1
|
Alves CDO, Waku I, Chiossi JN, de Oliveira AR. Dopamine D2-like receptors on conditioned and unconditioned fear: A systematic review of rodent pharmacological studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111080. [PMID: 38950840 DOI: 10.1016/j.pnpbp.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Joyce Nonato Chiossi
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Lozano-Ortiz K, Felix-Ortiz AC, Terrell JM, Ramos AR, Rodriguez-Romaguera J, Burgos-Robles A. The prelimbic prefrontal cortex mediates the development of lasting social phobia as a consequence of social threat conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597446. [PMID: 38895224 PMCID: PMC11185685 DOI: 10.1101/2024.06.04.597446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Social phobia is highly detrimental for social behavior, mental health, and productivity. Despite much previous research, the behavioral and neurobiological mechanisms associated with the development of social phobia remain elusive. To investigate these issues, the present study implemented a mouse model of social threat conditioning in which mice received electric shock punishment upon interactions with unfamiliar conspecifics. This resulted in immediate reductions in social behavior and robust increases in defensive mechanisms such as avoidance, freezing, darting, and ambivalent stretched posture. Furthermore, social deficits lasted for prolonged periods and were independent of contextual settings, sex variables, or particular identity of the social stimuli. Shedding new light into the neurobiological factors contributing to this phenomenon, we found that optogenetic silencing of the prelimbic (PL), but not the infralimbic (IL), subregion of the medial prefrontal cortex (mPFC) during training led to subsequent forgetting and development of lasting social phobia. Similarly, pharmacological inhibition of NMDARs in PL also impaired the development of social phobia. These findings are consistent with the notion that social-related trauma is a prominent risk factor for the development of social phobia, and that this phenomenon engages learning-related mechanisms within the prelimbic prefrontal cortex to promote prolonged representations of social threat. Abstract Figure
Collapse
|
3
|
Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:191-224. [PMID: 38413466 PMCID: PMC11039509 DOI: 10.3758/s13415-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depressive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Collapse
Affiliation(s)
- Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
4
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584295. [PMID: 38559154 PMCID: PMC10979882 DOI: 10.1101/2024.03.10.584295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta sweeps. Similarly, important non-local information is represented during hippocampal high synchrony events (HSEs), which are correlated with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found representations of the pseudo-predator during HSEs when hesitating in the nest, and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials, including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| | | | | | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| |
Collapse
|
5
|
Dorst KE, Senne RA, Diep AH, de Boer AR, Suthard RL, Leblanc H, Ruesch EA, Pyo AY, Skelton S, Carstensen LC, Malmberg S, McKissick OP, Bladon JH, Ramirez S. Hippocampal Engrams Generate Variable Behavioral Responses and Brain-Wide Network States. J Neurosci 2024; 44:e0340232023. [PMID: 38050098 PMCID: PMC10860633 DOI: 10.1523/jneurosci.0340-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Ryan A Senne
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Anh H Diep
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Antje R de Boer
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Sara Skelton
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Lucas C Carstensen
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Samantha Malmberg
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Olivia P McKissick
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - John H Bladon
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| |
Collapse
|
6
|
Dorst KE, Ramirez S. Engrams: From Behavior to Brain-Wide Networks. ADVANCES IN NEUROBIOLOGY 2024; 38:13-28. [PMID: 39008008 DOI: 10.1007/978-3-031-62983-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Animals utilize a repertoire of behavioral responses during everyday experiences. During a potentially dangerous encounter, defensive actions such as "fight, flight, or freeze" are selected for survival. The successful use of behavior is determined by a series of real-time computations combining an animal's internal (i.e., body) and external (i.e., environment) state. Brain-wide neural pathways are engaged throughout this process to detect stimuli, integrate information, and command behavioral output. The hippocampus, in particular, plays a role in the encoding and storing of the episodic information surrounding these encounters as putative "engram" or experience-modified cellular ensembles. Recalling a negative experience then reactivates a dedicated engram ensemble and elicits a behavioral response. How hippocampus-based engrams modulate brain-wide states and an animal's internal/external milieu to influence behavior is an exciting area of investigation for contemporary neuroscience. In this chapter, we provide an overview of recent technological advancements that allow researchers to tag, manipulate, and visualize putative engram ensembles, with an overarching goal of casually connecting their brain-wide underpinnings to behavior. We then discuss how hippocampal fear engrams alter behavior in a manner that is contingent on an environment's physical features as well as how they influence brain-wide patterns of cellular activity. Overall, we propose here that studies on memory engrams offer an exciting avenue for contemporary neuroscience to casually link the activity of cells to cognition and behavior while also offering testable theoretical and experimental frameworks for how the brain organizes experience.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Steve Ramirez
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Mehrhoff EA, Booher WC, Hutchinson J, Schumacher G, Borski C, Lowry CA, Hoeffer CA, Ehringer MA. Diazepam effects on anxiety-related defensive behavior of male and female high and low open-field activity inbred mouse strains. Physiol Behav 2023; 271:114343. [PMID: 37689380 PMCID: PMC11131367 DOI: 10.1016/j.physbeh.2023.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Open-field activity is a commonly used measure of anxiety-related behavior in rodents. The inbred High and Low Activity strains of mice, selected for extreme differences in open-field activity, have been used as a genetic model of anxiety-related behaviors. These selected strains have been thoroughly studied through extensive behavioral testing, quantitative trait locus (QTL) mapping, whole-genome sequencing, and RNA sequencing, to uncover phenotypic and genotypic differences related to anxiety-related behavior. However, the effects of anxiolytic drugs on anxiety-related behavior in these strains have not been studied previously. This study allowed us to expand on previous findings to further characterize the anxiety-related behavior of these unique strains, using an anxiolytic drug. The goal of this study was to determine whether the treatment of adult male and female High Activity (low anxiety) and Low Activity (high anxiety) mice with diazepam, an agonist at the benzodiazepine allosteric site on the GABAA receptor and a drug commonly prescribed to treat anxiety disorders in humans, led to decreases in anxiety-like defensive behavioral responses as assessed in the open-field test (OFT) and elevated plus-maze (EPM). We tested the effects of three doses of diazepam (0, 0.5, 1.0, 3.0 mg/kg, i.p.), given 30 min before behavioral testing to one High Activity strain (H2) and two Low Activity strains (L1 and L2). There was an anxiolytic effect of diazepam observed in the High Activity strain, with more entries into the open arms of the elevated plus-maze, an effect similar to that seen in common mouse strains. However, the only anxiolytic effect of diazepam seen in the Low Activity strains was a reduction in stretch attend posture (SAP). Low Activity strains also displayed freezing behavior in both the OFT and EPM. The combination of the observed freezing behavior, that was not reduced by diazepam, and the reduction in SAP seen with diazepam, suggests a more complex phenotype that includes a component of innate fear in addition to anxiety-related risk assessment behaviors. Since fear and anxiety are distinguishable traits, and both contribute to human anxiety disorders, these results provide novel insight about interpretation of previous genetic and phenotypic differences observed between the High and Low Activity strains.
Collapse
Affiliation(s)
- Erika A Mehrhoff
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States
| | - Winona C Booher
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States; Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julianna Hutchinson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Grace Schumacher
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Curtis Borski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Charles A Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States.
| |
Collapse
|
8
|
Pignataro P, Dicarlo M, Suriano C, Sanesi L, Zerlotin R, Storlino G, Oranger A, Zecca C, Dell’Abate MT, Mori G, Grano M, Colucci S, Colaianni G. Once-Daily Subcutaneous Irisin Administration Mitigates Depression- and Anxiety-like Behavior in Young Mice. Int J Mol Sci 2023; 24:ijms24076715. [PMID: 37047687 PMCID: PMC10095443 DOI: 10.3390/ijms24076715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Major depression is one of the most common psychiatric disorders worldwide, usually associated with anxiety. The multi-etiological nature of depression has increased the search for new antidepressant molecules, including irisin, for which, in a previous study, we tested its effect in young mice when administered intraperitoneally in a long-term intermittent manner. Here, we evaluated the effect of subcutaneous short-term irisin administration (100 µg/Kg/day/5 days) in male and female mice subjected to behavioral paradigms: Tail Suspension Test (TST), Forced Swim Test (FST), Elevated Plus Maze (EPM), and Y Maze (YM). Moreover, a qRT-PCR assay was performed to analyze the impact of irisin treatment on Pgc-1α/FNDC5 expression in the brain. A significant reduction in immobility time in TST and FST was observed in irisin-treated mice. Furthermore, irisin treatment significantly increased the number of entries and time spent in open arms, demonstrating its anxiolytic effect. Memory-enhancing effects were not reported in YM. Interestingly, no gender differences were observed in all behavioral tests. Overall, these results suggest that short-term subcutaneous irisin administration can exert an antidepressant and anxiolytic role, probably due to the activation of the Pgc-1α/FNDC5 system in the brain. Further investigation could lead to the identification of irisin as a new agent for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Patrizia Pignataro
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Clelia Suriano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Storlino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari at “Pia Fondazione Card G. Panico” Hospital, Via San Pio X, 4, 73039 Tricase, Italy
| | - Maria Teresa Dell’Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari at “Pia Fondazione Card G. Panico” Hospital, Via San Pio X, 4, 73039 Tricase, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
9
|
Alvarez BD, Cavazos C, Morales CA, M. Lopez S, Amodeo DA. Impact of specific serotonin receptor modulation on restricted repetitive behaviors. Front Behav Neurosci 2022; 16:1078983. [PMID: 36620862 PMCID: PMC9816668 DOI: 10.3389/fnbeh.2022.1078983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Restricted, repetitive behaviors (RRBs) are commonly divided into two behavioral categories, lower-order and higher-order RRBs. Individuals displaying lower-order motoric RRBs may express repetitive hand flapping behaviors, body rocking back and forth movements, and continuous body spinning. Higher-order RRBs most commonly cover the behavior inflexibility and cognitive rigidity commonly found in disorders such as autism spectrum disorder and obsessive-compulsive disorder. Various neuropsychiatric disorders are plagued by RRBs yet no FDA-approved treatments have been identified. In rodents, lower-order RRBs are commonly measured through various tasks, such as repetitive self-grooming, marble burying, and stereotypic motor behaviors. This review focuses on the effects that modulation of specific serotonin receptors have on lower-order RRBs. Although there is research examining how changes in 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptor modulation, more research has focused on the 5-HT1A, 5-HT2A, and 5-HT2C receptors. The accumulating data suggest that increasing 5-HT1A activation decreases RRBs while blocking 5-HT1A activation has no effect on RRBs. While there are mixed findings regarding the impact of 5-HT2A modulation on RRBs, the general trend shows mixed effects of 5-HT2A receptor activation RRB expression, whereas blockade generally decreases RRBs. 5-HT2C receptor activation can modulate RRBs in either direction depending on the 5-HT2C drug used, blocking 5-HT2C activation only seems to show therapeutic properties when 5-HT2C activation is already elevated. The other 5-HT receptors have been explored far less but show promise as potential targets for regulating RRBs. Although it is less clear due to the involvement of 5-HT1D, 5-HT1A activation increases RRBs, and blocking 5-HT1A tends to decrease RRBs. 5-HT2B activation could reduce RRBs, while inhibiting 5-HT2B does not impact RRBs. Increasing 5-HT3 has not been shown to affect RRBs. Yet, increases in RRBs have been observed in Htr3a KO mice. 5-HT6 receptor activation can increase RRBs, while blocking 5-HT6 activity tends to decrease RRBs. Lastly, neither increasing or blocking 5-HT7 activity can reduce RRBs. In sum, there is no uniform pattern in whether all specific 5-HT receptors affect RRBs in either direction, instead, there is evidence suggesting that different 5-HT receptors can modulate RRBs in different directions. Further researching the less explored receptors and aiming to understand why these receptors can differently modulate RRBs, may play a key role in developing therapeutics that treat RRBs.
Collapse
Affiliation(s)
- Bryan D. Alvarez
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
- Department of Neuroscience, Ohio State University, Columbus, OH, United States
| | - Cassandra Cavazos
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Cheyenne A. Morales
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Shannon M. Lopez
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Dionisio A. Amodeo
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| |
Collapse
|
10
|
Redish AD, Kepecs A, Anderson LM, Calvin OL, Grissom NM, Haynos AF, Heilbronner SR, Herman AB, Jacob S, Ma S, Vilares I, Vinogradov S, Walters CJ, Widge AS, Zick JL, Zilverstand A. Computational validity: using computation to translate behaviours across species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200525. [PMID: 34957854 PMCID: PMC8710889 DOI: 10.1098/rstb.2020.0525] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
We propose a new conceptual framework (computational validity) for translation across species and populations based on the computational similarity between the information processing underlying parallel tasks. Translating between species depends not on the superficial similarity of the tasks presented, but rather on the computational similarity of the strategies and mechanisms that underlie those behaviours. Computational validity goes beyond construct validity by directly addressing questions of information processing. Computational validity interacts with circuit validity as computation depends on circuits, but similar computations could be accomplished by different circuits. Because different individuals may use different computations to accomplish a given task, computational validity suggests that behaviour should be understood through the subject's point of view; thus, behaviour should be characterized on an individual level rather than a task level. Tasks can constrain the computational algorithms available to a subject and the observed subtleties of that behaviour can provide information about the computations used by each individual. Computational validity has especially high relevance for the study of psychiatric disorders, given the new views of psychiatry as identifying and mediating information processing dysfunctions that may show high inter-individual variability, as well as for animal models investigating aspects of human psychiatric disorders. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam Kepecs
- Department of Neuroscience, Washington University in St. Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Lisa M. Anderson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicola M. Grissom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann F. Haynos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alexander B. Herman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sisi Ma
- Department of Medicine - Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Vilares
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J. Walters
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Zick
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Westacott LJ, Humby T, Haan N, Brain SA, Bush EL, Toneva M, Baloc AI, Moon AL, Reddaway J, Owen MJ, Hall J, Hughes TR, Morgan BP, Gray WP, Wilkinson LS. Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. Brain Behav Immun 2022; 99:70-82. [PMID: 34543680 DOI: 10.1016/j.bbi.2021.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Complement is a key component of the immune system with roles in inflammation and host-defence. Here we reveal novel functions of complement pathways impacting on emotional reactivity of potential relevance to the emerging links between complement and risk for psychiatric disorder. We used mouse models to assess the effects of manipulating components of the complement system on emotionality. Mice lacking the complement C3a Receptor (C3aR-/-) demonstrated a selective increase in unconditioned (innate) anxiety whilst mice deficient in the central complement component C3 (C3-/-) showed a selective increase in conditioned (learned) fear. The dissociable behavioural phenotypes were linked to different signalling mechanisms. Effects on innate anxiety were independent of C3a, the canonical ligand for C3aR, consistent with the existence of an alternative ligand mediating innate anxiety, whereas effects on learned fear were due to loss of iC3b/CR3 signalling. Our findings show that specific elements of the complement system and associated signalling pathways contribute differentially to heightened states of anxiety and fear commonly seen in psychopathology.
Collapse
Affiliation(s)
- Laura J Westacott
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Humby
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK; Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sophie A Brain
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Emma-Louise Bush
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Margarita Toneva
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Andreea-Ingrid Baloc
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Anna L Moon
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Timothy R Hughes
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - B Paul Morgan
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - William P Gray
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; Brain Repair and Intracranial Therapeutics (BRAIN) Unit, School of Medicine, Cardiff University, CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK; Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
12
|
Pádua-Reis M, Nôga DA, Tort ABL, Blunder M. Diazepam causes sedative rather than anxiolytic effects in C57BL/6J mice. Sci Rep 2021; 11:9335. [PMID: 33927265 PMCID: PMC8085115 DOI: 10.1038/s41598-021-88599-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diazepam has been broadly accepted as an anxiolytic drug and is often used as a positive control in behavioral experiments with mice. However, as opposed to this general assumption, the effect of diazepam on mouse behavior can be considered rather controversial from an evidence point of view. Here we revisit this issue by studying the effect of diazepam on a benchmark task in the preclinical anxiety literature: the elevated plus maze. We evaluated the minute-by-minute time-course of the diazepam effect along the 10 min of the task at three different doses (0.5, 1 and 2 mg/kg i.p. 30 min before the task) in female and male C57BL/6J mice. Furthermore, we contrasted the effects of diazepam with those of a selective serotoninergic reuptake inhibitor (paroxetine, 10 mg/kg i.p. 1 h before the task). Diazepam had no anxiolytic effect at any of the tested doses, and, at the highest dose, it impaired locomotor activity, likely due to sedation. Noteworthy, our results held true when examining male and female mice separately, when only examining the first 5 min of the task, and when animals were subjected to one hour of restrain-induced stress prior to diazepam treatment. In contrast, paroxetine significantly reduced anxiety-like behavior without inducing sedative effects. Our results therefore suggest that preclinical studies for screening new anxiolytic drugs should be cautious with diazepam use as a potential positive control.
Collapse
Affiliation(s)
- Marina Pádua-Reis
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Diana Aline Nôga
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Adriano B L Tort
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056, Brazil
| | - Martina Blunder
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
13
|
Neurobehavioral, neurochemical and synaptic plasticity perturbations during postnatal life of rats exposed to chloroquine in-utero. Neurotoxicol Teratol 2021; 86:106982. [PMID: 33845156 DOI: 10.1016/j.ntt.2021.106982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Despite reports that quinoline antimalarials including chloroquine (Chq) exhibit idiosyncratic neuropsychiatric effects even at low doses, the drug continues to be in widespread use during pregnancy. Surprisingly, very few studies have examined the potential neurotoxic action of Chq exposure at different points of gestation or how this phenomenon may affect neurophysiological well-being in later life. We therefore studied behavior, and the expression of specific genes and neurochemicals modulating crucial neural processes in offspring of rats exposed to prophylactic dose of Chq during different stages of gestation. Pregnant rats were injected 5 mg/kg/day (3 times) of Chq either during early- (first week), mid- (second week), late- (third week), or throughout- (all weeks) gestation, while controls received PBS injection. Behavioral characterization of offspring between postnatal days 15-20 in the open field, Y-maze, elevated plus and elevated zero mazes revealed that Chq evoked anxiogenic responses and perturbed spatial memory in rats, although locomotor activity was generally unaltered. In the prefrontal cortex (PFC), hippocampus and cerebellum of rats prenatally exposed to Chq, RT-qPCR analysis revealed decreased mRNA expression of presynaptic marker synaptophysin, which was accompanied by downregulation of postsynaptic marker PSD95. Synaptic marker PICK1 expression was also downregulated in the hippocampus but was unperturbed in the PFC and cerebellum. In addition to recorded SOD downregulation in cortical and hippocampal lysates, induction of oxidative stress in rats prenatally exposed to Chq was corroborated by lipid peroxidation as evinced by increased MDA levels. Offspring of rats infused with Chq at mid-gestation and weekly treatment throughout gestation were particularly susceptible to neurotoxic changes, especially in the hippocampus. Interestingly, Chq did not cause histopathological changes in any of the brain areas. Taken together, our findings causally link intrauterine exposure to Chq with postnatal behavioral impairment and neurotoxic changes in rats.
Collapse
|
14
|
Horii-Hayashi N, Nomoto K, Endo N, Yamanaka A, Kikusui T, Nishi M. Hypothalamic perifornical Urocortin-3 neurons modulate defensive responses to a potential threat stimulus. iScience 2021; 24:101908. [PMID: 33385113 PMCID: PMC7770982 DOI: 10.1016/j.isci.2020.101908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Defensive behaviors are evolved responses to threat stimuli, and a potential threat elicits risk assessment (RA) behavior. However, neural mechanisms underlying RA behavior are hardly understood. Urocortin-3 (Ucn3) is a member of corticotropin-releasing factor peptide family and here, we report that Ucn3 neurons in the hypothalamic perifornical area (PeFA) are involved in RA of a novel object, a potential threat stimulus, in mice. Histological and in vivo fiber photometry studies revealed that the activity of PeFA Ucn3 neurons was associated with novel object investigation involving the stretch-attend posture, a behavioral marker for RA. Chemogenetic activation of these neurons increased RA and burying behaviors toward a novel object without affecting anxiety and corticosterone levels. Ablation of these neurons caused the abnormal behaviors of gnawing and direct contacts with novel objects, especially in a home-cage. These results suggest that PeFA Ucn3 neurons modulate defensive responses to a potential threat stimulus.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
- Department of Physiology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| |
Collapse
|
15
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Short photoperiod restores ventral subicular lesion‐induced deficits in affective and socio‐cognitive behavior in male Wistar rats. J Neurosci Res 2020; 98:1114-1136. [DOI: 10.1002/jnr.24601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | - Bettadapura N. Srikumar
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | | | - Bindu M. Kutty
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| |
Collapse
|
16
|
Przybysz KR, Varlinskaya EI, Diaz MR. Age and sex regulate kappa opioid receptor-mediated anxiety-like behavior in rats. Behav Brain Res 2020; 379:112379. [PMID: 31765725 PMCID: PMC10466214 DOI: 10.1016/j.bbr.2019.112379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
Anxiety occurs across ontogeny, but there is evidence that its etiology may vary across the lifespan. The kappa opioid receptor (KOR) system mediates some of the anxiogenic effects of stress and drug exposure, and is involved in aversive responses to environmental stimuli. However, much of this work has been conducted in adult males. Work assessing the effects of KOR activation in younger males has demonstrated that this system produces an anxiolytic/no response, indicating that that this system may be developmentally regulated. Despite these discrepancies, a direct comparison of KOR-induced anxiety in stress-naïve adolescents and adults has not been done. Additionally, the effects of KOR activation in females are poorly understood. Therefore, we assessed the impact of KOR activation on anxiety-like behavior in adolescent and adult male and female Sprague-Dawley rats. Animals were given an i.p. injection of the KOR agonist U69593 (0.01, 0.1, 1.0 mg/kg or vehicle) and were tested using the elevated plus maze. U69593 decreased open arm time in adult males, indicating increased anxiety-like behavior. Adolescents exhibited decreased stretch attend postures when collapsed across sex, suggesting reduced anxiety-like behavior. Adult females were not affected by U69593 administration. These data support studies that have identified age-dependent changes in the KOR system in males, and provide novel evidence that females may not exhibit this ontogenetic change. Given the prevalence of stress and drug exposure during the adolescent period, differences in how the KOR system may mediate the effects of these exposures across age and sex should be explored.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States.
| |
Collapse
|
17
|
Oyagbemi AA, Adebiyi OE, Adigun KO, Ogunpolu BS, Falayi OO, Hassan FO, Folarin OR, Adebayo AK, Adejumobi OA, Asenuga ER, Ola-Davies OE, Omobowale TO, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Clofibrate, a PPAR-α agonist, abrogates sodium fluoride-induced neuroinflammation, oxidative stress, and motor incoordination via modulation of GFAP/Iba-1/anti-calbindin signaling pathways. ENVIRONMENTAL TOXICOLOGY 2020; 35:242-253. [PMID: 31710167 DOI: 10.1002/tox.22861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Fluoride is an environmental contaminant that is ubiquitously present in air, water, and soil. It is commonly added in minute quantity to drinking water, toothpaste, and mouth rinses to prevent tooth decay. Epidemiological findings have demonstrated that exposure to fluoride induced neurodevelopmental toxicity, developmental neurotoxicity, and motor disorders. The neuroprotective effect of clofibrate, a peroxisome proliferator-activated receptor alpha agonist, was investigated in the present study. Forty male Wistar rats were used for this study and randomly grouped into 10 rats per group as control, sodium fluoride (NaF) alone (300 ppm), NaF plus clofibrate (250 mg/kg), and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. NaF was administered in drinking water while clofibrate and lisinopril were administered by oral gavage. Markers of neuronal inflammation and oxidative stress, acetylcholinesterase activity, and neurobehavioral (hanging wire and open field) tests were performed. Immunohistochemistry was performed on brain tissues, and they were probed with glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and cerebellar Ca2+ -binding protein calbindin-D28k. The results showed that NaF significantly increased of oxidative stress and neuroinflammation and inhibited AChE activity. Immunostaining showed reactive astrocytes, microgliosis, loss of dendritic spines, and arborization in Purkinje cells in rats administered only NaF. Neurobehavioral results showed that cotreatment of NaF with clofibrate improved muscular strength and locomotion, reduced anxiety, and significantly reduced astrocytic count. Overall, cotreatment of NaF with either clofibrate or lisinopril showed neuroprotective effects by mitigating neuronal inflammation and oxidative and motor incoordination. Hence, clofibrate could be seen as a novel drug candidate against neurodegeneration and motor disorders.
Collapse
Affiliation(s)
- Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olamide E Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Kabirat O Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing S Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke O Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Fasilat O Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Oluwabusayo R Folarin
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
- Department of Medical Laboratory Science, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adedeji K Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olumuyiwa A Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke E Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - James O Olopade
- Department of Medical Laboratory Science, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale B Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Sanah M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Faculty of Veterinary Science, Onderstepoort, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Faculty of Veterinary Science, Onderstepoort, South Africa
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh A Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, Texas
| |
Collapse
|
18
|
Translational Studies in the Complex Role of Neurotransmitter Systems in Anxiety and Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:121-140. [PMID: 32002926 DOI: 10.1007/978-981-32-9705-0_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.
Collapse
|
19
|
Ishiyama S, Kaufmann LV, Brecht M. Behavioral and Cortical Correlates of Self-Suppression, Anticipation, and Ambivalence in Rat Tickling. Curr Biol 2019; 29:3153-3164.e3. [PMID: 31564493 DOI: 10.1016/j.cub.2019.07.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 11/26/2022]
Abstract
The relationship between tickling, sensation, and laughter is complex. Tickling or its mere anticipation makes us laugh, but not when we self-tickle. We previously showed rat somatosensory cortex drives tickling-evoked vocalizations and now investigated self-tickle suppression and tickle anticipation. We recorded somatosensory cortex activity while tickling and touching rats and while rats touched themselves. Allo-touch and tickling evoked somatotopic cortical excitation and vocalizations. Self-touch induced wide-ranging inhibition and vocalization suppression. Self-touch also suppressed vocalizations and cortical responses evoked by allo-touch or cortical microstimulation. We suggest a global-inhibition model of self-tickle suppression, which operates without the classically assumed self versus other distinction. Consistent with this inhibition hypothesis, blocking cortical inhibition with gabazine abolished self-tickle suppression. We studied anticipation in a nose-poke-for-tickling paradigm. Although rats nose poked for tickling, they also showed escaping, freezing, and alarm calls. Such ambivalence ("Nervenkitzel") resembles tickle behaviors in children. We conclude that self-touch-induced GABAergic cortical inhibition prevents self-tickle, whereas anticipatory layer 5 activity drives anticipatory laughter. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Shimpei Ishiyama
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; Institut für Pathophysiologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Lena V Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Laureano-Melo R, Caldeira RF, Guerra AF, Conceição RRD, Souza JSD, Giannocco G, Marinho BG, Luchese RH, Côrtes WS. Maternal supplementation with Lactobacillus paracasei DTA 83 alters emotional behavior in Swiss mice offspring. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Peecher DL, Binder AK, Gabriel KI. Rodent models of mental illness in polycystic ovary syndrome: the potential role of hypothalamic-pituitary-adrenal dysregulation and lessons for behavioral researchers. Biol Reprod 2019; 100:590-600. [PMID: 30388193 DOI: 10.1093/biolre/ioy233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most commonly diagnosed endocrine disorder in women of reproductive age, with phenotypes including ovarian and metabolic dysfunctions. Women with PCOS also show increased rates of mental illness, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, and altered responsiveness to stressors that may contribute to the higher rates of mental illness, specifically depression and anxiety. Animal models of PCOS have provided insight into the ovarian and metabolic mechanisms that underlie the syndrome, and several models have been used to study the behavioral consequences associated with PCOS in the laboratory. Several studies in rodent models of PCOS demonstrate changes in anxiety-like behavior, but researchers often neglect to report procedural details or behavioral data crucial to interpreting the differences observed in those studies. Additionally, the impact of potential HPA dysregulation in animal models of PCOS may influence behavioral findings, although only three studies to date have examined this. As such, researchers should consider and report stress-associated variables (e.g., time of day, light/dark cycle, light intensity, housing, and procedures to control experimenter and litter effects) that may influence depression- and anxiety-like behaviors in rodents. This review will summarize the behavioral and HPA-related studies in women with PCOS and rodent models of the disease, and provide considerations for future studies.
Collapse
Affiliation(s)
- Danielle L Peecher
- Department of Psychology, Central Washington University, Ellensburg, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - April K Binder
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA.,Department of Biological Sciences, Central Washington University, Ellensburg, Washington, USA
| | - Kara I Gabriel
- Department of Psychology, Central Washington University, Ellensburg, Washington, USA
| |
Collapse
|
22
|
Blanchard D, Meyza K. Risk assessment and serotonin: Animal models and human psychopathologies. Behav Brain Res 2019; 357-358:9-17. [DOI: 10.1016/j.bbr.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/19/2017] [Accepted: 07/07/2017] [Indexed: 02/08/2023]
|
23
|
IgSF9b regulates anxiety behaviors through effects on centromedial amygdala inhibitory synapses. Nat Commun 2018; 9:5400. [PMID: 30573727 PMCID: PMC6302093 DOI: 10.1038/s41467-018-07762-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies. IgSF9b is a synaptic adhesion protein that has been linked to psychiatric disorders. Here the authors show that deletion of IgSF9b regulates anxiety-like behaviour in mice by increasing inhibitory synaptic transmission in the centromedial amygdala.
Collapse
|
24
|
Willadsen M, Best LM, Wöhr M, Clarke PBS. Effects of anxiogenic drugs on the emission of 22- and 50-kHz ultrasonic vocalizations in adult rats. Psychopharmacology (Berl) 2018; 235:2435-2445. [PMID: 29909426 DOI: 10.1007/s00213-018-4942-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
RATIONALE Adult rat 22-kHz vocalizations are often associated with alarm or distress, whereas a subset of 50-kHz calls is preferentially emitted in response to amphetamine and other rewarding stimuli. Whether any 50-kHz calls reflect anxiety is unknown. OBJECTIVE To determine the effects of anxiogenic drugs on 50-kHz call rate and call subtype profile, in comparison with D-amphetamine. METHODS Adult male rats received systemic amphetamine (1 mg/kg) three times several days before testing. Ultrasonic vocalizations were then recorded after acute intraperitoneal injection of amphetamine or one of five anxiogenic drugs: yohimbine (2.5 mg/kg), N-methyl-β-carboline-3-carboxamide (FG 7142, 5 mg/kg), pentylenetetrazol (PTZ, 20 mg/kg), m-chlorophenylpiperazine (mCPP, 1 mg/kg), caffeine (25 mg/kg), or vehicle. RESULTS The duration of immobility was increased by FG 7142, PTZ, and mCPP; this measure was unchanged by yohimbine and reduced by the locomotor stimulant drugs amphetamine and caffeine. Conversely, the 50-kHz call rate was reduced by FG 7142, PTZ and mCPP, and increased by caffeine and amphetamine. Overall, the most common 50-kHz call subtypes were flat, trill, step-up, and complex. Consistent with previous reports, amphetamine increased the relative prevalence of trill calls while reducing the relative prevalence of flat calls. Yohimbine and caffeine reduced flat call prevalence, whereas mCPP reduced trill call prevalence. No other shifts in the call profile were observed, and no anxiogenic drug induced 22-kHz calls. CONCLUSION Anxiogenic drugs, as a class, did not uniformly alter the 50-kHz call rate or subtype profile. Amphetamine-induced effects on 50-kHz call rate and profile do not reflect anxiety.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Laura M Best
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1325, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1325, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
25
|
Gouveia K, Hurst JL. Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling. Sci Rep 2017; 7:44999. [PMID: 28322308 PMCID: PMC5359560 DOI: 10.1038/srep44999] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Handling laboratory animals during test procedures is an important source of stress that may impair reliability of test responses. Picking up mice by the tail is aversive, stimulating stress and anxiety. Responses among anxious animals can be confounded further by neophobia towards novel test environments and avoidance of test stimuli in open areas. However, handling stress can be reduced substantially by using a handling tunnel, or cupping mice without restraint on the open hand. Here we establish whether non-aversive handling, brief prior familiarisation with the test arena and alternative stimulus placement could significantly improve performance of mice in behavioural tests. We use a simple habituation-dishabituation paradigm in which animals must discriminate between two urine stimuli in successive trials, a task that mice can easily perform. Tail handled mice showed little willingness to explore and investigate test stimuli, leading to poor test performance that was only slightly improved by prior familiarisation. By contrast, those handled by tunnel explored readily and showed robust responses to test stimuli regardless of prior familiarisation or stimulus location, though responses were more variable for cup handling. Our study shows that non-aversive tunnel handling can substantially improve mouse performance in behavioural tests compared to traditional tail handling.
Collapse
Affiliation(s)
- Kelly Gouveia
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Jane L. Hurst
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| |
Collapse
|
26
|
MATSAP: An automated analysis of stretch-attend posture in rodent behavioral experiments. Sci Rep 2016; 6:31286. [PMID: 27503239 PMCID: PMC4977506 DOI: 10.1038/srep31286] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
Stretch-attend posture (SAP) occurs during risk assessment and is prevalent in common rodent behavioral tests. Measuring this behavior can enhance behavioral tests. For example, stretch-attend posture is a more sensitive measure of the effects of anxiolytics than traditional spatiotemporal indices. However, quantifying stretch-attend posture using human observers is time consuming, somewhat subjective, and prone to errors. We have developed MATLAB-based software, MATSAP, which is a quick, consistent, and open source program that provides objective automated analysis of stretch-attend posture in rodent behavioral experiments. Unlike human observers, MATSAP is not susceptible to fatigue or subjectivity. We assessed MATSAP performance with videos of male Swiss mice moving in an open field box and in an elevated plus maze. MATSAP reliably detected stretch-attend posture on par with human observers. This freely-available program can be broadly used by biologists and psychologists to accelerate neurological, pharmacological, and behavioral studies.
Collapse
|
27
|
Zaccaroni M, Seta DD, Farabollini F, Fusani L, Dessì-Fulgheri F. Developmental Exposure to Very Low Levels of Ethynilestradiol Affects Anxiety in a Novelty Place Preference Test of Juvenile Rats. Neurotox Res 2016; 30:553-562. [DOI: 10.1007/s12640-016-9645-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022]
|
28
|
Henriques-Alves AM, Queiroz CM. Ethological Evaluation of the Effects of Social Defeat Stress in Mice: Beyond the Social Interaction Ratio. Front Behav Neurosci 2016; 9:364. [PMID: 26869895 PMCID: PMC4737906 DOI: 10.3389/fnbeh.2015.00364] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/19/2015] [Indexed: 11/13/2022] Open
Abstract
In rodents, repeated exposure to unavoidable aggression followed by sustained sensory treat can lead to prolonged social aversion. The chronic social defeat stress model explores that phenomenon and it has been used as an animal model for human depression. However, some authors have questioned whether confounding effects may arise as the model also boosts anxiety-related behaviors. Despite its wide acceptance, most studies extract limited information from the behavior of the defeated animal. Often, the normalized occupancy around the social stimulus, the interaction zone, is taken as an index of depression. We hypothesized that this parameter is insufficient to fully characterize the behavioral consequences of this form of stress. Using an ethological approach, we showed that repeated social defeat delayed the expression of social investigation in long (10 min) sessions of social interaction. Also, the incidence of defensive behaviors, including stretched-attend posture and high speed retreats, was significantly higher in defeated mice in comparison to controls. Interestingly, a subpopulation of defeated mice showed recurrent and non-habituating stretched-attend posture and persistent flights during the entire session. Two indexes were created based on defensive behaviors to show that only recurrent flights correlates with sucrose intake. Together, the present study corroborates the idea that this model of social stress can precipitate a myriad of behaviors not readily disentangled. We propose that long sessions (>150 s) and detailed ethological evaluation during social interaction tests are necessary to provide enough information to correctly classify defeated animals in terms of resilience and susceptibility to social defeat stress.
Collapse
Affiliation(s)
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
29
|
Matsumoto J, Uehara T, Urakawa S, Takamura Y, Sumiyoshi T, Suzuki M, Ono T, Nishijo H. 3D video analysis of the novel object recognition test in rats. Behav Brain Res 2014; 272:16-24. [PMID: 24991752 DOI: 10.1016/j.bbr.2014.06.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
The novel object recognition (NOR) test has been widely used to test memory function. We developed a 3D computerized video analysis system that estimates nose contact with an object in Long Evans rats to analyze object exploration during NOR tests. The results indicate that the 3D system reproducibly and accurately scores the NOR test. Furthermore, the 3D system captures a 3D trajectory of the nose during object exploration, enabling detailed analyses of spatiotemporal patterns of object exploration. The 3D trajectory analysis revealed a specific pattern of object exploration in the sample phase of the NOR test: normal rats first explored the lower parts of objects and then gradually explored the upper parts. A systematic injection of MK-801 suppressed changes in these exploration patterns. The results, along with those of previous studies, suggest that the changes in the exploration patterns reflect neophobia to a novel object and/or changes from spatial learning to object learning. These results demonstrate that the 3D tracking system is useful not only for detailed scoring of animal behaviors but also for investigation of characteristic spatiotemporal patterns of object exploration. The system has the potential to facilitate future investigation of neural mechanisms underlying object exploration that result from dynamic and complex brain activity.
Collapse
Affiliation(s)
- Jumpei Matsumoto
- System Emotional Science, University of Toyama, Toyama, Toyama, Japan
| | - Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Ucninada-cho, Kahoku, Ishikawa, Japan
| | - Susumu Urakawa
- System Emotional Science, University of Toyama, Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, University of Toyama, Toyama, Toyama, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Research Promotion, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama, Toyama, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, University of Toyama, Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, University of Toyama, Toyama, Toyama, Japan.
| |
Collapse
|
30
|
|
31
|
Pisula W, Turlejski K, Stryjek R, Nałęcz-Tolak A, Grabiec M, Djavadian RL. Response to novelty in the laboratory Wistar rat, wild-captive WWCPS rat, and the gray short-tailed opossum (Monodelphis domestica). Behav Processes 2012; 91:145-51. [DOI: 10.1016/j.beproc.2012.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/25/2022]
|
32
|
Pawlak CR, Karrenbauer BD, Schneider P, Ho YJ. The Elevated Plus-Maze Test: Differential Psychopharmacology of Anxiety-Related Behavior. EMOTION REVIEW 2012. [DOI: 10.1177/1754073911421374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of individual factors in behavioral neuroscience is an important, but still neglected, area of research. For example, the Elevated Plus-Maze Test has been one of the most used paradigms to gauge unconditioned aversively motivated behavior in rodents. However, despite a great number of experiments with this test there have been only few efforts to assess systematic individual variations in the elevated plus-maze and related neurobiological functions. The present review aims to give, first, a general overview and introduction about the test, and second, an animal model of anxiety based on natural variance of plus-maze behavior within a given unselected population of rats. Finally, critical aspects of such approaches in animal research are discussed, and suggestions are given as to where to go from here.
Collapse
Affiliation(s)
- Cornelius R. Pawlak
- Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Mannheim, Germany
- Chair of Biological and Clinical Psychology, School of Social Sciences, University of Mannheim, Germany
- Institute of Psychology, University of Frankfurt am Main, Germany
| | - Britta D. Karrenbauer
- Department of Experimental and Physiological Psychology, Philipps-University of Marburg, Germany
| | - Peggy Schneider
- Department of Psychopharmacology, Central Institute of Mental Health, Germany
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University, Taiwan, ROC
| |
Collapse
|
33
|
Mansur SS, Terenzi MG, Neto JM, Faria MS, Paschoalini MA. Phenylephrine into the median raphe nucleus evokes an anxiolytic-like effect in free-feeding rats but does not alter food intake in free feeding rats. Behav Brain Res 2010; 217:209-14. [PMID: 20937329 DOI: 10.1016/j.bbr.2010.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/21/2010] [Accepted: 10/05/2010] [Indexed: 11/26/2022]
Abstract
This study investigated the role of MnR α₁-adrenergic receptors in the control of anxiety-like and feeding behaviors and attempted to reveal a possible functional association between both behaviors. The α₁-adrenergic agonist phenylephrine (PHE) (at doses of 0.2, 2, 6, 20 nmol) or saline was injected into the MnR or into the pontine nucleus (Pn) of free-feeding rats. The animals were exposed to the elevated plus maze to analyse spatial-temporal and ethological variables. Subsequently, the ingestive and non-ingestive behaviors were recorded during 30 min and feeding and drinking behaviors were measured. Both in the elevated plus-maze and in the feeding chamber, all PHE doses injected into the MnR decreased the risk assessment frequency, an ethological parameter of anxiolytic-like effect. The spatial-temporal variables remained unchanged after PHE treatment. Feeding behavior was not affected by PHE into the MnR. The anxiety-like or ingestive behaviors were not affected by PHE treatment in the Pn, an area adjacent to the MnR. These data indicate that α₁-adrenergic receptors within MnR participate in the control of anxiety-like behaviors. The absence of effects on feeding behavior after MnR α₁-adrenergic activation could be due to an elevated α₁-adrenergic tonus and its possible strong facilitatory influence on 5-HT neurons within MnR. Furthermore, the present results suggest that anxiety-like and feeding behaviors controled by MnR adrenergic circuits operate by independent neural pathways.
Collapse
Affiliation(s)
- Samira Schultz Mansur
- Department of Physiological Sciences, Centre of Biological Sciences - CCB, Federal University of Santa Catarina (UFSC), 88040-970, Florianópolis, SC, Brazil.
| | | | | | | | | |
Collapse
|
34
|
Voigt JP, Bader M, Bert B, Fink H, Rex A. Anxiety-related behaviour of low brain angiotensinogen transgenic rats in the canopy test. Pharmacol Biochem Behav 2010; 96:429-37. [DOI: 10.1016/j.pbb.2010.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/29/2010] [Accepted: 07/04/2010] [Indexed: 01/16/2023]
|
35
|
|
36
|
Abstract
Many mammals spontaneously rear on their hind legs in response to novelty. The current paper is the first review of rearing behaviour, and is intended to collate findings from different perspectives that are not usually brought together. We suggest that rearing is a useful marker of environmental novelty, that the hippocampal formation is a crucial component of the system controlling rearing in novel environments, and that rearing is one of several ethological measures that can profitably be used to assess hippocampal learning and memory. Consideration is given to the following topics: the possible functions of rearing in information-gathering and escape behaviour; the modulation of rearing by various factors such as anxiety/ fear emotionality; comparative perspectives on rearing; neuroanatomical circuits involved in rearing with particular reference to the hippocampal formation and its afferents and efferents; and the role of the hippocampal formation in uncharted and mismatch environmental novelty. The review concludes with testable predictions about rearing, environmental novelty and the hippocampus.
Collapse
Affiliation(s)
- Colin Lever
- Department ofAnatomy and Developmental Biology, University College London, London, UK.
| | | | | |
Collapse
|
37
|
Voigt JP, Hörtnagl H, Rex A, van Hove L, Bader M, Fink H. Brain angiotensin and anxiety-related behavior: The transgenic rat TGR(ASrAOGEN)680. Brain Res 2005; 1046:145-56. [PMID: 15869747 DOI: 10.1016/j.brainres.2005.03.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/24/2005] [Accepted: 03/29/2005] [Indexed: 11/21/2022]
Abstract
The transgenic rat TGR(ASrAOGEN)680, characterized by a transgene-producing antisense RNA against angiotensinogen in the brain, provides an opportunity to study the behavioral effects of angiotensin. While exposed to the elevated plus-maze (EPM) and the light/dark box, TGR(ASrAOGEN)680 rats showed more signs of anxiety compared to parental Sprague-Dawley (SD) rats. In the EPM, they made fewer entries into the open arms, spent less time there and more time on the closed arms. Head dips were reduced and U-turns were increased. In the light/dark box, the latency to the first re-entry into the light compartment was higher in TGR(ASrAOGEN)680. They displayed more SAP out from the dark and a reduced number of transitions between the two compartments. In the social interaction test, active social contacts were reduced, further suggesting an anxious phenotype. Although there was no transgenic effect on distance traveled in the open field, the more anxious TGR(ASrAOGEN)680 spent less time in the inner zone. Self-grooming was increased in TGR(ASrAOGEN)680 during exposure to the EPM and the open field, but was decreased in the social interaction test. In TGR(ASrAOGEN)680, tissue content of 5-HT and its metabolite 5-HIAA was lower in the hippocampus, frontal, and parietal cortex. HIAA and 5-HIAA/5-HT ratios were reduced in the hypothalamus, striatum, and septum. In the open field, the anxiogenic effect of the 5-HT2C/1B receptor agonist mCPP (0.5-1 mg/kg IP) was more pronounced in TGR(ASrAOGEN)680. The data suggest an anxious phenotype in rats with low brain angiotensinogen, possibly related to secondary dysfunctions of the brain serotonergic system.
Collapse
Affiliation(s)
- Jörg-Peter Voigt
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Endogenous opioids, stress, and psychopathology. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Roy V, Chapillon P. Further evidences that risk assessment and object exploration behaviours are useful to evaluate emotional reactivity in rodents. Behav Brain Res 2004; 154:439-48. [PMID: 15313032 DOI: 10.1016/j.bbr.2004.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/12/2004] [Accepted: 03/12/2004] [Indexed: 11/21/2022]
Abstract
In this study, we tested the ability of risk assessment and exploration behaviours to emphasise PH effects. Indeed, postnatal handling (PH) decreases emotional reactivity in rats but inconsistent behavioural results can be observed and may be due to false negative (i.e. existing effects are not detected). Risk assessment behaviours were measured in the elevated plus maze, in the free exploration paradigm and in the open field. In addition, we measured object exploration behaviours towards familiar/new objects in the open field. PH increased general activity in the elevated plus maze and in the free exploration paradigm and risk assessment behaviours allowed demonstrating that these effects were specific to emotional reactivity. In the open field, PH increased object exploration as early as first exposition while general activity was unaffected. PH also decreased behavioural inhibition in response to the introduction of a novel object. On the whole, our results show that risk assessment and object exploration behaviours are valuable tools to measure more precisely emotional reactivity in rodents. This reinforces the idea that these behaviours should be used more frequently in order to avoid false negative when emotional reactivity changes are expected in unconditioned conflict tests.
Collapse
Affiliation(s)
- Vincent Roy
- UPRES PSY.CO, EA 1780, Equipe Neurobiologie de l'Apprentissage, UFR des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan, France.
| | | |
Collapse
|
40
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
41
|
Olivier B, Pattij T, Wood SJ, Oosting R, Sarnyai Z, Toth M. The 5-HT(1A) receptor knockout mouse and anxiety. Behav Pharmacol 2001; 12:439-50. [PMID: 11742137 DOI: 10.1097/00008877-200111000-00004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 5-HT(1A) receptor has been implicated in the modulation of anxiety processes, mainly via pharmacological experiments. The recent production, in three independent research groups, of 5-HT(1A) receptor knockout (R KO) mice in three different genetic backgrounds (C57BL/6J, 129/Sv, Swiss-Webster) led to the intriguing finding that all mice, independent from the genetic background strain from which the null mutants were made, showed an "anxious" phenotype compared to corresponding wild-type mice. The present paper reviews the behavioral findings in these three KO lines and focuses on new findings in the 129/Sv-KO mice. These mice were more anxious or stress-prone only under specific conditions (high stress) and not as broadly as suggested from the initial studies. The 5-HT(1A) R KO made in the Swiss-Webster background displays disturbances in the GABA(A)-benzodiazepine (BZ) receptor system in the brain, including downregulation of GABA(A) alpha1 and alpha2 subunits in the amygdala. In contrast, the GABA(A)-BZ receptor system seems to function normally in the 5-HT(1A) R KO in the 129/Sv background suggesting that changes in the GABA(A)-BZ receptor system may not be a prerequisite for anxiety but rather could have a modifying effect on this phenotype. It can be concluded that the constitutive absence of the 5-HT(1A) receptor gene and receptor leads to a more "anxious" mouse, dependent on the stress level but independent from the strain. Depending on the genetic background, this null mutation may be associated with changes in GABA(A)-ergic neurotransmission. It is as yet unclear which mechanisms are involved in this intriguing differentiation.
Collapse
Affiliation(s)
- B Olivier
- Department of Psychopharmacology, Faculty of Pharmacy, Utrecht University, Sorbonnelaan 16, 3584CA Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Holmes A, Iles JP, Mayell SJ, Rodgers RJ. Prior test experience compromises the anxiolytic efficacy of chlordiazepoxide in the mouse light/dark exploration test. Behav Brain Res 2001; 122:159-67. [PMID: 11334646 DOI: 10.1016/s0166-4328(01)00184-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now well established that prior test experience can alter behavioural baselines and attenuate/abolish the anxiolytic efficacy of benzodiazepines in the elevated plus-maze paradigm. In view of evidence that different models of anxiety measure qualitatively distinct forms of anxiety-like behaviour, it is important to establish whether the effects of prior experience extend to other widely-used tests. The present study assessed the behavioural and pharmacological sequelae of a single undrugged prior exposure to the light/dark exploration (L/D) test in mice, using ethological scoring methods. One group of adult male Swiss-Webster mice was given a single undrugged exposure to the L/D test 24 h prior to drug testing, while another group was completely naïve to the apparatus. On test day, half the animals in each experiential condition were treated with saline and half with an anxiolytic dose (10 mg/kg) of chlordiazepoxide (CDP). When administered to test-naïve animals, CDP induced a clear reduction in anxiety-like behaviour as evidenced by significant increases in exploration of the light compartment (line crossings, % line crossings, and % time) as well as reductions in stretched attend postures (SAPs) and the proportion of SAPs displayed toward the light compartment. The behavioural specificity of these effects was confirmed by the absence of a drug effect on line crossings in the dark compartment, total rearing and grooming. In complete contrast, with the sole exception of a decrease in total SAPs, CDP was without significant behavioural effect in test-experienced mice. As prior test experience did not significantly alter behavioural baselines in the L/D test, a second experiment was designed to investigate the possibility that handling/intraperitoneal injection may have precluded detection of experientially-induced changes in baseline behaviour. Results showed that handling/injection had no effect upon L/D behavioural profiles in either test-naïve or test-experienced subjects, and confirmed that prior experience itself did not modify the primary indices of anxiety in this test. Present data indicate that prior test experience seriously compromises the anxiolytic efficacy of CDP (10 mg/kg) in the mouse L/D test and, together with recent findings in the four-plate test, appear to confirm that an experientially-induced reduction in sensitivity to the anxiolytic effects of benzodiazepines is by no means unique to the elevated plus-maze.
Collapse
Affiliation(s)
- A Holmes
- Ethopharmacology Laboratory, School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
43
|
Atkins AL, Rustay NR, Crabbe JC. Anxiety and Sensitivity to Ethanol and Pentobarbital in Alcohol Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant Mice. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb01976.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Holmes A, Parmigiani S, Ferrari PF, Palanza P, Rodgers RJ. Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiol Behav 2000; 71:509-16. [PMID: 11239669 DOI: 10.1016/s0031-9384(00)00373-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic observations of the defensive behavior of wild rodents have greatly informed the experimental study of anxiety and its neural substrates in laboratory animals. However, as the former work has been almost exclusively carried out in rats, few data are available concerning the reactivity of wild mice to standardized tests of anxiety-related behavior. In the present experiments, we employed ethological measures to examine the behavioral responses of a wild-derived population of house mice (Mus musculus) in the elevated plus-maze. In direct comparisons with laboratory Swiss mice, male wild mice exhibited substantially elevated levels of exploratory activities and an overall "preference" for the open arms of the plus-maze. On re-exposure to the plus-maze, male wild mice showed further increases in open arm exploration, while Swiss mice showed a marked shift to the enclosed parts of the plus-maze. Tested over a single session, female wild mice also exhibited a profile of high open arm exploration, but showed levels of exploratory behaviors and locomotor activity similar to female Swiss counterparts. While exploratory patterns in wild mice show similarities to profiles seen in certain laboratory strains (e.g., BALB/c), wild mice displayed a number of additional behaviors that are unprecedented in plus-maze studies with laboratory mice. These included actual and attempted jumps from the maze, spontaneous freezing, and exploration of the upper ledges of the closed arms. Thus, while in conventional terms the behavior of wild mice was consistent with one of low anxiety-like behavior, the presence of these unique elements instead indicates a profile more accurately characterized by high reactivity and escape motivation. We discuss how the use of an ethological approach to measuring plus-maze behavior can support accurate interpretation of other exceptional profiles in this test, such as those possibly arising from phenotyping of transgenic and gene knockout mice.
Collapse
Affiliation(s)
- A Holmes
- Dipartimento di Biologia Evolutiva e Funzionale, Universita di Parma, Viale di Scienze, 43100, Parma, Italy.
| | | | | | | | | |
Collapse
|
45
|
Weiss SM, Lightowler S, Stanhope KJ, Kennett GA, Dourish CT. Measurement of anxiety in transgenic mice. Rev Neurosci 2000; 11:59-74. [PMID: 10716656 DOI: 10.1515/revneuro.2000.11.1.59] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A wide range of approaches has been used to study anxiety in mice. All presuppose that aversive stimuli, such as foot shock or novelty, induce a central state of fear, which can be quantified through specific behavioural and physiological measures. This review discusses the validity of the various approaches in terms of their similarity to different human anxiety disorders, their ability to detect compounds which modulate human anxiety, and their relevance to animal defensive processes. The most commonly used models of anxiety suitable for screening transgenic and knockout mice are discussed, with an emphasis placed on controlling for factors which could confound results. As all models used to date have limitations and no single paradigm adequately models all aspects of anxiety, this review recommends the use of a broad range of anxiety models in order to provide a comprehensive characterisation of the behavioural phenotype of transgenic mice.
Collapse
Affiliation(s)
- S M Weiss
- Department of Neuropharmacology, Cerebrus Ltd., UK
| | | | | | | | | |
Collapse
|
46
|
Olivier B, Soudijn W, van Wijngaarden I. The 5-HT1A receptor and its ligands: structure and function. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 52:103-65. [PMID: 10396127 DOI: 10.1007/978-3-0348-8730-4_3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An overview is presented on progress made in research on 5-HT1A receptors and their ligands since their discovery in 1983. Molecular biology has offered new tools, for example cloned 5-HT1A receptors, their mutants and chimeras to study structure and function. Many compounds, belonging to different chemical classes, display high affinity and selectivity for 5-HT1A receptors. The majority of these compounds are agonists or partial agonists, full antagonists are still scarce. Agonists and partial agonists are active in various animal models of anxiety and depression. Partial receptor agonists have been proven to be effective in general anxiety disorder and depression in man. Potential therapeutic applications for 5-HT1A receptor antagonists are evaluated, for example, in cognition disorders.
Collapse
Affiliation(s)
- B Olivier
- Dept. of Psychopharmacology, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | |
Collapse
|
47
|
Olivier B, Molewijk HE, van der Heyden JA, van Oorschot R, Ronken E, Mos J, Miczek KA. Ultrasonic vocalizations in rat pups: effects of serotonergic ligands. Neurosci Biobehav Rev 1999; 23:215-27. [PMID: 9884114 DOI: 10.1016/s0149-7634(98)00022-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ligands with varying intrinsic activity and selectivity for the various subtypes of the serotonin receptor were tested in the rat pup ultrasonic vocalization (USV) model, a putative animal model reflecting anxiety. USV were elicited by isolating rat pups from their mother and littermates by placing them on a warm (37 degrees C) or a cold (18 degrees C) plate. Concurrently, the negative geotaxic (NG) response and rectal temperature were determined to assess the potentially sedative and hypothermic effects of putative anxiolytics. USV were reduced at low doses and in both temperature conditions by the full 5-HT1A receptor agonists flesinoxan and 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin.HBr) and the partial 5-HT1A receptor agonists buspirone, ipsapirone and BMY 7378 (2-[4-[4-[2-pyrimidinyl]-1,2-piperazinyl]butyl]-1,2-benzi-isoth iozol-3-(2H)one-1,1-dioxide. 2HCl). The 5-HT1A receptor antagonists NAN-190 (1-(2-methoxyphenyl)-4-[4-(2-phtalimido)-butyl]piperazide.2H Cl), (+/-)-WAY 100,135 (+/-)-(N-tert-butyl-3(4-(2-methoxy phenyl)piperazin-1 -yl)-2-phenyl propionamine.2HCl), and ((S)-UH-301 (S)-5-fluoro-8-hydroxy-2-(di-n-propyl-amino)tetralin.HBr) reduced USV at higher doses and only in one of both test conditions. The selective 5-HT1A receptor antagonist DU 125530 (2-[4-[4[(7-chloro-2,3dihydro-4-benzodioxin-5-yl)-1-piperazi nyl]butyl]-1,2-benzisothiazol-3(2H)-one-1,1, dioxide, monomesylate), did not influence USV at the cold plate up to high doses, although concomitantly the negative geotaxis was disturbed. The negative geotaxis was impaired after all 5-HT1A receptor ligands, except BMY 7378 and (+/-)-WAY 100,135. Hypothermia coincided with USV-suppression, except for NAN-190 and (S)-UH-301. The USV-suppressing action of flesinoxan (3 mg/kg) could be antagonized by DU 125530, but not its NG effect. However, the hypothermia induced by flesinoxan was antagonized by DU 125530. USV were also suppressed by the 5-HT uptake inhibitors fluvoxamine (both warm and cold plate) and clomipramine (only warm plate). The tricyclic antidepressant imipramine only decreased USV on the cold plate, however, in a U-shaped dose-response curve. At the highest dose tested, no decrease was present. The 5-HT uptake stimulant tianeptine reduced USV under both conditions. Fluvoxamine had no side effects, clomipramine induced hypothermia and tianeptine clearly had sedative properties. The 5-HT1B/2C receptor agonist TFMPP (trifluorometaphenylpiperazine) stimulated USV at a low dose at the cold plate and suppressed USV at a high dose under both conditions. The 5-HT2A/2C receptor antagonist ketanserine enhanced USV at low doses under both conditions and had no effect at a higher dose. Concurrently heavy sedation and hypothermia occurred. The 5-HT3 receptor agonist phenylbiguanide and the 5-HT3 receptor antagonist ondansetron had no effect in this paradigm. Clearly, subtypes of the 5-HT receptor affect rat pup USV differentially.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Dose-Response Relationship, Drug
- Female
- Ligands
- Male
- Postural Balance/drug effects
- Rats
- Receptor, Serotonin, 5-HT1B
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin, 5-HT1
- Receptors, Serotonin, 5-HT3
- Serotonin Agents/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Ultrasonics
- Vocalization, Animal/drug effects
Collapse
Affiliation(s)
- B Olivier
- Department of CNS Pharmacology, Solvay Pharmaceuticals, Weesp, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Rex A, Voigt JP, Voits M, Fink H. Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs. Pharmacol Biochem Behav 1998; 59:677-83. [PMID: 9512071 DOI: 10.1016/s0091-3057(97)00461-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In a recent study it has been shown that benzodiazepine receptor agonists attenuate novelty-induced suppression of feeding and increase the percentage of animals feeding in the open field. Food-deprived rats were placed in one corner of the open field containing food in the center. The number of rats beginning to eat in the first 5 min was recorded. In the present study this test was validated pharmacologically using known "anxiolytic" or "nonanxiolytic" drugs. The following substances (effective doses, given IP) increased the number of rats feeding within 5 min in the center of the open field: meprobamate (30.0-300 mg/kg), 8-OH-DPAT (10 and 30 microg/kg), ipsapirone (1.0 and 2.0 mg/kg), ritanserin (0.125-0.5 mg/kg), tropisetron (0.1-10.0 microg/kg), ondansetron (0.3-3.0 microg/kg), lisuride (0.28-0.55 mg/kg), morphine (0.3 and 1.0 mg/kg), propranolol (0.3 and 1.0 mg/kg), clozapine (1.0 mg/kg). Drugs without "anxiolytic" effects in other animal models or in humans, including amphetamine, apomorphine, haloperidol, sulpiride, and mCPP did not increase the incidence of food intake in this test. Ethanol and hexobarbital, in nonsedative doses, had no effect in this paradigm. Drugs and doses effective in the modified open-field test caused no increase in food intake in an independent food consumption test using food-deprived rats staying in the familiar cages. The results suggest that the modified open-field test can detect "anxiolytic" drug properties and is valid for the assessment of "anxiolytic" effects from different classes of drugs.
Collapse
Affiliation(s)
- A Rex
- Institute of Pharmacology and Toxicology, Humboldt-University, Berlin, Germany
| | | | | | | |
Collapse
|
49
|
Olivier B, Zethof TJ, Ronken E, van der Heyden JA. Anxiolytic effects of flesinoxan in the stress-induced hyperthermia paradigm in singly-housed mice are 5-HT1A receptor mediated. Eur J Pharmacol 1998; 342:177-82. [PMID: 9548383 DOI: 10.1016/s0014-2999(97)01482-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the stress-induced hyperthermia paradigm in singly-housed male mice, two sequential rectal temperature measurements reveal the basal temperature (T1) and, 10 min later, an enhanced body temperature (T2), due to the stress of the first rectal measurement. The difference T2 - T1 (deltaT) is the stress-induced hyperthermia and putatively reflects a stress-induced anxiogenic response. The full 5-HT1A receptor agonist flesinoxan ((+)-enantiomer), its (-)-enantiomer and the racemic mixture reduced stress-induced hyperthermia effects, indicating putative anxiolytic properties. The ratio of their potencies to reduce stress-induced hyperthermia was similar to their potency in receptor binding affinities for 5-HT1A receptors, supporting that the anti-hyperthermia effects are mediated by the 5-HT1A receptor. This was further substantiated when the 5-HT1A receptor antagonists WAY 100635 ((N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclo-hexane carboxamine trihydrochloride) and DU 125530 (2-[4-[4-(7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-1-piperazinyl ]butyl]-1,2-benzisothiazol-3(2H)-one-1,1-dioxide, monomesylate) both were able to antagonize the anti-stress-induced hyperthermia effects of flesinoxan. The stress-induced hyperthermia paradigm in singly-housed mice represents a simple and robust paradigm to measure putative anxiolytic effects of drugs.
Collapse
Affiliation(s)
- B Olivier
- CNS-Pharmacology, Solvay Pharmaceuticals, Weesp, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Blanchard RJ, Griebel G, Henrie JA, Blanchard DC. Differentiation of anxiolytic and panicolytic drugs by effects on rat and mouse defense test batteries. Neurosci Biobehav Rev 1997; 21:783-9. [PMID: 9415903 DOI: 10.1016/s0149-7634(96)00062-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of ethoexperimental techniques to elicit and maximize the full range of defensive behaviors of rats and mice enables a very precise analysis of the effects of drugs on these behavior patterns. Two rat defense test batteries (the fear/defense test battery or F/DTB and the anxiety/defense test battery or A/DTB) have provided evidence that anxiolytic drugs, even from different classes, produce a common pattern of changes in specific behaviors. A recently developed mouse defense test battery (MDTB) has enabled description of mouse defensive behaviors to a predator, for comparison to those of rats, and a series of studies of drug effects on the behaviors measured in the MDTB provides evidence of cross-species generality of anxiolytic drug effects, or lack of effect, on specific defensive behaviors. In addition, tests with panicogenic and panicolytic drugs in the MDTB indicate that these enhance and reduce, respectively, flight reactions, which generally are not altered by anxiolytic compounds. Thus, results from the MDTB, taken in conjunction with those of the two rat test batteries and other defense analyses in rats and mice, provide evidence that many defensive behaviors are similar across rodent species, while the differences obtained provide a consistent pattern across situations. Moreover, the defense test batteries may be used to differentiate the effects of drugs effective against generalized anxiety as opposed to panic, through effects on specific defensive behaviors.
Collapse
Affiliation(s)
- R J Blanchard
- Department of Psychology, University of Hawaii, Honolulu, USA
| | | | | | | |
Collapse
|