1
|
Meng FZ, Wei WK, Cai MZ, Wang ZQ, Yin LF, Yin WX, Schnabel G, Luo CX. The Mediator complex subunit MoMed15 plays an important role in conferring sensitivity to isoprothiolane by modulating xenobiotic metabolism in M. oryzae. mBio 2024; 15:e0177824. [PMID: 39530687 PMCID: PMC11633134 DOI: 10.1128/mbio.01778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most economically important rice diseases. Fungicides such as isoprothiolane (IPT) have been used extensively for rice blast control, but resistance to IPT in M. oryzae is an emerging threat. In this study, molecular mechanisms of resistance in IPT-resistant mutants were identified. Through whole-genome sequencing and genetic transformation, we identified the gene MoMed15, encoding a transcriptional glutamine-rich co-activator Mediator complex subunit, in which mutations or deletion resulted in moderate IPT resistance. Further research found that MoMed15 physically interacted with the IPT resistance regulatory factor MoIRR to simultaneously regulate both MoIRR expression and the expression of multiple xenobiotic-metabolizing enzymes in response to IPT stress. We hypothesize that some xenobiotic-metabolizing enzymes enhance IPT toxicity by modifying the IPT structure. Variation of MoMed15 affected the recruitment of the transcriptional Mediator complex and decreased the expression of these xenobiotic-metabolizing enzymes, resulting in moderate IPT resistance. We also found that MoPGR1, encoding a protein that activates cytochrome P450 enzymes, was essential to confer IPT sensitivity, and its expression was directly regulated by MoIRR.IMPORTANCEIsoprothiolane (IPT) has been used extensively for the management of rice blast disease and IPT-resistant subpopulations have emerged in Chinese rice fields. The emergence of resistant pathogen populations has led to a steep increase in fungicide use, increasing pesticide risk for the applicator and the environment. The molecular mechanisms of IPT resistance in M. oryzae remain elusive. In this study, we demonstrated that transcriptional co-activator MoMed15 interacts with IPT resistance regulator MoIRR to recruit the Mediator complex, which promotes the expression of xenobiotic-metabolizing enzymes, leading to exacerbated IPT toxicity. The MoMed15 could be used for IPT resistance detection in rice fields.
Collapse
Affiliation(s)
- Fan-Zhu Meng
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Kai Wei
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Zheng Cai
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liang-Fen Yin
- Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
3
|
Horn G, Worek F. Suitability of human HepaRG cells and liver spheroids as in vitro model to investigate the bioactivation of the organothiophosphate pesticide parathion. Toxicol In Vitro 2024; 97:105811. [PMID: 38521251 DOI: 10.1016/j.tiv.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Organophosphorus compounds (OP) constitute a large group of chemicals including pesticides and nerve agents. Organothiophosphate pesticides require cytochrome P450-mediated oxidative desulphuration in the liver to form corresponding oxons, which are potent inhibitors of the enzyme acetylcholinesterase (AChE). Human HepaRG cells are a promising tool to study liver-specific functions and have been shown to maintain drug metabolizing enzymes. This research describes for the first time the in vitro metabolic activation of an organothiophosphate to its active oxon by two different HepaRG cell-based models. Monolayer cultures and liver spheroids were exposed to the model OP parathion and the quantification of the corresponding oxon was performed with an AChE inhibition assay. Our results showed a time- and dose-dependent cytochrome P450 catalyzed bioactivation and a superior metabolism capacity of the monolayer HepaRG model in comparison with the liver spheroids. Finally, HepaRG cells can be assessed as a metabolically competent cell model intermediate between cell-free preparations and intact animals and as suitable to study OP metabolism in the human liver.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| |
Collapse
|
4
|
Zhang S, Yang R, Zhao M, Li S, Yin N, Zhang A, Faiola F. Typical neonicotinoids and organophosphate esters, but not their metabolites, adversely impact early human development by activating BMP4 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133028. [PMID: 38006857 DOI: 10.1016/j.jhazmat.2023.133028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Recent studies have highlighted the presence of potentially harmful chemicals, such as neonicotinoids (NEOs) and organophosphate esters (OPEs), in everyday items. Despite their potential threats to human health, these dangers are often overlooked. In a previous study, we discovered that NEOs and OPEs can negatively impact development, but liver metabolism can help mitigate their harmful effects. In our current research, our objective was to investigate the toxicity mechanisms associated with NEOs, OPEs, and their liver metabolites using a human embryonic stem cell-based differentiation model that mimics early embryonic development. Our transcriptomics data revealed that NEOs and OPEs significantly influenced the expression of hundreds of genes, disrupted around 100 biological processes, and affected two signaling pathways. Notably, the BMP4 signaling pathway emerged as a key player in the disruption caused by exposure to these pollutants. Both NEOs and OPEs activated BMP4 signaling, potentially impacting early embryonic development. Interestingly, we observed that treatment with a human liver S9 fraction, which mimics liver metabolism, effectively reduced the toxic effects of these pollutants. Most importantly, it reversed the adverse effects dependent on the BMP4 pathway. These findings suggest that normal liver function plays a crucial role in detoxifying environmental pollutants and provides valuable experimental insights for addressing this issue.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhang S, Zhao M, Li S, Yang R, Yin N, Faiola F. Developmental toxicity assessment of neonicotinoids and organophosphate esters with a human embryonic stem cell- and metabolism-based fast-screening model. J Environ Sci (China) 2024; 137:370-381. [PMID: 37980023 DOI: 10.1016/j.jes.2023.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
In recent years, neonicotinoids (NEOs) and organophosphate esters (OPEs) have been widely used as substitutes for traditional pesticides and brominated flame-retardants, respectively. Previous studies have shown that those compounds can be frequently detected in environmental and human samples, are able to penetrate the placental barrier, and are toxic to animals. Thus, it is reasonable to speculate that NEOs and OPEs may have potential adverse effects in humans, especially during development. We employed a human embryonic stem cell differentiation- and liver S9 fraction metabolism-based fast screening model to assess the potential embryonic toxicity of those two types of chemicals. We show that four NEO and five OPE prototypes targeted mostly ectoderm specification, as neural ectoderm and neural crest genes were down-regulated, and surface ectoderm and placode markers up-regulated. Human liver S9 fraction's treatment could generally reduce the effects of the chemicals, except in a few specific instances, indicating the liver may detoxify NEOs and OPEs. Our findings suggest that NEOs and OPEs interfere with human early embryonic development.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Mourya A, Prajapati N. Precision Deuteration in Search of Anticancer Agents: Approaches to Cancer Drug Discovery. Cancer Biother Radiopharm 2024; 39:1-18. [PMID: 37585602 DOI: 10.1089/cbr.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Cancer chemotherapy has been shifted from conventional cytotoxic drug therapy to selective and target-specific therapy after the findings about DNA changes and proteins that are responsible for cancer. A large number of newer drugs were discovered as targeted therapy for particular types of neoplastic disease. The initial discovery includes the development of the first in the category, imatinib, a Bcr-Abl tyrosine kinase inhibitor (TKI) for the treatment of chronic myelocytic leukemia in 2001. But the joy did not last for long as the drug developed a point mutation within the ABL1 kinase domain of BCR-ABL1, which subsequently led to the discovery of many other TKIs. Resistance was observed for newer TKIs a few years after their launching, but the use of TKIs in life-threatening cancer therapy is considered as far better compared with the risks of disease because of its target specificity and hence less toxicity. In search of a better anticancer agent, the physiochemical properties of the lead molecule have been modified for its efficacy toward disease and delay in the development of resistance. Deuteration in the drug molecule is one of such modifications that alter the pharmacokinetic properties, generally its metabolism, as compared with its pharmacodynamic effects. Precision deuteration in many anticancer drugs has been carried out to search for better drugs for cancer. In this review, the majority of anticancer drugs and molecules for which deuteration was applied to get better anticancer molecules were discussed. This review will provide a complete guide about the benefits of deuteration in cancer chemotherapy.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Discovery
Collapse
Affiliation(s)
- Aman Mourya
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Navnit Prajapati
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
7
|
Jung YH, Kim JH. Feature-Based Molecular Networking Combined with Multivariate Analysis for the Characterization of Glutathione Adducts as a Smoking Gun of Bioactivation. Anal Chem 2023; 95:17450-17457. [PMID: 37976220 DOI: 10.1021/acs.analchem.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Feature-based molecular networking (FBMN) is a powerful analytical tool for mass spectrometry (MS)-based untargeted metabolomics data analysis. FBMN plays an important role in drug metabolism studies, enabling the visualization of complex metabolomics data to achieve metabolite characterization. In this study, we propose a strategy for the characterization of glutathione (GSH) adducts formed via in vitro metabolic activation using FBMN assisted by multivariate analysis (MVA). Acetaminophen was used as a model substrate for method development, and the practical potential of the method was investigated by its application to 2-aminophenol (2-AP) and 2,4-dinitrochlorobenzene (DNCB). Two 2-AP GSH adducts and one DNCB GSH adduct were successfully characterized by forming networks with GSH even though the mass spectral information obtained for the parent compound was deficient. False positives were effectively filtered out by the variable influence on projection cutoff criteria obtained from orthogonal partial least-squares-discriminant analysis. The GSH adducts formed by enzymatic or nonenzymatic reactions were intuitively distinguished by the pie chart of FBMN results. In summary, our approach effectively characterizes GSH adducts, which serve as compelling evidence of bioactivation. It can be widely utilized to enhance risk assessment in the context of drug metabolism.
Collapse
Affiliation(s)
- Young-Heun Jung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Ruiz de Porras V, Figols M, Font A, Pardina E. Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury. Life Sci 2023; 332:122119. [PMID: 37741319 DOI: 10.1016/j.lfs.2023.122119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Despite significant advances in cancer therapeutics, chemotherapy remains the cornerstone of treatment for many tumors. Importantly, however, chemotherapy-induced toxicity, including hepatotoxicity, can lead to the interruption or discontinuation of potentially effective therapy. In recent years, special attention has been paid to the search for complementary therapies to mitigate chemotherapy-induced toxicity. Although there is currently a lack of specific interventions to mitigate or prevent hepatotoxicity in chemotherapy-treated patients, the polyphenol compound curcumin has emerged as a potential strategy to overcome this adverse effect. Here we review, firstly, the molecular and physiological mechanisms and major risk factors of chemotherapy-induced hepatotoxicity. We then present an overview of how curcumin has the potential to mitigate hepatotoxicity by targeting specific molecular mechanisms. Hepatotoxicity is a well-described side effect of cytotoxic drugs that can limit their clinical application. Inflammation and oxidative stress are the most common mechanisms involved in hepatotoxicity. Several studies have shown that curcumin could prevent and/or palliate chemotherapy-induced liver injury, mainly due to its anti-inflammatory, antioxidant, antifibrotic and hypolipidemic properties. Further clinical investigation using bioavailable curcumin formulations is warranted to demonstrate its efficacy as an hepatoprotective agent in cancer patients.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Grup de Recerca en Toxicologia (GRET), Unitat de Toxicologia, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda Joan XXIII s/n, 08028 Barcelona, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Mariona Figols
- Medical Oncology Department, Althaia Xarxa Assistencial Universitària de Manresa, C/ Dr. Joan Soler, 1-3, 08243, Manresa, Barcelona, Spain
| | - Albert Font
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Medical Oncology Department, Catalan Institute of Oncology, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Eva Pardina
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Zhai J, Man VH, Ji B, Cai L, Wang J. Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism. Drug Discov Today 2023; 28:103728. [PMID: 37517604 PMCID: PMC10543639 DOI: 10.1016/j.drudis.2023.103728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The cytochrome P450 (CYP450) enzyme system is responsible for the metabolism of more than two-thirds of xenobiotics. This review summarizes reports of a series of in silico tools for CYP450 enzyme-drug interaction predictions, including the prediction of sites of metabolism (SOM) of a drug and the identification of inhibitor/substrates for CYP subtypes. We also evaluated four prediction tools to identify CYP inhibitors utilizing 52 of the most frequently prescribed drugs. ADMET Predictor and CYPlebrity demonstrated the best performance. We hope that this review provides guidance for choosing appropriate enzyme prediction tools from a variety of in silico platforms to meet individual needs. Such predictions are useful for medicinal chemists to prioritize their designed compounds for further drug discovery.
Collapse
Affiliation(s)
- Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lianjin Cai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
10
|
Yang F, Sharma SS, Bureik M, Parr MK. Mutual Modulation of the Activities of Human CYP2D6 and Four UGTs during the Metabolism of Propranolol. Curr Issues Mol Biol 2023; 45:7130-7146. [PMID: 37754235 PMCID: PMC10527876 DOI: 10.3390/cimb45090451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) are two enzyme families that play an important role in drug metabolism, catalyzing either the functionalization or glucuronidation of xenobiotics. However, their mutual interactions are poorly understood. In this study, the functional interactions of human CYP2D6 with four human UGTs (UGT1A7, UGT1A8, UGT1A9, and UGT2A1) were investigated using our previously established co-expression model system in the fission yeast Schizosaccharomyces pombe. The substrate employed was propranolol because it is well metabolized by CYP2D6. Moreover, the CYP2D6 metabolite 4-hydroxypropranolol is a known substrate for the four UGTs included in this study. Co-expression of either UGT1A7, UGT1A8, or UGT1A9 was found to increase the activity of CYP2D6 by a factor of 3.3, 2.1 or 2.8, respectively, for the conversion of propranolol to 4-hydroxypropranolol. In contrast, UGT2A1 co-expression did not change CYP2D6 activity. On the other hand, the activities of all four UGTs were completely suppressed by co-expression of CYP2D6. This data corroborates our previous report that CYP2D6 is involved in functional CYP-UGT interactions and suggest that such interactions can contribute to both adverse drug reactions and changes in drug efficacy.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
11
|
Rubus rosifolius (Rosaceae) stem extract induces cell injury and apoptosis in human hepatoma cell line. Toxicol In Vitro 2023; 86:105485. [DOI: 10.1016/j.tiv.2022.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
12
|
Treviño MJS, Pereira-Coelho M, López AGR, Zarazúa S, Dos Santos Madureira LA, Majchrzak T, Płotka-Wasylka J. How pesticides affect neonates? - Exposure, health implications and determination of metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158859. [PMID: 36126706 DOI: 10.1016/j.scitotenv.2022.158859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
This review covers key information related to the effects of pesticides on fetal and child health. All humans are exposed to environmental toxicants, however child's health, due to their high vulnerability, should be of special concern. They are continuously exposed to environmental xenobiotics including a wide variety of pesticides, and other pollutants. These compounds can enter the child's body through various routes, both during fetal life, in the first days of life with breast milk, as well as during environmental exposure in later years of life. Consequently, in the body, some of them are metabolized and excreted with urine or faces, while others accumulate in tissues causing toxic effects. This review will provide information on the types of pesticides, their pathways of uptake and metabolism in children's bodies. Determination of the impact of them on children's organism performance is possible through effective identification of these compounds and their metabolites in children's tissues and biofluids. Therefore, the main procedures for the determination of pesticides are reviewed and future trends in this field are indicated. We believe that this comprehensive review can be a good starting place for the future readers interested in the impact of environmental xenobiotics on the health of children as well as the aspects relates with the analytical methods that can be used for analysis and monitoring of these pollutants in children's tissues and biofluids.
Collapse
Affiliation(s)
- María José Santoyo Treviño
- Coordinación para la innovación y aplicación para la Ciencia y la Tecnología, Mexico; Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - Marina Pereira-Coelho
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | - Sergio Zarazúa
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
13
|
Cannon S, Kay W, Kilaru S, Schuster M, Gurr SJ, Steinberg G. Multi-site fungicides suppress banana Panama disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS Pathog 2022; 18:e1010860. [PMID: 36264855 PMCID: PMC9584521 DOI: 10.1371/journal.ppat.1010860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Global banana production is currently challenged by Panama disease, caused by Fusarium oxysporum f.sp. cubense Tropical Race 4 (FocTR4). There are no effective fungicide-based strategies to control this soil-borne pathogen. This could be due to insensitivity of the pathogen to fungicides and/or soil application per se. Here, we test the effect of 12 single-site and 9 multi-site fungicides against FocTR4 and Foc Race1 (FocR1) in quantitative colony growth, and cell survival assays in purified FocTR4 macroconidia, microconidia and chlamydospores. We demonstrate that these FocTR4 morphotypes all cause Panama disease in bananas. These experiments reveal innate resistance of FocTR4 to all single-site fungicides, with neither azoles, nor succinate dehydrogenase inhibitors (SDHIs), strobilurins or benzimidazoles killing these spore forms. We show in fungicide-treated hyphae that this innate resistance occurs in a subpopulation of "persister" cells and is not genetically inherited. FocTR4 persisters respond to 3 μg ml-1 azoles or 1000 μg ml-1 strobilurins or SDHIs by strong up-regulation of genes encoding target enzymes (up to 660-fold), genes for putative efflux pumps and transporters (up to 230-fold) and xenobiotic detoxification enzymes (up to 200-fold). Comparison of gene expression in FocTR4 and Zymoseptoria tritici, grown under identical conditions, reveals that this response is only observed in FocTR4. In contrast, FocTR4 shows little innate resistance to most multi-site fungicides. However, quantitative virulence assays, in soil-grown bananas, reveals that only captan (20 μg ml-1) and all lipophilic cations (200 μg ml-1) suppress Panama disease effectively. These fungicides could help protect bananas from future yield losses by FocTR4.
Collapse
Affiliation(s)
- Stuart Cannon
- Biosciences, University of Exeter, Exeter, United Kingdom
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, United Kingdom
| | - William Kay
- Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah Jane Gurr
- Biosciences, University of Exeter, Exeter, United Kingdom
- University of Utrecht, Utrecht, The Netherlands
| | - Gero Steinberg
- Biosciences, University of Exeter, Exeter, United Kingdom
- University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Awuah WA, Toufik AR, Yarlagadda R, Mikhailova T, Mehta A, Huang H, Kundu M, Lopes L, Benson S, Mykola L, Vladyslav S, Alexiou A, Alghamdi BS, Hashem AM, Md Ashraf G. Exploring the role of Nrf2 signaling in glioblastoma multiforme. Discov Oncol 2022; 13:94. [PMID: 36169772 PMCID: PMC9519816 DOI: 10.1007/s12672-022-00556-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive glial cell tumors in adults. Although current treatment options for GBM offer some therapeutic benefit, median survival remains poor and does not generally exceed 14 months. Several genes, such as isocitrate dehydrogenase (IDH) enzyme and O6-methylguanine-DNA methyltransferase (MGMT), have been implicated in pathogenesis of the disease. Treatment is often adapted based on the presence of IDH mutations and MGMT promoter methylation status. Recent GBM cell line studies have associated Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) expression with high-grade tumors. Increased Nrf2 expression is often found in tumors with IDH-1 mutations. Nrf2 is an important transcription factor with anti-apoptotic, antioxidative, anti-inflammatory, and proliferative properties due to its complex interactions with multiple regulatory pathways. In addition, evidence suggests that Nrf2 promotes GBM cell survival in hypoxic environment,by up-regulating hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Downregulation of Nrf2 has been shown to improve GBM sensitivity to chemotherapy drugs such as Temozolomide. Thus, Nrf2 could be a key regulator of GBM pathways and potential therapeutic target. Further research efforts exploring an interplay between Nrf2 and major molecular signaling mechanisms could offer novel GBM drug candidates with a potential to significantly improve patients prognosis.
Collapse
Affiliation(s)
| | | | - Rohan Yarlagadda
- Rowan University School of Osteopathic Medicine, Stratford, NJ USA
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, 4032 Hungary
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Leilani Lopes
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR USA
| | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
15
|
Valdiviezo A, Kato Y, Baker ES, Chiu WA, Rusyn I. Evaluation of Metabolism of a Defined Pesticide Mixture through Multiple In Vitro Liver Models. TOXICS 2022; 10:566. [PMID: 36287846 PMCID: PMC9609317 DOI: 10.3390/toxics10100566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The evaluation of exposure to multiple contaminants in a mixture presents a number of challenges. For example, the characterization of chemical metabolism in a mixture setting remains a research area with critical knowledge gaps. Studies of chemical metabolism typically utilize suspension cultures of primary human hepatocytes; however, this model is not suitable for studies of more extended exposures and donor-to-donor variability in a metabolic capacity is unavoidable. To address this issue, we utilized several in vitro models based on human-induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep) to characterize the metabolism of an equimolar (1 or 5 µM) mixture of 20 pesticides. We used iHep suspensions and 2D sandwich cultures, and a microphysiological system OrganoPlate® 2-lane 96 (MimetasTM) that also included endothelial cells and THP-1 cell-derived macrophages. When cell culture media were evaluated using gas and liquid chromatography coupled to tandem mass spectrometry methods, we found that the parent molecule concentrations diminished, consistent with metabolic activity. This effect was most pronounced in iHep suspensions with a 1 µM mixture, and was lowest in OrganoPlate® 2-lane 96 for both mixtures. Additionally, we used ion mobility spectrometry-mass spectrometry (IMS-MS) to screen for metabolite formation in these cultures. These analyses revealed the presence of five primary metabolites that allowed for a more comprehensive evaluation of chemical metabolism in vitro. These findings suggest that iHep-based suspension assays maintain higher metabolic activity compared to 2D sandwich and OrganoPlate® 2-lane 96 model. Moreover, this study illustrates that IMS-MS can characterize in vitro metabolite formation following exposure to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Erin S. Baker
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Jeckel AM, Beran F, Züst T, Younkin G, Petschenka G, Pokharel P, Dreisbach D, Ganal-Vonarburg SC, Robert CAM. Metabolization and sequestration of plant specialized metabolites in insect herbivores: Current and emerging approaches. Front Physiol 2022; 13:1001032. [PMID: 36237530 PMCID: PMC9552321 DOI: 10.3389/fphys.2022.1001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.
Collapse
Affiliation(s)
- Adriana Moriguchi Jeckel
- Laboratory of Chemical Ecology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Franziska Beran
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Gordon Younkin
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Prayan Pokharel
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Domenic Dreisbach
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Stephanie Christine Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
17
|
Narayanan V, Rodrigues AL, Dordick JS. Influence of Circadian Rhythm on Drug Metabolism in 3D Hepatic Spheroids. Biotechnol Bioeng 2022; 119:2842-2856. [PMID: 35822281 DOI: 10.1002/bit.28180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
Circadian rhythms are characterized as oscillations that fluctuate based on a 24h cycle and are responsible for regulation of physiological functions. While the internal clock synchronizes gene expression using external cues like light, a similar synchronization can be induced in vitro by incubating the cells with an increased percentage of serum followed by its rapid removal. Previous studies have suggested that synchronization of HepG2 cell line induced the rhythmic expression of drug metabolizing enzymes (DME) most specifically the cytochrome P450 enzymes. However, there is a lack of evidence demonstrating the influence of 3D microenvironment on the rhythmicity of these genes. To understand this interplay, gene expression of the circadian machinery and CYP450s were compared using the model human hepatocarcinoma cell line, HepG2. Upon serum shock synchronization, gene and protein expression of core clock regulators was assessed and rhythmic expression of these genes was demonstrated. Further insight into the interrelations between various gene pairs was obtained using statistical analysis. Using RNA sequencing, an in-depth understanding of the widespread effects of circadian regulation on genes involved in metabolic processes in the liver was obtained. This study aids in the better understanding of chronopharmacokinetic events in humans using physiologically relevant 3D culture systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vibha Narayanan
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Andre L Rodrigues
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Departments of Biological Sciences and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
18
|
Sublethal hepatotoxic effects and biotransformation response in the freshwater fish, Oreochromis mossambicus exposed to silicon dioxide nanoparticles. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
van Nijnatten J, Brandsma CA, Steiling K, Hiemstra PS, Timens W, van den Berge M, Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep 2022; 12:5610. [PMID: 35379844 PMCID: PMC8980043 DOI: 10.1038/s41598-022-09093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.
Collapse
|
20
|
Herb-Induced Liver Injury—A Challenging Diagnosis. Healthcare (Basel) 2022; 10:healthcare10020278. [PMID: 35206892 PMCID: PMC8872293 DOI: 10.3390/healthcare10020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Herb-induced liver injury (HILI) can be caused by supplements containing herbs, natural products, and products used in traditional medicine. Herbal products’ most common adverse reaction is hepatotoxicity. Almost every plant part can be used to make herbal products, and these products can come in many different forms, such as teas, powders, oils, creams, capsules, and injectables. HILI incidence and prevalence are hard to estimate and vary from study to study because of insufficient large-scale prospective studies. The diagnosis of HILI is a challenging process that requires not only insight but also a high degree of suspicion by the clinician. HILI presents with unspecific symptoms and is a diagnosis of exclusion. For diagnosis, it is necessary to make a causality assessment; the Council for International Organizations of Medical Sciences assessment is the preferred method worldwide. The most effective treatment is the suspension of the use of the suspected herbal product and close monitoring of liver function. The objective of this review is to highlight the necessary steps for the clinician to follow to reach a correct diagnosis of herb-induced liver injury. Further studies of HILI are needed to better understand its complexity and prevent increased morbidity and mortality.
Collapse
|
21
|
Zhang H, Caprioli G, Hussain H, Khoi Le NP, Farag MA, Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFOOD 2021. [DOI: 10.53365/efood.k/143518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
Collapse
|
22
|
Cheng Y, Ma X, Zhao Q, Wang C, Yan D, Li F. Metabolic Profile of C-Prenyl Coumarins Using Mass Spectrometry-Based Metabolomics. Molecules 2021; 26:molecules26216558. [PMID: 34770967 PMCID: PMC8588418 DOI: 10.3390/molecules26216558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
C-prenyl coumarins (C-PYCs) are compounds with similar structures and various bioactivities, which are widely distributed in medicinal plants. Until now, the metabolic characterizations of C-PYCs and the relationship between metabolism and bioactivities remain unclear. In this study, ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics (UPLC-ESI-QTOF-MS) was firstly used to determine the metabolic characterizations of three C-PYCs, including meranzin hydrate (MH), isomeranzin (ISM), and meranzin (MER). In total, 52 metabolites were identified, and all of them were found to be novel metabolites. Among these metabolites, 10 were from MH, 22 were from ISM, and 20 were from MER. The major metabolic pathways of these C-PYCs were hydroxylation, dehydrogenation, demethylation, and conjugation with cysteine, N-acetylcysteine, and glucuronide. The metabolic rate of MH was much lower than ISM and MER, which was only 27.1% in MLM and 8.7% in HLM, respectively. Additionally, recombinant cytochrome P450 (CYP) screening showed that CYP1A1, 2B6, 3A4, and 3A5 were the major metabolic enzymes involved in the formation of metabolites. Further bioactivity assays indicated that all of these three C-PYCs exhibited anti-inflammatory activity, but the effects of ISM and MER were slightly higher than MH, accompanied by a significant decrease in inflammatory cytokines transcription induced by lipopolysaccharide (LPS) in macrophages RAW 264.7. Taken together, the metabolic characterizations of the three C-PYCs suggested that the side chain of the prenyl group may impact the metabolism and biological activity of C-PYCs.
Collapse
Affiliation(s)
- Yan Cheng
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
| | - Xiaofang Ma
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
| | - Chunyan Wang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
| | - Dongmei Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
- Correspondence: (D.Y.); (F.L.)
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
- Correspondence: (D.Y.); (F.L.)
| |
Collapse
|
23
|
Huang Y, Zhou ZY, Gong ZP, Li YT, Chen SY, Pan J, Wang YL, Wang AM, Lan YY, Liu T, Zheng L. Cocktail Method: Effect of the Bletilla striata Extracts on CytochromeP450 Activity in Rat. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211032463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bletilla striata is a dried tuber of B striata (Thunb.) Reichb.f. of Orchidaceae plant, which is mainly used for hemoptysis, vomiting blood, trauma bleeding, sore swollen poison, and cracked skin. There have been few research reports on the effect of this herb on cytochrome P450 (CYP), therefore, the study was aimed to investigate the effects of the B striata extracts on the activity of 6 subtypes (CYP2D6, 1A2, 2C19, 2E1, 3A4, and 2C9) using a cocktail method. The B striata extracts were administrated to rats in 0.21 or 0.63 g/kg once a day for 7 or 14 days. The 3 control groups were used to ensure the accuracy of the results. Subsequently, a cocktail of tolbutamide, chlorzoxazone, midazolam, metoprolol, omeprazole, and caffeine was injected. A ultra performance liquid chromatography–tandem mass spectrometer was developed and validated to investigate the concentration of the probes and the pharmacokinetic parameters were calculated to investigate the effects of the extracts on the activity of 6 enzymes under different doses and different dosing periods. The results suggested that the B striata extracts could induce the activities of CYP2D6, 1A2, and 2C19 and could inhibit the activities of CYP2E1, 3A4, and 2C9. When used in combination with drugs that are metabolized by CYP2D6, 1A2, 2C19, 2E1, 3A4, and 2C9, appropriate dose adjustments were needed to avoid toxic side effects caused by drug interactions.
Collapse
Affiliation(s)
- Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zu-Ying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zi-Peng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yue-Ting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Si-Ying Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang, China
| | - Yong-Lin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Ai-Min Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang, China
| | - Yan-Yu Lan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Ma XF, Zhao Q, Cheng Y, Yan DM, Zhu WF, Li F. Metabolomics reveals the role of isopentenyl group in coumarins metabolism. Biomed Chromatogr 2021; 36:e5239. [PMID: 34494281 DOI: 10.1002/bmc.5239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Coumarins are a group of natural compounds commonly found in the families of Rutaceae and Umbelliferae. 7-Isopentenyloxycoumarin (ISC), auraptene (AUR), and umbelliprenin (UM) belong to prenyloxycoumarins (PYCs), which link isopentenyl, geranyl, and farnesyl group at C7 position, respectively. The substituent of 7-ethoxycoumarin (ETC) is the ethyl group. In this study, UPLC-ESI-QTOF-MS (ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-MS)-based metabolomics was used to evaluate the in vivo and in vitro metabolism of PYCs. Results showed that ETC produced 10 known metabolites, and ISC was transformed into 17 metabolites in vivo and in vitro, which were undescribed compounds. A total of 35 AUR metabolites, including 34 undescribed metabolites were identified, and 21 metabolites were reported for the first time in UM. The results indicated that hydroxylation and N-acetylcysteine conjugation were the common metabolic reactions for PYCs. The metabolic rates of ETC, ISC, AUR and UM were 26%, 36%, 81%, and 38%, respectively, in human liver microsome, while they were 24%, 40%, 80%, and 37%, respectively, in mouse liver microsomes. In addition, recombinant cytochrome P450s (CYPs) screening showed that CYP1A1, 2C19, 3A4, and 3A5 were the major metabolic enzymes involved in the formation of hydroxylation metabolites. Together, these results suggest that the isopentenyl group plays an important role in the metabolism of PYCs.
Collapse
Affiliation(s)
- Xiao-Fang Ma
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Mei Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Feng Zhu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Blázovics A. Alcoholic liver disease. INFLUENCE OF NUTRIENTS, BIOACTIVE COMPOUNDS, AND PLANT EXTRACTS IN LIVER DISEASES 2021:57-82. [DOI: 10.1016/b978-0-12-816488-4.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Patel R, Barker J, ElShaer A. Pharmaceutical Excipients and Drug Metabolism: A Mini-Review. Int J Mol Sci 2020; 21:E8224. [PMID: 33153099 PMCID: PMC7662502 DOI: 10.3390/ijms21218224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Conclusions from previously reported articles have revealed that many commonly used pharmaceutical excipients, known to be pharmacologically inert, show effects on drug transporters and/or metabolic enzymes. Thus, the pharmacokinetics (absorption, distribution, metabolism and elimination) of active pharmaceutical ingredients are possibly altered because of their transport and metabolism modulation from the incorporated excipients. The aim of this review is to present studies on the interaction of various commonly-used excipients on pre-systemic metabolism by CYP450 enzymes. Excipients such as surfactants, polymers, fatty acids and solvents are discussed. Based on all the reported outcomes, the most potent inhibitors were found to be surfactants and the least effective were organic solvents. However, there are many factors that can influence the inhibition of CYP450, for instance type of excipient, concentration of excipient, type of CYP450 isoenzyme, incubation condition, etc. Such evidence will be very useful in dosage form design, so that the right formulation can be designed to maximize drug bioavailability, especially for poorly bioavailable drugs.
Collapse
Affiliation(s)
| | | | - Amr ElShaer
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK; (R.P.); (J.B.)
| |
Collapse
|
27
|
Kadiene EU, Ouddane B, Gong HY, Kim MS, Lee JS, Pan YJ, Hwang JS, Souissi S. Differential gene expression profile of male and female copepods in response to cadmium exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111048. [PMID: 32758697 DOI: 10.1016/j.ecoenv.2020.111048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, the whole transcriptome and sex-specific differential gene expression of the copepod Pseudodiaptomus annandalei exposed to cadmium (Cd) were investigated. P. annandalei were exposed to 40 μg/L Cd from the naupliar stage to male and female adults. High-throughput transcriptome sequencing (RNA-seq) was performed with copepod samples using an Illumina Hiseq™ 2000 platform. TransDecoder analysis found 32,625 putative open reading frame contigs. At p-values of <0.001, a total of 4756 differentially expressed genes (DEGs) (2216 up-regulated and 2540 down-regulated genes) were found in male copepods. Whereas a total of 2879 DEGs (2007 up-regulated and 872 down-regulated genes) were found in female copepods. A few selected cellular stress response genes, involved in xenobiotic metabolism, energy metabolism, growth, and development as a result of Cd exposure in the copepods were discussed. The study showed that most of these processes were changed in a sex-specific manner, accounting for the different sensitivities of male and female copepods. Results suggest and reinforce that sex is an important factor to be considered in ecotoxicogenomics.
Collapse
Affiliation(s)
- Esther U Kadiene
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, F-59000, Lille, France; Institute of Marine Biology, National Taiwan Ocean University, 20224, Keelung, Taiwan
| | - Baghdad Ouddane
- Université de Lille, Equipe Physico-Chimie de L'Environnement, Laboratoire LASIR UMR CNRS 8516, 59655, Villeneuve D'Ascq Cedex, France
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yen-Ju Pan
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, F-59000, Lille, France; Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, 20224, Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, F-59000, Lille, France.
| |
Collapse
|
28
|
Bandookwala M, Nemani KS, Chatterjee B, Sengupta P. Reactive Metabolites: Generation and Estimation with Electrochemistry Based Analytical Strategy as an Emerging Screening Tool. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016666200131154202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Analytical scientists have constantly been in search for more efficient and
economical methods for drug simulation studies. Owing to great progress in this field, there are various
techniques available nowadays that mimic drug metabolism in the hepatic microenvironment.
The conventional in vitro and in vivo studies pose inherent methodological drawbacks due to which
alternative analytical approaches are devised for different drug metabolism experiments.
Methods:
Electrochemistry has gained attention due to its benefits over conventional metabolism
studies. Because of the protein binding nature of reactive metabolites, it is difficult to identify them
directly after formation, although the use of trapping agents aids in their successful identification.
Furthermore, various scientific reports confirmed the successful simulation of drug metabolism studies
by electrochemical cells. Electrochemical cells coupled with chromatography and mass spectrometry
made it easy for direct detection of reactive metabolites. In this review, an insight into the application
of electrochemical techniques for metabolism simulation studies has been provided. The sole
use of electrochemical cells, as well as their setups on coupling to liquid chromatography and mass
spectrometry has been discussed. The importance of metabolism prediction in early drug discovery
and development stages along with a brief overview of other conventional methods has also been
highlighted.
Conclusion:
To the best of our knowledge, this is the first article to review the electrochemistry
based strategy for the analysis of reactive metabolites. The outcome of this ‘first of its kind’ review
will significantly help the researchers in the application of electrochemistry based bioanalysis for metabolite
detection.
Collapse
Affiliation(s)
- Maria Bandookwala
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| | - Kavya Sri Nemani
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management (SPPSPTM), NMIMS University, Mumbai, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| |
Collapse
|
29
|
Transcriptome profiling revealed potentially important roles of defensive gene expression in the divergence of insect biotypes: a case study with the cereal aphid Sitobion avenae. BMC Genomics 2020; 21:546. [PMID: 32762647 PMCID: PMC7430832 DOI: 10.1186/s12864-020-06950-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background Many insects can develop differential biotypes on variable host plants, but the underlying molecular factors and mechanisms are not well understood. To address this issue, transcriptome profiling analyses were conducted for two biotypes of the cereal aphid, Sitobion avenae (Fabricius), on both original and alternative plants. Results Comparisons between both biotypes generated 4174 differentially expressed unigenes (DEGs). In their response to host plant shift, 39 DEGs were shared by both biotypes, whereas 126 and 861 DEGs occurred only in biotypes 1 and 3, respectively. MMC (modulated modularity clustering) analyses showed that specific DEGs of biotypes 1 and 3 clustered into five and nine transcriptional modules, respectively. Among these DEGs, defense-related genes underwent intensive expression restructuring in both biotypes. However, biotype 3 was found to have relatively lower gene transcriptional plasticity than biotype 1. Gene enrichment analyses of the abovementioned modules showed functional divergence in defensive DEGs for the two biotypes in response to host transfer. The expression plasticity for some defense related genes was showed to be directly related to fecundity of S. avenae biotypes on both original and alternative plants, suggesting that expression plasticity of key defensive genes could have significant impacts on the adaptive potential and differentiation of S. avenae biotypes on different plants. Conclusions The divergence patterns of transcriptional plasticity in defense related genes may play important roles in the phenotypic evolution and differentiation of S. avenae biotypes. Our results can provide insights into the role of gene expression plasticity in the divergence of insect biotypes and adaptive evolution of insect populations.
Collapse
|
30
|
Bento-Silva A, Koistinen VM, Mena P, Bronze MR, Hanhineva K, Sahlstrøm S, Kitrytė V, Moco S, Aura AM. Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? Eur J Nutr 2020; 59:1275-1293. [PMID: 31115680 PMCID: PMC7230068 DOI: 10.1007/s00394-019-01987-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organoleptic properties. FACTORS AFFCETING INDIVIDUAL VARIABILITY The bioavailability of these compounds depends on their free or conjugated presence in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabolite profiles and health responses of phenolics, show considerable individual variation, which is affected by absorption, metabolism and genetic variations of subjects. OPINION A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with some exceptions; however, it should be preferred that health responders and non-responders are studied in combination with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem in human research to an asset for research on personalized nutrition.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ville M Koistinen
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Maria R Bronze
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Instituto de Biologia Experimental Tecnológica (iBET), Oeiras, Portugal
| | - Kati Hanhineva
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Stefan Sahlstrøm
- Nofima Norwegian Institute of Food Fisheries and Aquaculture, Ås, Norway
| | | | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Tietotie 2, 02044 VTT, Espoo, Finland.
| |
Collapse
|
31
|
Jarrar Y, Jarrar Q, Abu-Shalhoob M, Abed A, Sha'ban E. Relative Expression of Mouse Udp-glucuronosyl Transferase 2b1 Gene in the Livers, Kidneys, and Hearts: The Influence of Nonsteroidal Anti-inflammatory Drug Treatment. Curr Drug Metab 2020; 20:918-923. [PMID: 31733637 DOI: 10.2174/1389200220666191115103310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mouse Udp-glucuronosyl Transferase (UGT) 2b1 is equivalent to the human UGT2B7 enzyme, which is a phase II drug-metabolising enzyme and plays a major role in the metabolism of xenobiotic and endogenous compounds. This study aimed to find the relative expression of the mouse ugt2b1 gene in the liver, kidney, and heart organs and the influence of Nonsteroidal Anti-inflammatory Drug (NSAID) administration. METHODS Thirty-five Blab/c mice were divided into 5 groups and treated with different commonly-used NSAIDs; diclofenac, ibuprofen, meloxicam, and mefenamic acid for 14 days. The livers, kidneys, and hearts were isolated, while the expression of ugt2b1 gene was analysed with a quantitative real-time polymerase chain reaction technique. RESULTS It was found that the ugt2b1 gene is highly expressed in the liver, and then in the heart and the kidneys. NSAIDs significantly upregulated (ANOVA, p < 0.05) the expression of ugt2b1 in the heart, while they downregulated its expression (ANOVA, p < 0.05) in the liver and kidneys. The level of NSAIDs' effect on ugt2b1 gene expression was strongly correlated (Spearman's Rho correlation, p < 0.05) with NSAID's lipophilicity in the liver and its elimination half-life in the heart. CONCLUSION This study concluded that the mouse ugt2b1 gene was mainly expressed in the liver, as 14-day administration of different NSAIDs caused alterations in the expression of this gene, which may influence the metabolism of xenobiotic and endogenous compounds.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Al-Isra University, Amman, Jordan
| | - Mohammad Abu-Shalhoob
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Abdulqader Abed
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Esra'a Sha'ban
- ACDIMA Centre for Bioequivalence and Pharmaceutical Studies, Amman, Jordan
| |
Collapse
|
32
|
Comparison of the toxicity of sulfur mustard and its oxidation products in vitro. Toxicol Lett 2019; 321:69-72. [PMID: 31863871 DOI: 10.1016/j.toxlet.2019.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
The molecular toxicology of the chemical warfare agent sulfur mustard (SM) is still not completely understood. It has been suggested that in addition to SM itself also biotransformation products thereof mediate cytotoxicity. In the current study, we assessed this aspect by exposing a human hepatocyte cell line (HepG2) to SM or to its oxidation products sulfur mustard sulfoxide (SMO), sulfur mustard sulfone (SMO2), and divinyl sulfone (DVS). Cytotoxicity, determined with the XTT assay, revealed a significant higher toxicity of SMO2 and DVS compared to SM while SMO had no effect at any concentration. The exact biotransformation of SM leading to SMO, SMO2 and finally DVS is unknown so far. Involvement of the CYP450 system is discussed and was also investigated in the presented study. Modulation of CYP1A2 activity, taken as a model enzyme for CYP450, affected cytotoxicity of SM, SMO2 or DVS significantly. Induction of CYP1A2 with omeprazole led to decreased cytotoxicity for all compounds whereas inhibition with cimetidine resulted in an increased cytotoxicity for SM, but not for SMO2 and DVS. Our results indicate a distinctive role of the CYP450 system in SM poisoning. Future studies should address the metabolic conversion of SM in more detail. Our data may suggest the well-tolerated drug omeprazole as a potential co-treatment after contact to SM.
Collapse
|
33
|
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia
| |
Collapse
|
34
|
Wang X, He B, Shi J, Li Q, Zhu HJ. Comparative Proteomics Analysis of Human Liver Microsomes and S9 Fractions. Drug Metab Dispos 2019; 48:31-40. [PMID: 31699809 DOI: 10.1124/dmd.119.089235] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Human liver microsomes (HLM) and human liver S9 fractions (HLS9) are commonly used to study drug metabolism in vitro. However, a quantitative comparison of HLM and HLS9 proteomes is lacking, resulting in the arbitrary selection of one hepatic preparation over another and in difficulties with data interpretation. In this study, we applied a label-free global absolute quantitative proteomics method to the analysis of HLS9 and the corresponding HLM prepared from 102 individual human livers. A total of 3137 proteins were absolutely quantified, and 3087 of those were determined in both HLM and HLS9. Protein concentrations were highly correlated between the two hepatic preparations (R = 0.87, P < 0.0001). We reported the concentrations of 98 drug-metabolizing enzymes (DMEs) and 51 transporters, and demonstrated significant differences between their abundances in HLM and HLS9. We also revealed the protein-protein correlations among these DMEs and transporters and the sex effect on the HLM and HLS9 proteomes. Additionally, HLM and HLS9 displayed distinct expression patterns for protein markers of cytosol and various cellular organelles. Moreover, we evaluated the interindividual variability of three housekeeping proteins, and identified five proteins with low variation across individuals that have the potential to serve as new internal controls for western blot experiments. In summary, these results will lead to better understanding of data obtained from HLM and HLS9 and assist in in vitro-in vivo extrapolations. Knowing the differences between HLM and HLS9 also allows us to make better-informed decisions when choosing between these two hepatic preparations for in vitro drug metabolism studies. SIGNIFICANCE STATEMENT: This investigation revealed significant differences in protein concentrations of drug-metabolizing enzymes and transporters between human liver microsomes and S9 fractions. We also determined the protein-protein correlations among the drug-metabolizing enzymes and transporters and the sex effect on the proteomes of these two hepatic preparations. The results will help interpret data obtained from these two preparations and allow us to make more informed decisions when choosing between human liver microsomes and S9 fractions for in vitro drug metabolism studies.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Bing He
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Qian Li
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| |
Collapse
|
35
|
Salvianolic acid B protects against ANIT-induced cholestatic liver injury through regulating bile acid transporters and enzymes, and NF-κB/IκB and MAPK pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1169-1180. [PMID: 31098695 DOI: 10.1007/s00210-019-01657-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the pharmacological effects of salvianolic acid B (SA-B) on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury with the focus on bile acid homeostasis and anti-inflammatory pathways. Rats were randomly assigned into four groups. The control group was given normal saline (i.p.) for 7 consecutive days and on the 5th day was given the vehicle (i.g.). Model group was treated with normal saline (i.p.) for 7 days and administrated with ANIT (75 mg/kg, i.g.) on the 5th day. The SA-B groups were treated with SA-B (15 mg/kg and 30 mg/kg, i.p.) for 7 consecutive days as well as ANIT (75 mg/kg, i.g.) on the 5th day. We found that the serum levels of ALT, γ-GT, TBA, and other liver function indexes were found to be lower in the SA-B treatment groups than in the model group. SA-B also upregulated the transporters and enzymes involved in bile acid homeostasis such as Bsep, Oatp2, and Cyp3a2 in rats and BSEP, CYP3A4, and OATP2 in human cell lines. Moreover, SA-B suppressed NF-κB translocation into the nucleus, inhibited phosphorylation of p38 and JNK, and inhibited inflammation markers including IL-1β, IL-6, TGF-β, TNF-α, and COX-2 to extenuate cholestatic liver injury both in vivo and vitro. Taken together, our findings suggest that anti-cholestatic effects of SA-B may be associated with its ability to regulate NF-κB/IκB and MAPK inflammatory signaling pathways to inhibit inflammation and regulate transporters and enzymes to maintain bile acid homeostasis.
Collapse
|
36
|
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int J Mol Sci 2019; 20:E1463. [PMID: 30909474 PMCID: PMC6470777 DOI: 10.3390/ijms20061463] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
37
|
Kakutani N, Nanayama T, Nomura Y. Novel risk assessment of reactive metabolites from discovery to clinical stage. J Toxicol Sci 2019; 44:201-211. [DOI: 10.2131/jts.44.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Nobuyuki Kakutani
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute
| | - Toyomichi Nanayama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute
| | - Yukihiro Nomura
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute
| |
Collapse
|
38
|
Hao W, Hu X, Zhu F, Chang J, Li J, Li W, Wang H, Guo B, Li J, Xu P, Zhang Y. Enantioselective Distribution, Degradation, and Metabolite Formation of Myclobutanil and Transcriptional Responses of Metabolic-Related Genes in Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8830-8837. [PMID: 29957933 DOI: 10.1021/acs.est.8b01721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myclobutanil (MT), a chiral fungicide, can be metabolized enantioselectively in organisms. In this work, the associated absorption, distribution, metabolism and transcriptional responses of MT in rats were determined following a single-dose (10 mg·kg-1 body weight) exposure to rac-, (+)- or (-)-MT. The enantiomer fractions (EFs) were less than 0.5 with time in the liver, kidney, heart, lung, and testis, suggesting preferential enrichment of (-)-MT in these tissues. Furthermore, there was conversion of (+)-form to (-)-form in the liver and kidney after 6 h exposure to enantiopure (+)-MT. Enrichment and degradation of the two enantiomers differed between rac-MT and MT-enantiomers groups, suggesting that MT bioaccumulation is enantiomer-specific. Interestingly, the degradation half-life of MT in the liver with rac-MT treatment was shorter than that with both MT-enantiomer treatments. One reason may be that the gene expression levels of cytochrome P450 1a2 ( cyp1a2) and cyp3a2 genes in livers treated with rac-MT were the highest among the three exposure groups. In addition, a positive correlation between the expression of cyp2e1 and cyp3a2 genes and rac-MT concentration was found in livers exposed to rac-MT. Simultaneously, five chiral metabolites were detected, and the enantiomers of three metabolites, RH-9090, RH-9089, and M2, were separated. The detected enantiomers of (+)-MT metabolites were in complete contrast with those of (-)-MT metabolites. According to the results, a metabolic pathway of MT in male rats was proposed, which included the following five metabolites: RH-9089, RH-9090, RH-9090 Sulfate, M1, and M2. The possible metabolic enzymes were marked in the pathway. The findings of this study provide more specific insights into the enantioselective metabolic mechanism of chiral triazole fungicides.
Collapse
Affiliation(s)
- Weiyu Hao
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Xiao Hu
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Feilong Zhu
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Jing Chang
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Jitong Li
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Wei Li
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Huili Wang
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Jianzhong Li
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Peng Xu
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Yanfeng Zhang
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| |
Collapse
|
39
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
40
|
Wu JJ, Zhu YF, Guo ZZ, Lou YM, He SG, Guan Y, Zhu LJ, Liu ZQ, Lu LL, Liu L. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:87-97. [PMID: 29277460 DOI: 10.1016/j.phymed.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/02/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Aconitum alkaloids from Aconitum species are often used to treat arthritis and rheumatic diseases but have the drawback of high toxicity. Identifying their pharmacokinetic behaviour is important for the safe clinical application of Aconitum species. Efflux transporters (ETs), including P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), have important functions in regulating the pharmacokinetic behaviours of drugs and in herb-herb or herb-drug interactions (HDIs). The Aconitum alkaloids regulate P-gp expression and function, but their effects on MRP2 and BCRP expression remain unknown. PURPOSE To determine the effects of three Aconitum alkaloids, aconitine (AC), benzoylaconine (BAC), and aconine, on MRP2 and BCRP. METHODS The levels of the protein and mRNA expression of MRP2 and BCRP in vivo and in vitro were measured via Western blotting and real-time PCR, respectively. Fluorescence signals of MRP2 and BCRP were detected via confocal fluorescence microscopy. A reporter assay using HepG2-C8 cells, which were generated by transfecting plasmids containing the antioxidant response element (ARE)-luciferin gene into HepG2 cells, was used to examine the ARE-luciferin activity. The transport activities of MRP2 and BCRP were tested via flow cytometry using substrate probes. RESULTS The Aconitum alkaloids significantly up-regulated MRP2 and BCRP expression, accompanied by a marked increase in nuclear factor E2-related factor-2 (Nrf2) expression in the jejunum, ileum, and colon of FVB mice, in the order AC < BAC < aconine. In the in vitro model, the Aconitum alkaloids increased MRP2 and BCRP expression in Caco-2 and LS174T cells, in the order AC < BAC < aconine. Additionally, these alkaloids promoted the translocation of Nrf2 from the cytoplasm to the nucleus and significantly increased ARE-luciferin activity in HepG2-C8 cells. Luteolin, a potent inhibitor of Nrf2, markedly prevented MRP2 and BCRP expression from being induced by the three Aconitum alkaloids. The efflux activity of MRP2 was also significantly increased in cells receiving the same treatment. CONCLUSIONS The tested Aconitum alkaloids significantly increased the expression of MRP2 and BCRP by activating the Nrf2-mediated signalling pathway and enhanced the efflux activity of MRP2. The potential for herb-herb interactions or HDIs exists when Aconitum species are co-administered with substrate drugs that are transported via MRP2 and BCRP. Therefore, the Aconitum alkaloids may be used as quality indicators for the herbs of Aconitum species.
Collapse
Affiliation(s)
- Jin-Jun Wu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuan-Feng Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhen-Zhen Guo
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yan-Mei Lou
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shu-Gui He
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yang Guan
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Li-Jun Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhong-Qiu Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Lin-Lin Lu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
41
|
Zhu L, Shao Y, Xiao H, Santiago-Schübel B, Meyer-Alert H, Schiwy S, Yin D, Hollert H, Küppers S. Electrochemical simulation of triclosan metabolism and toxicological evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1193-1201. [PMID: 29890587 DOI: 10.1016/j.scitotenv.2017.11.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Tricolsan (TCS), an antimicrobial agent, is considered as emerging pollutant due to its wide dispersive use in personal care products and high aquatic toxicity. In the present study, phase I metabolism of triclosan was investigated through laboratory electrochemical simulation studies. The products formed in the electrochemical (EC) cell were identified by online and offline coupling with QTRAP and high-resolution FTICR mass spectrometers, respectively. The sequential formation and disappearance of each product, with the continuous increase of voltage from 0 to 3500 mV, was observed to reveal the transformation pathways of TCS. The toxic potential of TCS and the identified products was estimated using Quantitative structure-activity relationship (QSAR) modeling on 16 target proteins. The toxicity change of TCS during simulated metabolism and toxicological effects of reaction mixture were assessed by Fish embryo toxicity (FET) test (Danio rerio) and quantitative real-time polymerase chain reaction (qPCR). Eight metabolites formed during the simulated metabolism of TCS mainly via the mechanisms of hydroxylation, ether-bond cleavage and cyclization. In FET test, the reaction mixture (LC50, 48h=1.28 mg/L) after electrochemical reactions showed high acute toxicity on zebrafish embryos, which was comparable to that of triclosan (LC50, 48h=1.34 mg/L). According to the modeling data, less toxic products formed only via ether-bond cleavage of TCS while the products formed through other mechanisms showed high toxicity. AhR-mediated dioxin-like effects on zebrafish embryos, such as developmental retardation in skeleyton and malformations in cardiovascular system, were also observed after exposure to the TCS reaction mixture in FET test. Activation of the AhR by the reaction mixture in zebrafish embryos was further proved in cyp1a gene expression analysis.
Collapse
Affiliation(s)
- Linyan Zhu
- Research Center Jülich, Department of Analytics (ZEA-3), Jülich 52425, Germany; RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany.
| | - Ying Shao
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | - Hongxia Xiao
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | | | - Henriette Meyer-Alert
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | - Sabrina Schiwy
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | - Daqiang Yin
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China
| | - Henner Hollert
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400030, People's Republic of China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210046, People's Republic of China
| | - Stephan Küppers
- Research Center Jülich, Department of Analytics (ZEA-3), Jülich 52425, Germany
| |
Collapse
|
42
|
Zhang Z, Tang W. Drug metabolism in drug discovery and development. Acta Pharm Sin B 2018; 8:721-732. [PMID: 30245961 PMCID: PMC6146880 DOI: 10.1016/j.apsb.2018.04.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 11/27/2022] Open
Abstract
Drug metabolism as a discipline plays an important role in drug discovery and development and the effects of drug metabolism on pharmacokinetics (PK), pharmacodynamics (PD), and safety should be carefully considered. This communication provides an overview of common strategies in the area of drug metabolism for improving PK/PD and safety profiles of drug candidates; these include, but are not limited to, collaboration with medicinal chemists on structure–activity relationships (SAR) to overcome high clearance, using deuterium replacement to further optimize a lead, prodrug approaches to circumvent formulation and delivery difficulties, and addressing issues such as species differences in metabolism, drug–drug interactions (DDI) and formation of reactive metabolites.
Collapse
|
43
|
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:1931. [PMID: 29386578 PMCID: PMC5792627 DOI: 10.1038/s41598-018-20154-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023] Open
Abstract
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, USA.
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Anita Bhandari
- Department of Molecular Physiology, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Mei-Ju M Chen
- USDA-ARS National Agricultural Library, Beltsville, MD, USA
| | - Anna K Childers
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moskva, Russia
| | - Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Amphoe Hat Yai, Thailand
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, King Abdulaziz, Saudi Arabia
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | - Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Sher A Khan
- Department of Entomology, Texas A&M University, College Station, USA
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | | | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, England, UK
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lindsey C Perkin
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Éric Record
- INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Joseph P Rinehart
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, USA
| | - Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | | | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ashley D Yates
- Department of Entomology, The Ohio State University, Columbus, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| | - George D Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Kennedy ND, Winter DC. Impact of alcohol & smoking on the surgical management of gastrointestinal patients. Best Pract Res Clin Gastroenterol 2017; 31:589-595. [PMID: 29195679 DOI: 10.1016/j.bpg.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 01/31/2023]
Abstract
Alcohol and smoking are repeatedly described as modifiable risk factors in clinical studies across all surgical specialities. These lifestyle choices impart a sub-optimal physiology via multiple processes and play an important role in the surgical management of the gastrointestinal patient. Cessation is imperative to optimise the patient's fitness for surgery with surgery itself being a prime opportunity for sustained cessation. A consistent, planned and integrated management involving surgical, anaesthetic, medical, and primary care facets will aid in successful cessation and perioperative care. This review highlights the pathological processes which contribute to perioperative complications and details the current practices to detect, predict and appropriately manage the perioperative gastrointestinal patient who smokes and consumes alcohol.
Collapse
Affiliation(s)
- Niall D Kennedy
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland.
| | - Des C Winter
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
45
|
Farcaş E, Pochet L, Crommen J, Servais AC, Fillet M. Capillary electrophoresis in the context of drug discovery. J Pharm Biomed Anal 2017; 144:195-212. [DOI: 10.1016/j.jpba.2017.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/04/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
|
46
|
Husni Z, Ismail S, Zulkiffli MH, Afandi A, Haron M. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity. Pharmacogn Mag 2017; 13:S236-S243. [PMID: 28808386 PMCID: PMC5538160 DOI: 10.4103/pm.pm_299_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/22/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. OBJECTIVE In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. MATERIALS AND METHODS Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. RESULTS All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. CONCLUSION In the present study, we have proved the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. SUMMARY This study documented the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5'-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity.
Collapse
Affiliation(s)
- Zulhilmi Husni
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sabariah Ismail
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Atiqah Afandi
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Munirah Haron
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
47
|
Wu J, Zhu Y, Li F, Zhang G, Shi J, Ou R, Tong Y, Liu Y, Liu L, Lu L, Liu Z. Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:1-11. [PMID: 27422165 DOI: 10.1016/j.jep.2016.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spica prunellae (SP) is a well-known traditional Chinese medicinal herb with properties of antihypertensive, antihyperglycemic, antiviral, anti-inflammatory, and antitumor activities. This herb is also popularly consumed as a food additive in some drinks or other food forms for treating pyreticosis. Rosmarinic acid (RA) is the marker compound from SP, which possesses anti-oxidative and anti-inflammatory functions. AIM OF THE STUDY This study aims to investigate the regulatory effect of the water extract of SP (WESP) and RA on efflux transports (ETs), including P-glycoprotein (p-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) in HepG2 cell line. Results would provide beneficial information for the proper application of SP in clinics. MATERIALS AND METHODS HepG2 cells were treated with different doses of the tested drugs for 24 or 96h. MTT assay was used to examine cell viability. The protein and mRNA levels of the ETs were measured by using Western blot and real-time PCR, respectively. Reporter assay was used to study the antioxidant response element (ARE)-luciferin activity by using HepG2-C8 cells, which were generated by transfecting plasmid containing ARE-luciferin gene into HepG2 cells. The transport activities of ETs were tested by using substrate probes. RESULTS WESP significantly (p<0.05) increased the expression of ETs in a dose-dependent manner. The increase caused by WESP was stronger than RA alone. Both WESP and RA promoted the translocation of nuclear factor E2-related factor-2 (Nrf2) from cytoplasm to the nucleus as well as significantly (p<0.05) enhanced the ARE-luciferin activity. WESP and RA also enhanced the efflux activity of P-gp and MRP2, accompanied by marked increase (p<0.05) in the intracellular ATP levels. CONCLUSIONS WESP could significantly induce the expression of ETs through the activation of Nrf2-mediated signaling pathway in HepG2 cells. RA could be one of the active compounds responsible for the induction. WESP and RA also enhanced the efflux activity of P-gp and MRP2, and the increased intracellular ATP levels were likely involved in this induction. Results of this study provide a better understanding of the regulation of SP on ETs and the underlying molecular mechanism. Results indicated that potential drug-drug interactions may exist when SP is co-administered with other substrate drugs that are transported via the ETs, especially P-gp and MRP2, thereby providing beneficial information for appropriate use of SP for clinical therapy.
Collapse
Affiliation(s)
- Jinjun Wu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuanfeng Zhu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fangyuan Li
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guiyu Zhang
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Shi
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rilan Ou
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yunli Tong
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuting Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Linlin Lu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| | - Zhongqiu Liu
- Interational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
48
|
Chen CY, Chiang TS, Chiou LL, Lee HS, Lin FH. 3D cell clusters combined with a bioreactor system to enhance the drug metabolism activities of C3A hepatoma cell lines. J Mater Chem B 2016; 4:7000-7008. [PMID: 32263566 DOI: 10.1039/c6tb01627h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since clinical drugs need to be approved for their liver metabolism efficiency before commercialization, a powerful in vitro drug-screening platform is imperative and indispensable for the clinical medicine and pharmaceutical industries. An essential issue in the development of drug screening platforms is choosing cell candidates that mimic and perform cell/tissue functions of normal hepatic tissues in vivo. In this study, we developed a self-designed bioreactor system to provide and mimic an appropriate environment for systematic cell expansion, micro-tissue formation, and increased cellular cytochrome P450 (CYP) enzymatic activities. Since CYP3A4 is the most plentiful and crucial enzyme in drug metabolism among liver CYP superfamily members, we demonstrated that micro-tissue formation under three-dimensional dynamic conditions could enhance cellular CYP3A4 enzymatic activity, maintain cell viability, and preserve adhesive abilities. Furthermore, Ca-alginate scaffolds used in this study can be completely removed by a non-toxic chelating reagent (EDTA solution), and the functional micro-tissues can be collected by slow-speed centrifugation. In conclusion, these micro-tissues are advantageous and show great potential in in vitro drug metabolizing assays.
Collapse
Affiliation(s)
- Ching-Yun Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
49
|
Lam LH, Pirrello RD, Ma JD. A Case-Based Approach to Integrating Opioid Pharmacokinetic and Pharmacodynamic Concepts in Cancer Pain Management. J Clin Pharmacol 2015; 56:785-93. [DOI: 10.1002/jcph.676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Lisa H. Lam
- University of California; San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Rosene D. Pirrello
- University of California; San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
- University of California; Irvine Health; Orange CA USA
| | - Joseph D. Ma
- University of California; San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| |
Collapse
|
50
|
Analysis of caffeine and paraxanthine in human saliva with ultra-high-performance liquid chromatography for CYP1A2 phenotyping. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 995-996:70-3. [DOI: 10.1016/j.jchromb.2015.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022]
|