
|
Wang XJ, Xu B, Mullins AB, Neiler FK, Etzkorn FA. Conformationally Locked Isostere of PhosphoSer−cis-Pro Inhibits Pin1 23-Fold Better than PhosphoSer−trans-Pro Isostere. J Am Chem Soc 2004; 126:15533-42. [PMID: 15563182 DOI: 10.1021/ja046396m] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoisomeric cis and trans substrate analogues for Pin1 were designed and synthesized. The central phosphoSer-Pro core of the Pin1 substrate was replaced by cis and trans amide isosteres in Ac-Phe-Phe-pSer-Psi[(Z and E)CH=C]-Pro-Arg-NH(2), 1 and 2, peptidomimetics. They were synthesized on solid phase in 17% yield for the cis analogue 1, and 16% yield for the trans analogue 2. A second trans amide isostere with a C-terminal N-methylamide 3 was synthesized in 7% yield. The protease-coupled Pin1 assay showed that all three compounds inhibited the Pin1 peptidyl-prolyl isomerase (PPIase) enzymatic activity. The cis isostere 1 was 23 times more potent (K(i) = 1.74 +/- 0.08 muM) than its trans counterpart 2 (K(i) = 40 +/- 2 muM) in competitive inhibition of Pin1. These results suggest that the catalytic site of Pin1 binds cis substrates more tightly in aqueous solution. Antiproliferative activity toward the A2780 human ovarian cancer cell line by the cis and trans analogues correlates with Pin1 inhibition results.
Collapse
Affiliation(s)
- Xiaodong J Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212, USA
| | | | | | | | | |
Collapse
|
5
|
Yamamoto-Yamaguchi Y, Okabe-Kado J, Kasukabe T, Honma Y. Induction of differentiation of human myeloid leukemia cells by immunosuppressant macrolides (rapamycin and FK506) and calcium/calmodulin-dependent kinase inhibitors. Exp Hematol 2001; 29:582-8. [PMID: 11376870 DOI: 10.1016/s0301-472x(01)00626-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Potent immunosuppressants, such as rapamycin, FK506, and ascomycin, are known to regulate the phosphorylation of proteins. The purpose of this study was to investigate the effects of these immunosuppressants on differentiation of several human myeloid leukemic cell lines. MATERIALS AND METHODS Human myeloid leukemic cell lines were cultured with each immunosuppressant, and several differentiation markers were assayed. RESULTS Rapamycin effectively induced granulocytic differentiation of human myeloid leukemic HL-60 and ML-1 cells. In addition to morphologic differentiation, it also induced nitroblue tetrazolium reduction, lysozyme activity, and expression of CD11b in HL-60 cells. The commitment to differentiation was observed after treatment with rapamycin for 1 day, indicating that the effect of rapamycin was irreversible. FK506 and ascomycin induced differentiation of HL-60 cells, but at higher concentrations than rapamycin. A calcium/calmodulin-dependent kinase (CaMK) was copurified with FKBP52 immunophilin, a binding protein of immunosuppressants. We also found that the CaMK inhibitors KN62 and KN93 induced differentiation of HL-60 cells. Rapamycin and CaMK inhibitors induced differentiation of human myeloid leukemia ML-1 and K562, but not of other cell lines such as NB4, U937, or HEL. CONCLUSION Immunosuppressants and CaMK inhibitors induced differentiation of HL-60, ML-1, and K562 cells.
Collapse
|
6
|
Jeyakumar LH, Ballester L, Cheng DS, McIntyre JO, Chang P, Olivey HE, Rollins-Smith L, Barnett JV, Murray K, Xin HB, Fleischer S. FKBP binding characteristics of cardiac microsomes from diverse vertebrates. Biochem Biophys Res Commun 2001; 281:979-86. [PMID: 11237759 DOI: 10.1006/bbrc.2001.4444] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FK506 binding protein (FKBP) is a cytosolic receptor for the immunosuppressive drug FK-506. The common isoform, FKBP12, was found to be associated with the calcium release channel (ryanodine receptor 1) of different species of vertebrate skeletal muscle, whereas 12.6, a novel FKBP isoform was found to be associated with canine cardiac ryanodine receptor (ryanodine receptor 2). Until recently, canine cardiac sarcoplasmic reticulum was considered to be the prototype for studying heart RyR2 and its interactions with FKBP. In this study, cardiac microsomes were isolated from diverse vertebrates: human, rabbit, rat, mice, dog, chicken, frog, and fish and were analyzed for their ability to bind or exchange with FKBP isoforms 12 and 12.6. Our studies indicate that RyR2 from seven out of the eight animals contain both FKBP12 and 12.6. Dog is the exception. It can now be concluded that the association of FKBP isoforms with RyR2 is widely conserved in the hearts of different species of vertebrates.
Collapse
Affiliation(s)
- L H Jeyakumar
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 2001; 71:271-80. [PMID: 11213073 DOI: 10.1097/00007890-200101270-00019] [Citation(s) in RCA: 468] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite the various immunosuppressive regimens presently in use, acute rejection in the early postoperative period continues to occur in 20 to 40% of renal transplant patients. In a double-blind, multicentred study, we investigated the ability of two different doses of sirolimus (rapamycin, RAPAMUNE), a new class of immunosuppressant that blocks cell cycle progression, to prevent acute rejection in recipients of primary mismatched renal allografts when added to a regimen of cyclosporine (cyclosporin A, CsA) and corticosteroids. METHODS Between October 1996 and September 1997, 576 recipients of primary mismatched cadaveric or living donor renal allografts were randomly assigned in a 2:2:1 ratio (before the transplant operation) to receive an initial loading dose of either 6 or 15 mg of orally administered sirolimus, followed by a daily dose of either 2 or 5 mg/day, or to receive a matched placebo. All groups received cyclosporine (microemulsion formula, CsA) and corticosteroids. The primary endpoint was a composite of first occurrence of biopsy-confirmed acute rejection, graft loss, or death during the first 6 months after transplantation. Safety data were monitored by an independent drug safety monitoring board. RESULTS Based on an intention-to-treat analysis of 576 patients, there were no significant differences in patient demographic or baseline characteristics among treatment groups. The overall rate of the primary composite endpoint for the 6-month period after transplantation was 30.0% (68/227) in the 2 mg/day sirolimus group and 25.6% (56/219) in the 5 mg/day sirolimus group, significantly lower than the 47.7% (62/130) in the placebo group (P=0.002, P<0.001, respectively). During this period, the incidence of biopsy-confirmed acute rejection was 24.7% (56/227) in the 2 mg/day sirolimus group and 19.2% (42/219) in the 5 mg/day sirolimus group, compared with 41.5% (54/130) in the placebo group (P=0.003, P<0.001, respectively), representing a significant reduction in acute rejection of 40.5 and 53.7%, respectively. The need for antibody therapy to treat the first episode of biopsy-confirmed acute rejection was significantly reduced in the 5 mg/ day sirolimus group (3.2%) compared to the placebo group (8.5%; P=0.044). The results 1 year after transplantation were similar for the efficacy parameters studied. Adverse events and infections occurred in all groups. CONCLUSIONS The addition of either 2 mg/day sirolimus or 5 mg/day sirolimus to CsA/corticosteroid therapy significantly reduces the incidence of acute rejection episodes in primary mismatched renal allograft recipients, without an increase in immunosuppressant-related side effects, including infections and malignancy, at 6 months and at 1 year after transplantation.
Collapse
|
8
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
9
|
Abstract
[reaction: see text] We report for the first time that stoichiometric and even catalytic quantities of weak acids in aqueous solution can very efficiently catalyze amide isomerization in a carefully designed system in which a proton donor is situated so that intramolecular hydrogen bonding to the amide nitrogen is highly favored. Our results provide the first experimental verification that hydrogen bond donation to the amide nitrogen by charged proton donors may play a very significant role in the enzymatic catalysis of amide isomerization.
Collapse
Affiliation(s)
- C Cox
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
10
|
Abstract
In summary, FKBP-12 does not mediate the neurite outgrowth-promoting properties of neuroimmunophilin ligands (e.g., FK506). Instead, the neurotrophic properties of neuroimmunophilin ligands (FK506) and steroid hormones are mediated by disruption of steroid-receptor complexes. It remains unclear which component mediates neurite outgrowth, although the most likely candidates are FKBP-52, hsp-90, and p23 [42]. Regardless of the underlying mechanism involved, the FKBP-52 antibody data reveal that it should be possible to design, based on the structure of FK506, non-FKBP-12-binding (nonimmunosuppressant) compounds selective for FKBP-52 and test these new libraries for their ability to augment nerve regeneration. It may also be possible to exploit the structure of geldanamycin to develop a new class of hsp-90-binding compounds for use in nerve regeneration.
Collapse
Affiliation(s)
- B G Gold
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|
11
|
Hart SA, Etzkorn FA. Cyclophilin Inhibition by a (Z)-Alkene cis-Proline Mimic. J Org Chem 1999; 64:2998-2999. [PMID: 11674392 DOI: 10.1021/jo990409a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott A. Hart
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22901
| | | |
Collapse
|
12
|
|
13
|
Le Bihan S, Marsaud V, Mercier-Bodard C, Baulieu EE, Mader S, White JH, Renoir JM. Calcium/calmodulin kinase inhibitors and immunosuppressant macrolides rapamycin and FK506 inhibit progestin- and glucocorticosteroid receptor-mediated transcription in human breast cancer T47D cells. Mol Endocrinol 1998; 12:986-1001. [PMID: 9658403 DOI: 10.1210/mend.12.7.0128] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of immunosuppressants and inhibitors of specific calcium/calmodulin kinase (CaMK) of types II and IV on progestin/glucocorticosteroid-induced transcription were studied in two human stably transfected breast cancer T47D cell lines. The lines contain the chloramphenicol acetyl transferase (CAT) gene under control either of the mouse mammary tumor virus promoter (T47D-MMTV-CAT), or the minimal promoter containing five glucocorticosteroid/progestin hormone response elements [T47D-(GRE)5-CAT]. Progestin- and triamcinolone acetonide (TA)-induced CAT gene expression was inhibited in a dose-dependent manner in both lines by preincubation with rapamycin (Rap) and, to a lesser extent, with FK506, but not with cyclosporin A. CaMK II and/or IV inhibitors KN62 and KN93 also inhibited progestin- and TA-stimulated transcription in both lines. None of these drugs had any effect on basal transcription. The antagonist RU486 inhibited all the effects of both progestin and TA, suggesting that progesterone receptor (PR)-, as well as glucocorticosteroid receptor (GR)- mediated transactivation are targets of immunosuppressants and CaMKs in T47D cells. Indeed, Northern analysis showed that Rap, KN62, and, to a lesser degree, FK506 inhibited progestin stimulation of Cyclin D1 mRNA levels, but not those of the non-steroid-regulated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. Addition of Rap or KN62 after exposure of cells to progesterone agonist Org 2058 had no effect on induction of CAT activity. Taken together, these data indicate that Rap and FK506, as well as CaMK inhibitors, inhibit steroid-induced activities of exogenous, as well as of some endogenous, steroid receptor-regulated genes by a mechanism preceding hormone-induced receptor activation. Rap appeared to stabilize a 9S form of [3H]Org 2058-PR complexes isolated from T47D (GRE)5CAT cell nuclei. By contrast, the progesterone receptor (PR) was isolated from cells treated with KN62 as a 5S entity, undistinguishable from the 5S PR species extracted from cells treated with progestin only. The nuclear 9S-[3H]Org2058-PR resulting from cells exposed to Rap, contained, in addition to the heat shock proteins of 90 kDa and 70 kDa (hsp90 and hsp70), the FK506-binding immunophilin FKBP52 but not FKBP51, although the latter was part of unliganded PR heterocomplex associated with hsp90. These results suggest that Rap and KN62 act upon the PR by distinct mechanisms, with only Rap impeding progestin-induced PR transformation. FKBP51 appeared to dissociate from the receptor heterocomplex, but not from hsp90, after hormone binding to PR in vitro and in vivo, whether in the presence or not of Rap and KN62. Immunoprecipitation experiments distinguished two PR- and glucocorticosteroid (GR)-associated molecular chaperone complexes, containing hsp90 and hsp70 and FKBP52 or FKBP51. Another complex identified in T47D cytosol contained hsp90 and the cyclosporin A-binding cyclophilin of 40 kDa, CYP40, but not hsp70, PR, or GR. These observations support the concept that FKBP51 and FKBP52 can act as regulators of Rap and FK506 activity upon PR and GR-mediated transcription, a mechanism that could be also regulated by type II and/or type IV CaMKs.
Collapse
Affiliation(s)
- S Le Bihan
- URA 1218 Centre Nationale de la Recherche Scientifique, Chatenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 1998; 31:335-40. [PMID: 9721431 DOI: 10.1016/s0009-9120(98)00045-9] [Citation(s) in RCA: 517] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Rapamune is a novel immunosuppressive agent in Phase III clinical trial in renal transplantation. Its unique mechanism of action has created great interest in its use as a biochemical probe of signal transduction pathways that has provided insight into its molecular mechanism of action. This article reviews the current state of our understanding of the mechanism of action of rapamune.
Collapse
Affiliation(s)
- S N Sehgal
- Wyeth-Ayerst Research, Princeton, New Jersey 08543, USA
| |
Collapse
|
15
|
Vittorioso P, Cowling R, Faure JD, Caboche M, Bellini C. Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development. Mol Cell Biol 1998; 18:3034-43. [PMID: 9566922 PMCID: PMC110682 DOI: 10.1128/mcb.18.5.3034] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 02/16/1998] [Indexed: 02/07/2023] Open
Abstract
The pasticcino (pas) mutants of Arabidopsis thaliana are a new class of plant developmental mutants; members of this class show ectopic cell proliferation in cotyledons, extra layers of cells in the hypocotyl, and an abnormal apical meristem. This phenotype is correlated with both cell division and cell elongation defects. There are three complementation groups of pas mutants (pas1, pas2, and pas3, with, respectively 2, 1, and 4 alleles). Here we describe in more detail the pas1-1 allele, which was obtained by insertional mutagenesis. The PAS1 gene has been cloned and characterized; it encodes an immunophilin-like protein similar to the p59 FK506-binding protein (FKBP52). PAS1 is characterized by an FKBP-like domain and three tetratricopeptide repeat units. Although the presence of immunophilins in plants has already been demonstrated, the pas1-1 mutant represents the first inactivation of an FKBP-like gene in plants. PAS1 expression is altered in pas1 mutants and in the pas2 and pas3 mutants. The expression of the PAS1 gene is increased in the presence of cytokinins, a class of phytohormones originally discovered because of their ability to stimulate cell division. These results are of particular relevance as they show for the first time that an FKBP-like protein plays an important role in the control of plant development.
Collapse
Affiliation(s)
- P Vittorioso
- Laboratoire de Biologie Cellulaire, INRA-Centre de Versailles, France
| | | | | | | | | |
Collapse
|
16
|
Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ, Abraham RT. Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:53-71. [PMID: 9552353 DOI: 10.1007/978-1-4615-1809-9_5] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immunosuppressant drug, rapamycin (RAP), is a potent inhibitor of IL-2-dependent T-cell proliferation. The antiproliferative effect of RAP is mediated through the formation of an active complex with its cytosolic receptor protein, FKBP12. The molecular target of the FKBP12.RAP complex is a putative lipid kinase termed the mammalian Target Of Rapamycin (mTOR). This review will discuss recent findings suggesting that mTOR is a novel regulator of G1- to S-phase progression in eukaryotic cells.
Collapse
Affiliation(s)
- G J Wiederrecht
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
17
|
Gold BG, Zeleny-Pooley M, Chaturvedi P, Wang MS. Oral administration of a nonimmunosuppressant FKBP-12 ligand speeds nerve regeneration. Neuroreport 1998; 9:553-8. [PMID: 9512405 DOI: 10.1097/00001756-199802160-00031] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently showed that s.c. injections of a nonimmunosuppressant FK506 binding protein-12 (FKBP-12) ligand (V-10,367) accelerates nerve regeneration in the rat sciatic nerve crush model. Here we examined the oral efficacy of this compound for speeding nerve regeneration. Rats receiving V-10,367 (5, 15 or 50 mg/kg/day) by oral gavage all demonstrated an increase in nerve regeneration compared to vehicle-treated controls. Functional recovery was observed earliest and axonal calibers of regenerating axons in the soleus nerve were largest in the 15 mg/kg group, mean axonal areas being increased by 66% compared to controls. Orally active nonimmunosuppressant FKBP-12 ligands may be useful for the treatment of human peripheral nerve disorders.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology/L606 and Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|
18
|
Peterson LB, Cryan JG, Rosa R, Martin MM, Wilusz MB, Sinclair PJ, Wong F, Parsons JN, O'Keefe SJ, Parsons WH, Wyvratt M, Sigal NH, Williamson AR, Wiederrecht GJ. A tacrolimus-related immunosuppressant with biochemical properties distinct from those of tacrolimus. Transplantation 1998; 65:10-8. [PMID: 9448137 DOI: 10.1097/00007890-199801150-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tacrolimus (FK506) is an immunosuppressive drug 50-100 times more potent than cyclosporine (CsA), the current mainstay of organ transplant rejection therapy. Despite being chemically unrelated, CsA and tacrolimus exert their immunosuppressive effects through the inhibition of calcineurin (CaN), a critical signaling molecule during T-lymphocyte activation. Although numerous clinical studies have proven the therapeutic efficacy of drugs within this class, tacrolimus and CsA also have a strikingly similar profile of unwanted side effects. METHOD Our objective has been to identify a less toxic immunosuppressant through the modification of ascomycin (FK520). Quantitative in vitro immunosuppression and toxicity assays have demonstrated (see the accompanying article, p. 18) that we achieved our goal with L-732,531 (indolyl-ascomycin; indolyl-ASC), a 32-O-(1-hydroxyethylindol-5-yl) ascomycin derivative with an improved therapeutic index relative to tacrolimus. RESULTS We report that the attributes of indolyl-ASC may result from its distinctive biochemical properties. In contrast to tacrolimus, indolyl-ASC binds poorly to FK506 binding protein 12 (FKBP12), the major cytosolic receptor for tacrolimus and related compounds. However, the stability of the interaction between the FKBP12-indolyl-ASC complex and CaN is much greater than that of the FKBP12-tacrolimus complex. These distinguishing properties of indolyl-ASC result in the potent inhibition of CaN within T lymphocytes but may lower the accumulation of the drug at sites of toxicity. CONCLUSIONS Indolyl-ASC may define those properties needed to increase the therapeutic efficacy of a macrolactam immunoregulant for treating both human autoimmune disease and organ transplant rejection.
Collapse
Affiliation(s)
- L B Peterson
- Department of Molecular Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-beta (TGF-beta 1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|
20
|
Song Q, Alnemri ES, Litwack G, Gilbert LI. An immunophilin is a component of the insect ecdysone receptor (EcR) complex. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:973-982. [PMID: 9501420 DOI: 10.1016/s0965-1748(97)00080-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ecdysone receptor (EcR) complex has been identified in the prothoracic gland of Manduca sexta by specific immunoprecipitation and Western blot analyses, and includes EcR, ultraspiracle (USP) and FKBP46. The EcR complex binds ponasterone A in a dose-dependent manner with a Kd of 7.04 x 10(-9) M. Immunocytochemistry revealed that EcR, USP and FKBP46 were localized within the nucleus of the prothoracic gland cells, and suggested that the developmental expression patterns of EcR and USP changed in concert with the hemolymph ecdysteroid titer whereas that of FKBP46 did not. The composite results suggest that the hemolymph ecdysteroid titer, of which 20 hydroxyecdysone is the major component, modulates the expression of both EcR and USP in the prothoracic gland to achieve feedback regulation.
Collapse
Affiliation(s)
- Q Song
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | | | |
Collapse
|
21
|
Gold BG, Zeleny-Pooley M, Wang MS, Chaturvedi P, Armistead DM. A nonimmunosuppressant FKBP-12 ligand increases nerve regeneration. Exp Neurol 1997; 147:269-78. [PMID: 9344552 DOI: 10.1006/exnr.1997.6630] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immunosuppressant drugs FK506 and cyclosporin A inhibit T-cell proliferation via a common mechanism: calcineurin inhibition following binding to their respective binding proteins, the peptidyl prolyl isomerases FKBP-12 and cyclophilin A. In contrast, FK506, but not cyclosporin A, accelerates nerve regeneration. In the present study, we show that the potent FKBP-12 inhibitor V-10,367, which lacks the structural components of FK506 required for calcineurin inhibition, increases neurite outgrowth in SH-SY5Y neuroblastoma cells and speeds nerve regeneration in the rat sciatic nerve crush model. In SH-SY5Y cells, V-10,367 increased the lengths of neurite processes in a concentration-dependent (between 1 and 10 nM) fashion over time (up to 168 h). Daily subcutaneous injections of V-10,367 accelerated the onset of clinical signs of functional recovery in the hind feet compared to vehicle-treated control animals. Interdigit distances (between the first and fifth digits) measured on foot prints obtained during walking showed an increase in toe spread in V-10,367-treated rats compared to vehicle-treated controls. Electron microscopy demonstrated larger regenerating axons distal to the crush site in the sciatic nerve from V-10,367-treated rats. Quantitation of axonal areas in the soleus nerve revealed a shift to larger axonal calibers in V-10,367-treated rats (400 or 200 mg/kg/day); mean axonal areas were increased by 52 and 59%, respectively, compared to vehicle-treated controls. FKBP-12 ligands lacking calcineurin inhibitory activity represent a new class of potential drugs for the treatment of human peripheral nerve disorders.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology and Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | |
Collapse
|
22
|
Gilbert LI, Song Q, Rybczynski R. Control of ecdysteroidogenesis: activation and inhibition of prothoracic gland activity. INVERTEBRATE NEUROSCIENCE : IN 1997; 3:205-16. [PMID: 9783446 DOI: 10.1007/bf02480376] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ecdysteroid hormones, mainly 20-hydroxyecdysone (20E), play a pivotal role in insect development by controlling gene expression involved in molting and metamorphosis. In the model insect Manduca sexta the production of ecdysteroids by the prothoracic gland is acutely controlled by a brain neurohormone, prothoracicotropic hormone (PTTH). PTTH initiates a cascade of events that progresses from the influx of Ca2+ and cAMP generation through phosphorylation of the ribosomal protein S6 and S6-dependent protein synthesis, and concludes with an increase in the synthesis and export of ecdysteroids from the gland. Recent studies indicate that S6 phosphorylation probably controls the steroidogenic effect of PTTH by gating the translation of selected mRNAs whose protein products are required for increased ecdysteroid synthesis. Inhibition of S6 phosphorylation prevents an increase in PTTH-stimulated protein synthesis and subsequent ecdysteroid synthesis. Two of the proteins whose translations are specifically stimulated by PTTH have been identified, one being a beta tubulin and the other a heat shock protein 70 family member. Current data suggest that these two proteins could be involved in supporting microtubule-dependent protein synthesis and ecdysone receptor assembly and/or function. Recent data also indicate that the 20E produced by the prothoracic gland feeds back upon the gland by increasing expression and phosphorylation of a specific USP isoform that is a constituent of the functional ecdysone receptor. Changes in the concentration and composition of the ecdysone receptor complex of the prothoracic gland could modulate the gland's potential for ecdysteroid synthesis (e.g. feedback inhibition) by controlling the levels of enzymes or other proteins in the ecdysteroid biosynthetic pathway.
Collapse
Affiliation(s)
- L I Gilbert
- Department of Biology, University of North Carolina at Chapel Hill 27599-3280, USA.
| | | | | |
Collapse
|
23
|
Babine RE, Bender SL. Molecular Recognition of Proteinminus signLigand Complexes: Applications to Drug Design. Chem Rev 1997; 97:1359-1472. [PMID: 11851455 DOI: 10.1021/cr960370z] [Citation(s) in RCA: 712] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert E. Babine
- Agouron Pharmaceuticals, Inc., 3565 General Atomics Court, San Diego, California 92121-1122
| | | |
Collapse
|
24
|
Ma Q, Whitlock JP. A Novel Cytoplasmic Protein That Interacts with the Ah Receptor, Contains Tetratricopeptide Repeat Motifs, and Augments the Transcriptional Response to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. J Biol Chem 1997. [DOI: 10.1074/jbc.272.14.8878] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Abstract
As targets for the immunosuppressive drugs cyclosporin A and FK506, transcription factors of the NFAT (nuclear factor of activated T cells) family have been the focus of much attention. NFAT proteins, which are expressed in most immune-system cells, play a pivotal role in the transcription of cytokine genes and other genes critical for the immune response. The activity of NFAT proteins is tightly regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a primary target for inhibition by cyclosporin A and FK506. Calcineurin controls the translocation of NFAT proteins from the cytoplasm to the nucleus of activated cells by interacting with an N-terminal regulatory domain conserved in the NFAT family. The DNA-binding domains of NFAT proteins resemble those of Rel-family proteins, and Rel and NFAT proteins show some overlap in their ability to bind to certain regulatory elements in cytokine genes. NFAT is also notable for its ability to bind cooperatively with transcription factors of the AP-1 (Fos/Jun) family to composite NFAT:AP-1 sites, found in the regulatory regions of many genes that are inducibly transcribed by immune-system cells. This review discusses recent data on the diversity of the NFAT family of transcription factors, the regulation of NFAT proteins within cells, and the cooperation of NFAT proteins with other transcription factors to regulate the expression of inducible genes.
Collapse
Affiliation(s)
- A Rao
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
26
|
Chambraud B, Radanyi C, Camonis JH, Shazand K, Rajkowski K, Baulieu EE. FAP48, a new protein that forms specific complexes with both immunophilins FKBP59 and FKBP12. Prevention by the immunosuppressant drugs FK506 and rapamycin. J Biol Chem 1996; 271:32923-9. [PMID: 8955134 DOI: 10.1074/jbc.271.51.32923] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have identified a human gene encoding a 48-kDa protein that specifically interacts with the peptidyl prolyl isomerase FK506-binding protein 59 (FKBP59) and also with the well known FKBP12. FKBP59 and FKBP12 belong to the large family of immunophilins that bind the macrolide immunosuppressant drugs FK506 and rapamycin. The yeast two-hybrid system was used to isolate target proteins that interact with the immunosuppressant drug binding domain of the rabbit FKBP59. The cDNA for an as yet unidentified protein was isolated and cloned from a Jurkat cell library. The cDNA sequence of 1804 base pairs reveals an open reading frame of 417 amino acids. In vitro experiments suggest a direct interaction between FKBP59 and this new target protein. This specific association seems to be restricted to the FKBP family, since it also occurs both in vivo and in vitro with FKBP12 but not with cyclophilin 40. This novel protein was named FKBP-associated protein (FAP48). The formation of the complexes between FKBP59 or FKBP12 and FAP48 is prevented by FK506 and rapamycin in a dose-dependent manner. These results suggest that FAP48 shares or overlaps the macrolide binding site on FKBP59 as well as on FKBP12 and therefore may represent a natural common ligand of these immunosuppressant drug receptors.
Collapse
Affiliation(s)
- B Chambraud
- INSERM (U33) and Collège de France, 80 rue du Général Leclerc, 94276 Bicêtre Cédex, France
| | | | | | | | | | | |
Collapse
|
27
|
Timerman AP, Onoue H, Xin HB, Barg S, Copello J, Wiederrecht G, Fleischer S. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem 1996; 271:20385-91. [PMID: 8702774 DOI: 10.1074/jbc.271.34.20385] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The calcium release channels (CRC)/ryanodine receptors of skeletal (Sk) and cardiac (C) muscle sarcoplasmic reticulum (SR) are hetero-oligomeric complexes with the structural formulas (ryanodine recepter (RyR)1 protomer)4(FKBP12)4 and (RyR2 protomer)4(FKBP12.6)4, respectively, where FKBP12 and FKBP12.6 are isoforms of the 12-kDa receptor for the immunosuppressant drug FK506. The sequence similarity between the RyR protomers and FKBP12 isoforms is 63 and 85%, respectively. Using 35S-labeled FKBP12 and 35S-labeled FKBP12.6 as probes to study the interaction with CRC, we find that: 1) analogous to its action in skeletal muscle sarcoplasmic reticulum (SkMSR), FK506 (or analog FK590) dissociates FKBP12.6 from CSR; 2) both FKBP isoforms bind to FKBP-stripped SkMSR and exchange with endogenously bound FKBP12 of SkMSR; and 3) by contrast, only FKBP12. 6 exchanges with endogenously bound FKBP12.6 or rebinds to FKBP-stripped CSR. This selective binding appears to explain why the cardiac CRC is isolated as a complex with FKBP12.6, whereas the skeletal muscle CRC is isolated as a complex with FKBP12, although only FKBP12 is detectable in the myoplasm of both muscle types. Also, in contrast to the activation of the channel by removal of FKBP from skeletal muscle, no activation is detected in CRC activity in FKBP-stripped CSR. This differential action of FKBP may reflect a fundamental difference in the modulation of excitation-contraction coupling in heart versus skeletal muscle.
Collapse
Affiliation(s)
- A P Timerman
- Department of Molecular Biology Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The potent immunosuppressive drugs FK506 and rapamycin interfere with signal transduction pathways required for T cell activation and growth. The distinct inhibitory effects of these drugs on the T cell activation program are mediated through the formation of pharmacologically active complexes with members of a family of intracellular receptors termed the FK506 binding proteins (FKBPs). The FKBP12.FK506 complex specifically binds to and inhibits calcineurin, a signaling protein required for transcriptional activation of the interleukin (IL)-2 gene in response to T cell antigen receptor engagement. The FKBP12. rapamycin complex interacts with a recently defined target protein termed the mammalian target of rapamycin (mTOR). Accumulating data suggest that mTOR functions in a previously unrecognized signal transduction pathway required for the progression of IL-2-stimulated T cells from G1 into the S phase of the cell cycle. Here we review the immunopharmacology of rapamycin, with particular emphasis on the characterization of mTOR.
Collapse
Affiliation(s)
- R T Abraham
- Department of Immunology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
29
|
Abstract
Hymenistatin I (HS-I), a cyclic octapeptide [c-(-Pro-Pro-Tyr-Val-Pro-Leu-Ile-Ile-)], was synthesized by the solid-phase peptide synthesis method and examined for its immunosuppressive activity in the humoral and cellular immune responses. The peptide activity was tested on cell lines producing various cytokines. The results are compared with the activity of the well-known immunosuppressive agent cyclosporin A (CsA). It was found that hymenistatin I exerts immunosuppressive effect (both in the humoral and cellular immune responses) comparable with that of CsA. Comparison of the influence of HS-I and CsA on cytokines production suggests that the mechanisms of the interaction with the immunological system are substantially different for the two compounds tested.
Collapse
Affiliation(s)
- M Cebrat
- Institute of Chemistry, University of Wroclaw, Poland
| | | | | |
Collapse
|
30
|
Babine RE, Bleckman T, Kissinger C, Showalter R, Pelletier L, Lewis C, Tucker K, Moomaw E, Parge H, Villafranca J. Design, synthesis and X-ray crystallographic studies of novel FKBP-12 ligands. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00290-a] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|