1
|
Prevalence and sort of pharmacokinetic drug-drug interactions in hospitalized psychiatric patients. J Neural Transm (Vienna) 2020; 127:1185-1198. [PMID: 32519194 DOI: 10.1007/s00702-020-02214-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Psychiatric patients are high-risk patients for the development of pharmacokinetic drug-drug interactions (DDIs), leading to highly variable (victim) drug serum concentrations. Avoiding and targeting high-risk drug combinations could reduce preventable adverse drug reactions (ADRs). Pharmacokinetic cytochrome P450 (CYP)-mediated DDIs are often predictable and, therefore, preventable. The retrospective, longitudinal analysis used informations from a large pharmacovigilance study (Optimization of pharmacological treatment in hospitalized psychiatric patients study, study number 01VSF16009, 01/2017), conducted in 10 psychiatric hospitals in Germany. Medication data were examined for the co-prescription of clinically relevant CYP inhibitors or inducers and substrates of these enzymes (victim drugs). In total, data from 27,396 patient cases (45.6% female) with a mean (mean ± standard deviation (SD)) age of 47.3 ± 18.3 years were available for analysis. CYP inhibitors or inducers were at least once prescribed in 14.4% (n = 3946) of the cases. The most frequently prescribed CYP inhibitors were melperone (n = 2504, 28.1%) and duloxetine (n = 1324, 14.9%). Overall, 51.0% of the cases taking melperone were combined with a victim drug (n = 1288). Carbamazepine was the most frequently prescribed CYP inducer (n = 733, 88.8%). Combinations with victim drugs were detected for 58% (n = 427) of cases on medication with carbamazepine. Finally, a DDI was detected in 43.6% of the cases in which a CYP inhibitor or inducer was prescribed. The frequency of CYP-mediated DDI is considerably high in the psychiatric setting. Physicians should be aware of the CYP inhibitory and inducing potential of psychotropic and internistic drugs (especially, melperone).
Collapse
|
2
|
Hefner G, Unterecker S, Shams MEE, Wolf M, Falter T, Haen E, Hiemke C. Melperone but not bisoprolol or metoprolol is a clinically relevant inhibitor of CYP2D6: evidence from a therapeutic drug monitoring survey. J Neural Transm (Vienna) 2015; 122:1609-17. [DOI: 10.1007/s00702-015-1403-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
|
3
|
Auw L, Subehan, Sukrasno, Kadota S, Tezuka Y. Constituents of Indonesian Medicinal Plant Averrhoa bilimbi and Their Cytochrome P450 3A4 and 2D6 Inhibitory Activities. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As constituents of Averrhoa bilimbi leaves we identified three new compounds (1-3) together with 12 known ones (4-15); their inhibitory activities on cytochrome P450 3A4 (CYP3A4) and 2D6 (CYP2D6) were examined. Among the isolated compounds, the mixture of 1 and 2, and compounds 4 and 9 showed strong inhibition on CYP3A4, but mild or no inhibition on CYP2D6. These compounds revealed the characteristics of 1) time- and concentration-dependent inhibition, 2) requirement of NADPH for the inhibition, 3) no protection by nucleophiles, and 4) suppression of the inhibition by competitive inhibitor. Thus, they are suggested to be mechanism-based inactivators of CYP3A4 and CYP2D6. The kinetic parameters for the inactivation (kinact and KI) were 0.19 min–1 and 36.7 μM for the mixture of 1 and 2, 0.126 min–1 and 10.5 μM for 4, and 0.29 min–1 and 23.4 μM for 9.
Collapse
Affiliation(s)
- Lidyawati Auw
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Subehan
- Biofarmaka Research Center, Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Indonesia
| | - Sukrasno
- School of Pharmacy, Institut Teknologi Bandung, Labtek VII, Ganesha 10, Bandung 40132, Indonesia
| | - Shigetoshi Kadota
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yasuhiro Tezuka
- Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| |
Collapse
|
4
|
Esposito S, Deventer K, Geldof L, Van Eenoo P. In vitromodels for metabolic studies of small peptide hormones in sport drug testing. J Pept Sci 2014; 21:1-9. [DOI: 10.1002/psc.2710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Simone Esposito
- Doping Control Laboratory (DoCoLab), Department of Clinical Chemistry, Microbiology and Immunology; Ghent University (UGent); Technologiepark 30 B 9052 Zwijnaarde Belgium
| | - Koen Deventer
- Doping Control Laboratory (DoCoLab), Department of Clinical Chemistry, Microbiology and Immunology; Ghent University (UGent); Technologiepark 30 B 9052 Zwijnaarde Belgium
| | - Lore Geldof
- Doping Control Laboratory (DoCoLab), Department of Clinical Chemistry, Microbiology and Immunology; Ghent University (UGent); Technologiepark 30 B 9052 Zwijnaarde Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Department of Clinical Chemistry, Microbiology and Immunology; Ghent University (UGent); Technologiepark 30 B 9052 Zwijnaarde Belgium
| |
Collapse
|
5
|
Krauser JA, Jin Y, Walles M, Pfaar U, Sutton J, Wiesmann M, Graf D, Pflimlin-Fritschy V, Wolf T, Camenisch G, Swart P. Phenotypic and metabolic investigation of a CSF-1R kinase receptor inhibitor (BLZ945) and its pharmacologically active metabolite. Xenobiotica 2014; 45:107-23. [PMID: 25180976 DOI: 10.3109/00498254.2014.945988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. 4-[2((1R,2R)-2-Hydroxycyclohexylamino)-benzothiazol-6-yloxyl]-pyridine-2-carboxylic acid methylamide (BLZ945) is a small molecule inhibitor of CSF-1R kinase activity within osteoclasts designed to prevent skeletal related events in metastatic disease. Key metabolites were enzymatically and structurally characterized to understand the metabolic fate of BLZ945 and pharmacological implications. The relative intrinsic clearances for metabolites were derived from in vitro studies using human hepatocytes, microsomes and phenotyped with recombinant P450 enzymes. 2. Formation of a pharmacologically active metabolite (M9) was observed in human hepatocytes. The M9 metabolite is a structural isomer (diastereomer) of BLZ945 and is about 4-fold less potent. This isomer was enzymatically formed via P450 oxidation of the BLZ945 hydroxyl group, followed by aldo-keto reduction to the alcohol (M9). 3. Two reaction phenotyping approaches based on fractional clearances were applied to BLZ945 using hepatocytes and liver microsomes. The fraction metabolized (fm) or contribution ratio was determined for each metabolic reaction type (oxidation, glucuronidation or isomerization) as well as for each metabolite. The results quantitatively illustrate contribution ratios of the involved enzymes and pathways, e.g. the isomerization to metabolite M9 accounted for 24% intrinsic clearance in human hepatocytes. In summary, contribution ratios for the Phase I and Phase II pathways can be determined in hepatocytes.
Collapse
Affiliation(s)
- Joel A Krauser
- Department of Drug Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , Basel , Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Inui N, Akamatsu T, Uchida S, Tanaka S, Namiki N, Karayama M, Chida K, Watanabe H. Chronological Effects of Rifampicin Discontinuation on Cytochrome P450 Activity in Healthy Japanese Volunteers, Using the Cocktail Method. Clin Pharmacol Ther 2013; 94:702-8. [DOI: 10.1038/clpt.2013.167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
|
7
|
Zeng C, He F, Xia C, Zhang H, Xiong Y. Identification of the Active Components in Shenmai Injection that Differentially Affect Cyp3a4-Mediated 1′-Hydroxylation and 4-Hydroxylation of Midazolam. Drug Metab Dispos 2013; 41:785-90. [DOI: 10.1124/dmd.112.048025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Huang HP, Ou TT, Wang CJ. Mulberry ( sang shèn zǐ) and its bioactive compounds, the chemoprevention effects and molecular mechanisms in vitro and in vivo. J Tradit Complement Med 2013; 3:7-15. [PMID: 24716151 PMCID: PMC3924983 DOI: 10.4103/2225-4110.106535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mulberry ( sāng shèn zǐ), a traditional Chinese medicine (TCM) in Taiwan, has many bioactive substances, including polyphenol and anthocyanins compounds. Over the past decade, many scientific and medical studies have examined mulberry fruit for its antioxidation and antiinflammation effects both in vitro and in vivo. This review thus focuses on the recent advances of mulberry extracts (MEs) and their applications in the prevention and treatment of human cancer, liver disease, obesity, diabetes, and cardiovascular disease. The ME modulates several apoptotic pathways and matrix metalloproteinases (MMPs) to block cancer progression. Mulberry can increase detoxicated and antioxidant enzyme activities and regulate the lipid metabolism to treat hepatic disease resulting from alcohol consumption, high fat diet, lipopolysaccharides (LPS) and CCl4 exposure. Of the various compounds in ME, cyanidin 3-glucoside (C3G) is the most abundant, and the active compound studied in mulberry research. Herein, the antioxidant and antiinflammatory actions of C3G to improve diabetes and cardiovascular disease are also discussed. These studies provide strong evidence ME may possess the bioactivity to affect the pathogenesis of several chronic diseases.
Collapse
Affiliation(s)
- Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40242, Taiwan
- Institute of Biochemistry and Biotechnology, Medical College, Chung Shan Medical University, Taichung 40242, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung 40242, Taiwan
| | - Ting-Tsz Ou
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40242, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry and Biotechnology, Medical College, Chung Shan Medical University, Taichung 40242, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung 40242, Taiwan
| |
Collapse
|
9
|
Wu H, Li L, Shen J, Wang Y, Liu K, Zhang S. In vitro metabolism of cyadox in rat, chicken and swine using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2012; 67-68:175-85. [DOI: 10.1016/j.jpba.2012.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/01/2012] [Accepted: 04/04/2012] [Indexed: 11/29/2022]
|
10
|
Ghodke Y, Joshi K, Patwardhan B. Traditional Medicine to Modern Pharmacogenomics: Ayurveda Prakriti Type and CYP2C19 Gene Polymorphism Associated with the Metabolic Variability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:249528. [PMID: 20015960 PMCID: PMC3135904 DOI: 10.1093/ecam/nep206] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/10/2009] [Indexed: 12/25/2022]
Abstract
Traditional Indian medicine—Ayurveda—classifies the human population into three major constituents or Prakriti known as Vata, Pitta and Kapha types. Earlier, we have demonstrated a proof of concept to support genetic basis for Prakriti. The descriptions in Ayurveda indicate that individuals with Pitta Prakriti are fast metabolizers while those of Kapha Prakriti are slow metabolizers. We hypothesized that different Prakriti may have different drug metabolism rates associated with drug metabolizing enzyme (DME) polymorphism. We did CYP2C19 (Phase I DME) genotyping in 132 unrelated healthy subjects of either sex by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. We observed significant association between CYP2C19 genotype and major classes of Prakriti types. The extensive metabolizer (EM) genotype (∗1/∗1, ∗1/∗2, ∗1/∗3) was found to be predominant in Pitta Prakriti (91%). Genotype (∗1/∗3) specific for EM group was present only in Pitta Prakriti. Poor metabolizer (PM) genotype (∗2/∗2, ∗2/∗3, ∗3/∗3) was highest (31%) in Kapha Prakriti when compared with Vata (12%) and Pitta Prakriti (9%). Genotype (∗2/∗3) which is typical for PM group was significant in Kapha Prakriti (odds ratio = 3.5, P = .008). We observed interesting correlations between CYP2C19 genotypes and Prakriti with fast and slow metabolism being one of the major distinguishing and differentiating characteristics. These observations are likely to have significant impact on phenotype-genotype correlation, drug discovery, pharmacogenomics and personalized medicine.
Collapse
Affiliation(s)
- Yogita Ghodke
- Bioprospecting Laboratory, Interdisciplinary School of Health Sciences, University of Pune, India
| | | | | |
Collapse
|
11
|
Fasinu P, Pillay V, Ndesendo VMK, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm Drug Dispos 2011; 32:185-209. [PMID: 21480294 DOI: 10.1002/bdd.750] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/23/2010] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
In conscious and co-operating patients, oral drug delivery remains the preferable route of drug administration. However, not all drugs possess the desirable physicochemical and pharmacokinetic properties which favor oral administration mainly due to poor bioavailability. This has in some cases led to the choice of other routes of administration, which may compromise the convenience and increase the risk of non-compliance. Poor bioavailability has necessitated the administration of higher than normally required oral doses which often leads to economic wastages, risk of toxicity, erratic and unpredictable responses. The challenge over the years has been to design techniques that will allow oral administration of most drugs, irrespective of their properties, to achieve a therapeutic systemic availability. This will be a worthy achievement since over 90% of therapeutic compounds are known to possess oral bioavailability limitations. In this review, an attempt has been made to explore various approaches that have been used in recent years to improve oral drug bioavailability, including physical and chemical means. This review strives to provide a comprehensive overview of advances made over the past 10 years (2000-2010) in the improvement of the oral bioavailability of drugs. Briefly, the design of prodrugs to bypass metabolism or to enhance solubility as well as modification of formulation techniques such as the use of additives, permeation enhancers, solubilizers, emulsifiers and non-aqueous vehicles have been discussed. Arising approaches, such as formulation modification techniques; novel drug delivery systems, which exploit the gastrointestinal regionality of drugs, and include the pharmaceutical application of nanotechnology as an emerging area in drug delivery; inhibition of efflux pumps; and inhibition of presystemic metabolism have been more extensively addressed. This critical review sought to assess each method aimed at enhancing the oral bioavailability of drugs in terms of the purpose, scientific basis, limitations, commercial application, as well as the areas in which current research efforts are being focused and should be focused in the future.
Collapse
Affiliation(s)
- Pius Fasinu
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
12
|
Pegolo S, Giantin M, Dacasto M, Montesissa C, Capolongo F. Testosterone hydroxylation in bovine liver: enzyme kinetic and inhibition study. Xenobiotica 2010; 40:255-61. [DOI: 10.3109/00498250903540875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Alden PG, Plumb RS, Jones MD, Rainville PD, Shave D. A rapid ultra-performance liquid chromatography/tandem mass spectrometric methodology for the in vitro analysis of Pooled and Cocktail cytochrome P450 assays. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:147-154. [PMID: 19960506 DOI: 10.1002/rcm.4364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drug-drug interaction evaluations of new pharmaceutical candidates are critical to preventing drug withdrawal and are routinely determined through the use of cytochrome P450 assays. The measurement of the effect of test compounds on the metabolism of known substrates allows for the determination of specific CYP450 isoenzyme inhibition and calculation of IC50 values. A sensitive, high-throughput ultra-performance liquid chromatography/tandem mass spectrometric (UPLC/MS/MS) method is presented for the evaluation of CYP450 inhibition. The assay was performed using a cocktail of probe substrates and the results were compared to those obtained with the more time-consuming methodology utilizing individual substrates. The use of a high-resolution, sub-2 microm particle, LC system allowed for a high-throughput assay of just 1 min. The extra resolution of the UPLC/MS/MS system allowed for the complete resolution of the analytes, with a fast switching MS for comprehensive data collection. The CYP450 inhibition results obtained using the substrate cocktail approach were found to be essentially identical to those obtained using individual substrates.
Collapse
|
14
|
Naritomi Y, Terashita S, Kagayama A. Identification and relative contributions of human cytochrome P450 isoforms involved in the metabolism of glibenclamide and lansoprazole: evaluation of an approach based on thein vitrosubstrate disappearance rate. Xenobiotica 2008; 34:415-27. [PMID: 15370958 DOI: 10.1080/00498250410001685728] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The identification and relative contributions of human cytochrome P450 (CYP) enzymes involved in the metabolism of glibenclamide and lansoprazole in human liver microsomes were investigated using an approach based on the in vitro disappearance rate of unchanged drug. 2. Recombinant CYP2C19 and CYP3A4 catalysed a significant disappearance of both drugs. When the contribution of CYPs to the intrinsic clearance (CL(int)) of drugs in pooled human microsomes was estimated by relative activity factors, contributions of CYP2C19 and CYP3A4 were determined to be 4.6 and 96.4% for glibenclamide, and 75.1 and 35.6% for lansoprazole, respectively. 3. CL(int) of glibenclamide correlated very well with CYP3A4 marker activity, whereas the CL(int) of lansoprazole significantly correlated with CYP2C19 and CYP3A4 marker activities in human liver microsomes from 12 separate individuals. Effects of CYP-specific inhibitors and anti-CYP3A serum on the CL(int) of drugs in pooled human liver microsomes reflected the relative contributions of CYP2C19 and CYP3A4. 4. The results suggest that glibenclamide is mainly metabolized by CYP3A4, whereas lansoprazole is metabolized by both CYP2C19 and CYP3A4 in human liver microsomes. This approach, based on the in vitro drug disappearance rate, is useful for estimating CYP identification and their contribution to drug discovery.
Collapse
Affiliation(s)
- Y Naritomi
- Biopharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd, Osaka, Japan.
| | | | | |
Collapse
|
15
|
Fahmi OA, Boldt S, Kish M, Obach RS, Tremaine LM. PREDICTION OF DRUG-DRUG INTERACTIONS FROM IN VITRO INDUCTION DATA. Drug Metab Dispos 2008; 36:1971-4. [DOI: 10.1124/dmd.108.021907] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Hellum BH, Nilsen OG. In vitro Inhibition of CYP3A4 Metabolism and P-Glycoprotein-Mediated Transport by Trade Herbal Products. Basic Clin Pharmacol Toxicol 2008; 102:466-75. [DOI: 10.1111/j.1742-7843.2008.00227.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Fer M, Dréano Y, Lucas D, Corcos L, Salaün JP, Berthou F, Amet Y. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch Biochem Biophys 2008; 471:116-25. [DOI: 10.1016/j.abb.2008.01.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/26/2007] [Accepted: 01/06/2008] [Indexed: 01/04/2023]
|
18
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
19
|
Cermak R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin Drug Metab Toxicol 2007; 4:17-35. [DOI: 10.1517/17425255.4.1.17] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Gómez-Lechón MJ, Castell JV, Donato MT. Hepatocytes—the choice to investigate drug metabolism and toxicity in man: In vitro variability as a reflection of in vivo. Chem Biol Interact 2007; 168:30-50. [PMID: 17134688 DOI: 10.1016/j.cbi.2006.10.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/17/2006] [Accepted: 10/27/2006] [Indexed: 12/14/2022]
Abstract
The pharmaceutical industry is committed to marketing safer drugs with fewer side effects, predictable pharmacokinetic properties and quantifiable drug-drug interactions. Drug metabolism is a major determinant of drug clearance and interindividual pharmacokinetic differences, and an indirect determinant of the clinical efficacy and toxicity of drugs. Progressive advances in the knowledge of metabolic routes and enzymes responsible for drug biotransformation have contributed to understanding the great metabolic variations existing in human beings. Phenotypic as well genotypic differences in the expression of the enzymes involved in drug metabolism are the main causes of this variability. However, only a minor part of phenotypic variability in man is attributable to gene polymorphisms, thus making the definition of a normal liver complex. At present, the use of human in vitro hepatic models at early preclinical stages means that the process of selecting drug candidates is becoming much more rational. Cultured human hepatocytes are considered to be the closest model to human liver. However, the fact that hepatocytes are located in a microenvironment that differs from that of the cell in the liver raises the question: to what extent does drug metabolism variability observed in vitro actually reflect that of the liver in vivo? By comparing the metabolism of a model compound both in vitro and in vivo in the same individual, a good correlation between the in vitro and in vivo relative abundance of oxidized metabolites and the hydrolysis of the compound was observed. Thus, it is reasonable to consider that the variability observed in human hepatocytes reflects the existing phenotypic heterogeneity of the P450 expression in human liver.
Collapse
Affiliation(s)
- María José Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, Avda Campanar 21, 46009 Valencia, Spain.
| | | | | |
Collapse
|
21
|
Kim HM, Liu KH. Screening for inhibitory effect on nine CYP isoforms by 20 herbal medications. ACTA ACUST UNITED AC 2007. [DOI: 10.5352/jls.2007.17.3.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Berlin M, Ting PC, Vaccaro WD, Aslanian R, McCormick KD, Lee JF, Albanese MM, Mutahi MW, Piwinski JJ, Shih NY, Duguma L, Solomon DM, Zhou W, Sher R, Favreau L, Bryant M, Korfmacher WA, Nardo C, West RE, Anthes JC, Williams SM, Wu RL, Susan She H, Rivelli MA, Corboz MR, Hey JA. Reduction of CYP450 inhibition in the 4-[(1H-imidazol-4-yl)methyl]piperidine series of histamine H3 receptor antagonists. Bioorg Med Chem Lett 2006; 16:989-94. [PMID: 16297617 DOI: 10.1016/j.bmcl.2005.10.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
A novel series of histamine H3 receptor antagonists based on the 4-[(1H-imidazol-4-yl)methyl]piperidine template displaying low CYP2D6 and CYP3A4 inhibitory profiles has been identified. Structural features responsible for the reduction of P450 activity, a typical liability of 4-substituted imidazoles, have been established.
Collapse
Affiliation(s)
- Michael Berlin
- The Schering Plough Research Institute, 2015 Galloping Hill Rd. Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim H, Yoon YJ, Shon JH, Cha IJ, Shin JG, Liu KH. INHIBITORY EFFECTS OF FRUIT JUICES ON CYP3A ACTIVITY. Drug Metab Dispos 2006; 34:521-3. [PMID: 16415112 DOI: 10.1124/dmd.105.007930] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There have been very limited reports on the effects of commercial fruit juices on human CYP3A activity. Therefore, the inhibitory effects of readily available commercial fruit juices on midazolam 1'-hydroxylase activity, a marker of CYP3A, were evaluated in pooled human liver microsomes. The fruit juices investigated were black raspberry, black mulberry, plum, and wild grape. White grapefruit, pomegranate, and orange juice were used as positive and negative controls. The black mulberry juice showed the most potent inhibition of CYP3A except for grapefruit juice. The inhibition depended on the amount of a fruit juice added to the incubation mixture. The inhibitory potential of human CYP3A was in the order: grapefruit > black mulberry > wild grape > pomegranate > black raspberry. The IC(50) values of all fruit juices tested were reduced after preincubation with microsomes in the presence of the NADPH-generating system, suggesting that a mechanism-based inhibitory component was present in these fruit juices, as in the case of grapefruit. The results suggest that, like grapefruit juice, commercial fruit juices also have the potential to inhibit CYP3A-catalzyed midazolam 1'-hydroxylation. Therefore, in vivo studies investigating the interactions between fruit juices such as black mulberry and wild grape and CYP3A substrates are necessary to determine whether inhibition of CYP3A activity by fruit juices is clinically relevant.
Collapse
Affiliation(s)
- Hyunmi Kim
- Department of Pharmacology, Inje University College of Medicine, # 633-165, Gaegum-Dong, Jin-Gu, Busan 614-735, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Vaccaro WD, Sher R, Berlin M, Shih NY, Aslanian R, Schwerdt JH, McCormick KD, Piwinski JJ, West RE, Anthes JC, Williams SM, Wu RL, She HS, Rivelli MA, Mutter JC, Corboz MR, Hey JA, Favreau L. Novel histamine H3 receptor antagonists based on the 4-[(1H-imidazol-4-yl)methyl]piperidine scaffold. Bioorg Med Chem Lett 2006; 16:395-9. [PMID: 16246552 DOI: 10.1016/j.bmcl.2005.09.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/17/2005] [Accepted: 09/26/2005] [Indexed: 11/16/2022]
Abstract
We report the discovery of novel histamine H(3) receptor antagonists based on 4-[(1H-imidazol-4-yl)methyl]piperidine. The most potent compounds in the series (e.g., 7) result from the attachment of a substituted aniline amide to the main pharmacophore piperidine via a two-methylene linker.
Collapse
Affiliation(s)
- Wayne D Vaccaro
- The Schering Plough Research Institute, 2015 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oda A, Yamaotsu N, Hirono S. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. J Comput Chem 2005; 26:818-26. [PMID: 15812779 DOI: 10.1002/jcc.20221] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The heme protein, cytochrome P450, is an oxidoreductase that plays an important role in drug metabolism. To model P450s using molecular mechanics methods and classical molecular dynamics simulations, force field parameters and atomic charges are required. Because these parameters are generally obtained by quantum chemical methods, an appropriate simplified model for the iron-porphyrin system was needed. In this study, two models with a five-coordinated Fe(III) mimicking the sextet spin state of P450s are proposed, which are optimized by semiempirical and ab initio unrestricted Hartree-Fock methods. The results produced using the simpler of the two models were similar to those of the more complex model; therefore, the more simplified model of P450 can be used without a loss of accuracy. Furthermore, several quantum chemical calculations were carried out on the simpler model to investigate which method was most suitable for iron-porphyrin systems. The results calculated by hybrid density functional theory (DFT), with the MIDI basis set for iron, reproduced the three-dimensional structures determined by X-ray diffraction and extended X-ray absorption fine-structure experiments. From these results, atomic charges and force-field parameters for molecular mechanics and molecular dynamics calculations were obtained.
Collapse
Affiliation(s)
- Akifumi Oda
- Discovery Laboratories, Toyama Chemical Co, Ltd, 2-4-1 Shimookui, Toyama 930-8508, Japan.
| | | | | |
Collapse
|
26
|
Sacco MG, Vezzoni P. Response to Gribaldo and Hartung: New hepatocytes for toxicology? Trends Biotechnol 2004. [DOI: 10.1016/j.tibtech.2004.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Ohnishi N, Yokoyama T. Interactions between medicines and functional foods or dietary supplements. Keio J Med 2004; 53:137-50. [PMID: 15477727 DOI: 10.2302/kjm.53.137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the demand for supplements has steadily been increasing with the diffusion of alternative and supplemental medicines throughout the world. Therefore, the supplements have frequently been taken with many drugs. Here, we have introduced the pharmacokinetic and pharmacological interactions between them.
Collapse
Affiliation(s)
- Noriaki Ohnishi
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University Kyoto, Japan.
| | | |
Collapse
|
28
|
Ansede JH, Thakker DR. High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism. J Pharm Sci 2004; 93:239-55. [PMID: 14705182 DOI: 10.1002/jps.10545] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of combinatorial chemistry and high-throughput screening technology, thousands of molecules can now be rapidly synthesized and screened for biological activity against large numbers of protein targets, greatly increasing the speed with which lead compounds are identified during the early stages of drug discovery. However, rapid optimization of parameters that determine whether a high-affinity ligand or a potent inhibitor will become a successful drug remains a challenge in improving the efficiency of the drug discovery process. Parameters that define absorption, distribution, metabolism, and excretion properties of drug candidates are important determinants of therapeutic efficacy, and thus should be optimized during early stages of drug discovery. Although the speed with which drugs are screened for properties such as absorption, cytochrome P450 (CYP) inhibition, and metabolic stability has increased over the past several years, the screening rate/capacity is still several orders of magnitude lower than those for high-throughput methods used in lead identification, resulting in a bottleneck in the drug discovery process. This review discusses current methods used in the in vitro screening of drugs for their stability toward CYP-mediated oxidative metabolism. This is a critical screen in the drug discovery process because metabolism by CYP represents an important clearance mechanism for the vast majority of compounds, thus affecting their oral bioavailability and/or duration of action.
Collapse
Affiliation(s)
- John H Ansede
- Division of Drug Delivery and Disposition, School of Pharmacy, The University of North Carolina at Chapel Hill, CB# 7360, 2309 Kerr Hall, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|
29
|
Iwata H, Tezuka Y, Kadota S, Hiratsuka A, Watabe T. IDENTIFICATION AND CHARACTERIZATION OF POTENT CYP3A4 INHIBITORS IN SCHISANDRA FRUIT EXTRACT. Drug Metab Dispos 2004; 32:1351-8. [PMID: 15342469 DOI: 10.1124/dmd.104.000646] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Schisandra fruit, a Schisandraceae family herb, is used as a component in Kampo medicines (developed from Chinese medicines, but established in Japan). It can act as a sedative and antitussive, improve hepatic function, and give a general tonic effect. An extract of Schisandra fruit has been shown with a potent inhibitory effect on human liver microsomal erythromycin N-demethylation activity mediated by cytochrome P450 3A4 (CYP3A4). The present study was conducted to identify Schisandra fruit components having inhibitory effects on CYP3A4 by surveying the effect on human liver microsomal erythromycin N-demethylation activity. Known components of Schisandra fruit, gomisins B, C, G, and N and gamma-shizandrin, showed inhibitory effects on N-demethylation activity. Among these components, gomisin C displayed the most potent and competitive inhibitory effect, with a Ki value of 0.049 microM. Furthermore, the inhibitory effect of gomisin C was stronger than that of ketoconazole (Ki = 0.070 microM), a known potent CYP3A4 inhibitor. Gomisin C, however, inhibited CYP1A2-, CYP2C9-, CYP2C19-, and CYP2D6-dependent activities only to a limited extent (IC50 values >10 microM). Moreover, gomisin C inactivated human liver microsomal erythromycin N-demethylation activity in a time- and concentration-dependent manner. The inactivation kinetic parameters k(inact) and K(I) were 0.092 min(-1) and 0.399 microM, respectively. The human liver microsomal erythromycin N-demethylation activity inactivated by gomisin C did not recover on dialysis of the microsomes. Spectral scanning of CYP3A4 with gomisin C yielded an absorbance at 455 nm, suggesting that gomisin C inactivated the cytochrome P450 via the formation of a metabolite intermediate complex. This pattern is consistent with the metabolism of the methylenedioxy substituent in gomisin C. These results indicate that gomisin C is a mechanism-based inhibitor that not only competitively inhibits but irreversibly inactivates CYP3A4.
Collapse
Affiliation(s)
- Hiroshi Iwata
- Division of Natural Products Chemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, 930-0194, Japan
| | | | | | | | | |
Collapse
|
30
|
Cell-based assay for the detection of chemically induced cellular stress by immortalized untransformed transgenic hepatocytes. BMC Biotechnol 2004; 4:5. [PMID: 15033002 PMCID: PMC406386 DOI: 10.1186/1472-6750-4-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 03/19/2004] [Indexed: 11/10/2022] Open
Abstract
Background Primary hepatocytes, one of the most widely used cell types for toxicological studies, have a very limited life span and must be freshly derived from mice or even humans. Attempts to use stable cell lines maintaining the enzymatic pattern of liver cells have been so far unsatisfactory. Stress proteins (heat shock proteins, HSPs) have been proposed as general markers of cellular injury and their use for environmental monitoring has been suggested. The aim of this work is to develop a bi-transgenic hepatocyte cell line in order to evaluate the ability of various organic and inorganic chemicals to induce the expression of the HSP70 driven reporter gene. We previously described transgenic mice (Hsp70/hGH) secreting high levels of human Growth Hormone (hGH) following exposure to toxic compounds in vivo and in vitro in primary cultures derived from different organs. In addition, we also reported another transgenic model (AT/cytoMet) allowing the reproducible immortalization of untransformed hepatocytes retaining in vitro complex liver functions. Results The transgenic mouse line Hsp70/hGH was crossed with the AT/cytoMet transgenic strain permitting the reproducible immortalization of untransformed hepatocytes. From double transgenic animals we derived several stable hepatic cell lines (MMH-GH) which showed a highly-differentiated phenotype as judged from the retention of epithelial cell polarity and the profile of gene expression, including hepatocyte-enriched transcription factors and detoxifying enzymes. In these cell lines, stresses induced by exposure to inorganic [Sodium Arsenite (NaAsO2) and Cadmium Chloride (CdCl2)], and organic [Benzo(a)Pyrene (BaP), PentaChloroPhenol (PCP), TetraChloroHydroQuinone (TCHQ), 1-Chloro-2,4-DiNitro-Benzene (CDNB)] compounds, specifically induced hGH release in the culture medium. Conclusions MMH-GH, an innovative model to evaluate the toxic potential of chemical and physical xenobiotics, provides a simple biological system that may reduce the need for animal experimentation and/or continuously deriving fresh hepatocytes.
Collapse
|
31
|
Yoshioka M, Ohnishi N, Koishi T, Obata Y, Nakagawa M, Matsumoto T, Tagagi K, Takara K, Ohkuni T, Yokoyama T, Kuroda K. Studies on Interactions between Functional Foods or Dietary Supplements and Medicines. IV. Effects of Ginkgo biloba Leaf Extract on the Pharmacokinetics and Pharmacodynamics of Nifedipine in Healthy Volunteers. Biol Pharm Bull 2004; 27:2006-9. [PMID: 15577221 DOI: 10.1248/bpb.27.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of Ginkgo biloba leaf extract (GBE), a widely used herbal dietary supplement in Japan, on the pharmacokinetics and pharmacodynamics of nifedipine (NFP), a calcium-channel blocker, were studied using 8 healthy volunteers. Simultaneous oral ingestion of GBE (240 mg) did not significantly affect any of the mean pharmacokinetic parameters of either NFP or dehydronifedipine, a major metabolite of NFP, after oral administration of NFP (10 mg). However, the maximal plasma NFP concentrations in 2 subjects were approximately doubled by GBE, and they had severer and longer-lasting headaches with GBE than without GBE, with dizziness or hot flushes in combination with GBE. The mean heart rate after oral administration of NFP with GBE tended to be faster than that without GBE at every time point. Accordingly, it was concluded that GBE and NFP should not be simultaneously ingested as much as possible, and careful monitoring is needed when administering NFP concomitantly with GBE to humans.
Collapse
|
32
|
Naritomi Y, Teramura Y, Terashita S, Kagayama A. Utility of Microtiter Plate Assays for Human Cytochrome P450 Inhibition Studies in Drug Discovery: Application of Simple Method for Detecting Quasi-irreversible and Irreversible Inhibitors. Drug Metab Pharmacokinet 2004; 19:55-61. [PMID: 15499170 DOI: 10.2133/dmpk.19.55] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, a simple in vitro method for detecting human P450 (CYP) quasi-irreversible and irreversible inhibitors was evaluated. For the method, cDNA-expressed CYPs were applied to microtiter plate assays, CYP inhibitors were co-incubated with fluorometric substrates, and IC(50) were continuously measured (without stopping enzyme reactions). The typical reversible inhibitors (sulfaphenazole, tranylcypromine, quinidine, ketoconazole) showed constant IC(50) throughout the reaction. In contrast, the typical quasi-irrversible inhibitors (isosafrole, erythromycin, troleandomycin, diltiazem) and the typical irreversible inhibitors (furafylline, propranolol, mifepristone) showed time-dependent decreases in IC(50). For CYP3A4 inhibition studies, two substrates, 7-benzyloxyresorufin (BzRes) and 7-benzyloxy-4-trifluoromethyl-coumarin (BFC), were used. The IC(50) of the CYP3A4 inhibitors were dependent on the substrate. However, the quasi-irreversible and irreversible inhibitors could be detected by examining changes in the IC(50), regardless of the substrate. Further, the detection method was applied to josamycin and bergamottin. Josamycin did not show definite time-dependent decreases in IC(50) for CYP 3A4, suggesting that josamycin is neither a quasi-irrversible nor an irreversible inhibitor of CYP3A4. On the other hand, bergamottin showed time-dependent decreases in IC(50) for CYP1A2, CYP 2C9, CYP 2C19, CYP 2D6 and CYP 3A4, suggesting that bergamottin is a quasi-irrversible or an irreversible inhibitor of the 5 CYP isoforms. This method provides more rapid and reliable detection of quasi-irreversible and irreversible inhibitors and may be useful in drug discovery.
Collapse
Affiliation(s)
- Yoichi Naritomi
- Biopharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan.
| | | | | | | |
Collapse
|
33
|
Montesissa C, Capolongo F, Santi A, Biancotto G, Dacasto M. Metabolism of tilmicosin by rabbit liver microsomes and hepatocytes. Vet J 2004; 167:87-94. [PMID: 14623156 DOI: 10.1016/s1090-0233(03)00077-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated tilmicosin (TIM) metabolism, at 25, 50 or 100 microM, in cultures of primary hepatocytes from rabbits bred commercially for food and in liver microsomes prepared from both untreated and rifampicin (RIF)-treated rabbits. RIF is a well-known cytochrome P4503A (CYP 3A) inducer in rabbits and most macrolides are known to be substrates of CYP 3A. No peaks in addition to those of the cis and trans forms of TIM were observed by high performance liquid chromatography (HPLC) in extracts of microsomes from untreated rabbits. When TIM was incubated with induced microsomes, at least two peaks were found by HPLC and an additional peak, eluting at shorter retention time was isolated from hepatocytes incubated for 24h with the macrolide. The structures of the metabolites were then estimated by liquid chromatography-mass spectrometry (LC-MS) in concentrated extracts from induced microsomes. Five metabolites were separated and putatively identified: cis and trans demethylated tilmicosin, tilmicosin N-oxide and cis and trans tilmicosin epoxide. The overall amount of metabolites produced in vitro using livers of untreated and RIF treated rabbits was very low, has also been observed in vivo and in vitro in cattle, chickens and pigs.
Collapse
Affiliation(s)
- C Montesissa
- Dipartimento di Sanità pubblica Patologia comparata ed Igiene veterinaria, Agripolis, I-35020 Legnaro, Padua, Italy.
| | | | | | | | | |
Collapse
|
34
|
Yoshioka M, Ohnishi N, Sone N, Egami S, Takara K, Yokoyama T, Kuroda K. Studies on Interactions between Functional Foods or Dietary Supplements and Medicines. III. Effects of Ginkgo biloba Leaf Extract on the Pharmacokinetics of Nifedipine in Rats. Biol Pharm Bull 2004; 27:2042-5. [PMID: 15577230 DOI: 10.1248/bpb.27.2042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of Ginkgo biloba leaf extract (GBE), one of the most widely used herbal dietary supplements in Japan and the United States, on the pharmacokinetics of nifedipine (NFP), a typical probe of P450 (CYP) 3A, but not a substrate of the multidrug transporter P-glycoprotein (P-gp), were studied using rats. Simultaneous oral treatment with GBE (20 mg/kg) did not affect the pharmacokinetics after intravenous administration of NFP (2.5 mg/kg). However, the maximal plasma NFP concentration, the area under the concentration-time curve and absolute bioavailability after oral administration of NFP (5 mg/kg) were significantly increased by simultaneous oral treatment with GBE, approximately 1.6-fold, 1.6-fold and 2.1-fold, respectively. These results suggest that the concomitant oral use of GBE appeared to reduce the first-pass metabolism of orally administered NFP, by inhibiting CYP3A, possibly but not P-gp, in rats.
Collapse
|
35
|
Benetton S, Kameoka J, Tan A, Wachs T, Craighead H, Henion JD. Chip-Based P450 Drug Metabolism Coupled to Electrospray Ionization-Mass Spectrometry Detection. Anal Chem 2003; 75:6430-6. [PMID: 14640711 DOI: 10.1021/ac030249+] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chip-based P450 in vitro metabolism assay coupled with ESI-MS and ESI-MS/MS detection is described in this paper. The chips were made of a cyclic olefin polymer using a hot embossing process. The introduction of reagent solutions into the chip was carried out using fused-silica capillaries coupled to two syringes with the flow rate controlled by a syringe pump. Initial experiments described here employed a small commercial guard column in an off-chip format to desalt and concentrate the products of the enzymatic reaction prior to ESI-MS analysis. The system was used both to yield the Michaelis constant (K(m)) of the P450 biotransformation of imipramine into desipramine and to determine the IC50 value of a chemical inhibitor (tranylcypromine) for this CYP2C19-mediated reaction. The results demonstrated that the kinetics of the reaction inside the 4-microL volume within the channels of the cyclic olefin polymer chip provided results in agreement with those reported in the literature using conventional assays. The above reactions were carried out using human liver microsomes, and the metabolites were detected by ESI-MS showing the potential of the chip-based P450 reaction for metabolite screening studies as well as for P450 inhibition assays. A porous monolithic column was subsequently integrated into the chip to perform the reaction mixture cleanup process in an integrated fashion on the chip that is necessary for ESI-MS detection. The miniature monolithic SPE column was prepared in situ inside the chip via UV-initiated polymerization. The results obtained using the integrated system demonstrated the possibility of performing P450 enzymatic reactions in a microvolume reaction chamber coupled directly to ESI-MS detection and required less than 4 microg of HLM protein.
Collapse
Affiliation(s)
- Salete Benetton
- Analytical Toxicology, College of Veterinary Medicine, Cornell University, 927 Warren Drive, Ithaca, New York 14850, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ohnishi N, Kusuhara M, Yoshioka M, Kuroda K, Soga A, Nishikawa F, Koishi T, Nakagawa M, Hori S, Matsumoto T, Yamashita M, Ohta S, Takara K, Yokoyama T. Studies on interactions between functional foods or dietary supplements and medicines. I. Effects of Ginkgo biloba leaf extract on the pharmacokinetics of diltiazem in rats. Biol Pharm Bull 2003; 26:1315-20. [PMID: 12951478 DOI: 10.1248/bpb.26.1315] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of Ginkgo biloba leaf extract (GBE), one of the most widely used herbal dietary supplements in Japan, on the pharmacokinetics of diltiazem (DTZ), a typical probe of cytochrome P450 (CYP) 3A, were examined in rats. The simultaneous addition of GBE to small intestine and liver microsomes inhibited the formation of N-demethyl DTZ (MA), an active metabolite of DTZ produced by CYP3A, in a concentration-dependent manner, with an IC(50) of about 50 and 182 microg/ml, respectively. This inhibition appeared to be caused, at least in part, by a mechanism-based inhibition. Both the rate of formation of MA and total amount of CYP in intestinal or hepatic microsomes after a single oral pretreatment with GBE (20 mg/kg) decreased transiently. The pretreatment significantly decreased the terminal elimination rate constant and increased the mean residence time, after intravenous administration of DTZ (3 mg/kg). Furthermore, it significantly increased the area under the concentration-time curve and absolute bioavailability after oral administration of DTZ (30 mg/kg). These results indicated that the concomitant use of GBE in rats increased the bioavailability of DTZ by inhibiting both intestinal and hepatic metabolism, at least in part, via a mechanism-based inhibition for CYP3A.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Area Under Curve
- Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors
- Calcium Channel Blockers/administration & dosage
- Calcium Channel Blockers/pharmacokinetics
- Cytochrome P-450 CYP3A
- Cytochromes b5/metabolism
- Diltiazem/administration & dosage
- Diltiazem/pharmacokinetics
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Ginkgo biloba/chemistry
- Half-Life
- In Vitro Techniques
- Injections, Intravenous
- Intestine, Small/drug effects
- Intestine, Small/enzymology
- Intestine, Small/metabolism
- Male
- Methylation
- Microsomes/drug effects
- Microsomes/enzymology
- Microsomes/metabolism
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Microsomes, Liver/metabolism
- Oxidoreductases, N-Demethylating/antagonists & inhibitors
- Plant Extracts/pharmacology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Noriaki Ohnishi
- Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang S, Morris ME. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm Res 2003; 20:1184-91. [PMID: 12948016 DOI: 10.1023/a:1025044913766] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of flavonoids biochanin A and silymarin on intestinal absorption of P-gp substrates by determining their effects on P-gp-mediated efflux in Caco-2 cells. METHODS The cellular accumulation and bidirectional transport of digoxin and vinblastine in Caco-2 cells were determined in the presence and absence of flavonoids. RESULTS The 1.5-h accumulation of digoxin and vinblastine in Caco-2 cells was significantly increased by 50 microM biochanin A or silymarin, and this effect was flavonoid-concentration dependent. The AP-to-BL transport of digoxin was significantly increased, whereas the BL-to-AP transport was significantly decreased by 50 microM biochanin A or 75 microM silymarin. At 150 microM concentrations of biochanin A or silymarin, mean transport ratios (P(app,B-A)/P(app,A-B)) of 1.62 and 4.48, respectively, compared with the control ratio of 43.4, were obtained. CONCLUSION These results indicate that biochanin A and silymarin can inhibit P-gp-mediated efflux in Caco-2 cells, suggesting they could potentially increase the absorption/bioavailability of coadministered drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 517 Hochstetter Hall, University at Buffalo, The State University of New York, Amherst, New York 14260, USA
| | | |
Collapse
|
38
|
Yamamoto T, Suzuki A, Kohno Y. High-throughput screening to estimate single or multiple enzymes involved in drug metabolism: microtitre plate assay using a combination of recombinant CYP2D6 and human liver microsomes. Xenobiotica 2003; 33:823-39. [PMID: 12936703 DOI: 10.1080/0049825031000140887] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The purpose of this study was to estimate readily involvement of single or multiple enzymes in the metabolism of a drug through inhibitory assessment. Inhibitory effects of various compounds on CYP2D6 activity assayed by formation of fluorescent metabolite from 3-[2-(N,N-diethyl-N-methyl-ammonium)ethyl]-7-methoxy-4-methyl-coumarin (AMMC) were assessed using microtitre plate (MTP) assays with a combination of recombinant CYP2D6 and human liver microsomes (HLM). 2. Among various compounds studied, antipsychotic drugs extensively inhibited recombinant CYP2D6 activity and the IC50 values were generally lower than those of antidepressants and antiarrhythmic drugs. 3. After pre-incubation, the IC50 values of mianserin, chlorpromadine, risperidone, thioridazine, alprenolol, propafenone and dextromethorphan increased but the values of timolol, S-metoprolol and propranolol substantially decreased compared with those in case of co-incubation. 4. The IC50 values of typical substrates of CYP2D6 (bufuralol and dextromethorphan at lower substrate concentration) in inhibition studies using HLM, were similar to those in the case of recombinant CYP2D6, but the values of the compounds that are metabolized by multiple CYP forms (perphenazine and chlorpromazine) in HLM were much larger. 5. If the ratio (HLM/rCYP ratio) of IC50 values between HLM and recombinant CYP2D6 exceeds approximately 2, it suggests that other CYP forms in addition to CYP2D6 might be involved in the metabolism of the test compounds. From the advantage such as speed, high throughput and ease of the technique, the MTP assay using a combination of the recombinant CYP2D6 and HLM is useful to estimate the involvement of single or multiple enzymes in the metabolism of drugs at the stage of drug discovery.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Drug Metabolism, Taisho Pharmaceutical Co., Ltd, Saitama, Japan.
| | | | | |
Collapse
|
39
|
Kruijtzer CMF, Beijnen JH, Schellens JHM. Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: an overview. Oncologist 2003; 7:516-30. [PMID: 12490739 DOI: 10.1634/theoncologist.7-6-516] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The oral bioavailability of many cytotoxic drugs is low and/or highly variable. This can be caused by high affinity for drug transporters and activity of metabolic enzymes in the gastrointestinal tract and liver. In this review, we will describe the main involved drug transporters and metabolic enzymes and discuss novel methods to improve oral treatment of affected substrate drugs. Results of preclinical and clinical phase I and II studies will be discussed in which affected substrate drugs, such as paclitaxel, docetaxel, and topotecan, are given orally in combination with an inhibitor of drug transport or drug metabolism. Future randomized studies will, hopefully, confirm that this strategy for oral treatment is at least as equally effective and safe as standard intravenous administration of these drugs.
Collapse
Affiliation(s)
- C M F Kruijtzer
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Yamamoto T, Hagima N, Fukasawa M, Yamaguchi JI, Nakamura M, Kohno Y, Nagata K, Yamazoe Y. Metabolism of N,N-Dipropyl-2-[4-Methoxy-3-(2-Phenyl-Ethoxy)-Phenyl]-Ethyl-Amine-Monohydrochloride (NE-100), A Novel Sigma Ligand: Contribution of Cytochrome P450 Forms Involved in the Formation of Individual Metabolites in Human Liver and Small Intestine. Drug Metab Pharmacokinet 2003; 18:173-85. [PMID: 15618733 DOI: 10.2133/dmpk.18.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, human cytochrome P450 (CYP) forms involved in producing the primary metabolites of NE-100 were identified. Major metabolites of NE-100 in human liver microsomes (HLM) were N-depropylation of NE-100 (NE-098), p-hydroxylation of phenyl group of NE-100 (NE-152), m-hydroxylation of phenyl group of NE-100 (NE-163) and O-demethylation of NE-100 (NE-125). Judging from the correlation and inhibition studies, NE-125 and NE-152+163mix formations were predominantly mediated by CYP2D6 and NE-098 formation was mediated by multiple CYP forms at a low NE-100 concentration (0.1 microM) in the HLM. According to relative activity factor (RAF) approaches, all these reactions were predominantly catalyzed by CYP2D6 at a substrate concentration assuming a plasma level of NE-100 (K(m)>>S) in case of the human liver. Depending on the increase in NE-100 concentrations, the rate of contribution for NE-098 and NE-152+163mix formations increased in CYP3A4, although the predominant contribution of CYP2D6 for NE-125 formation did not change. In human intestinal microsomes (HIM), NE-100 was mainly metabolized to NE-098 and NE-152+163mix by CYP3A4. The intrinsic clearance for their formations in HIM was 3.2 and 14.9 times less than those in HLM, respectively, and no formation of NE-125 was observed in HIM. These results strongly suggest that CYP2D6 is the predominant form for NE-100 metabolism in the human liver in in vivo conditions (K(m)>>S) and the liver plays a more important role than does the small intestine in the first pass metabolism.
Collapse
Affiliation(s)
- Takahito Yamamoto
- Department of Drug Metabolism, Medicinal Research Laboratory, Taisho Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Eeckhoutte C, Albo AG, Carletti M, Giaccherino AR, Galtier P, Nebbia C, Dacasto M. Time-dependent variations of drug-metabolising enzyme activities (DMEs) in primary cultures of rabbit hepatocytes. Toxicol In Vitro 2002; 16:375-82. [PMID: 12110275 DOI: 10.1016/s0887-2333(02)00018-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, time-dependent variations of drug-metabolising enzyme activities (DMEs) in primary cultures of rabbit hepatocytes, a species of economic importance in Mediterranean countries, were investigated. Cross-bred rabbits were anesthetised and their livers perfused in situ by a two-step collagenase technique; cells suspensions were filtered, seeded in collagen-coated dishes and cultivated at 37 degrees C in a controlled atmosphere for 24 and 72 h. Cytochrome P450 and b(5) contents as well as the catalytic activity of some P450-dependent monooxygenases were measured in subcellular fractions obtained by differential ultracentrifugation; microsomal proteins were also subjected to immunoblotting, using antibodies to rat P4501A, 2B, 2E1 and 3A isoforms. The activity of some microsomal hydrolytic enzymes was also determined. As regards conjugative enzymes, glutathione content and activities of glutathione S-transferase, uridindiphosphoglucuronosyl-transferase, acetyl-transferase and 1,2-epoxibuthane glutathione transferase were assayed. An overall reduction of the catalytic activity was observed 72 h after plating, reaching in certain instances the level of statistical significance. On the whole, our data confirm those previously reported with hepatocytes obtained from other species; however, the evidence that DMEs were still measurable after 72 h supports the usefulness of this in vitro method for drug metabolism studies in the rabbit as well.
Collapse
Affiliation(s)
- C Eeckhoutte
- Institut Nationale de la Recherche Agronomique, Laboratoire de Pharmacologie et Toxicologie, UR66, 180 chemin de Tournefeuille, St. Martin du Touch, BP 3, 31931 Toulouse cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Niwa T, Maekawa Y, Fujimoto M, Kishimoto K, Yabusaki Y, Ishibashi F, Katagiri M. Inhibition of human hepatic cytochrome P450s and steroidogenic CYP17 by nonylphenol. Biol Pharm Bull 2002; 25:235-8. [PMID: 11853173 DOI: 10.1248/bpb.25.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effect of nonylphenol on aminopyrine N-demethylase activity, a typical drug-metabolizing enzyme activity, by ten kinds of human hepatic cytochrome P450s (CYP) and on progesterone 17alpha-hydroxylase activity by steroidogenic CYP17 was investigated. When determined at 2 mM substrate concentration, nonylphenol (1 mM) most efficiently inhibited aminopyrine N-demethylation by CYP2C9 and CYP2C19, by 61% and 59%, respectively, followed by CYP2D6, CYP1A2, CYP2C18 and CYP2C8 (46-51%), whereas inhibition of the activities by other CYPs was less than 27%. Additionally, nonylphenol competitively inhibited diclofenac 4'-hydroxylation by CYP2C9 and S-mephenytoin 4'-hydroxylation by CYP2C19 with Ki values of 5.3 and 37 microM, respectively. Furthermore, nonylphenol exhibited a competitive inhibition of progesterone 17alpha-hydroxylase activity by CYP17 with Ki value of 62 microM. These results suggest that nonylphenol inhibits human hepatic CYPs, especially CYP2C9 and CYP2C19, and steroidogenic CYP17 activities.
Collapse
Affiliation(s)
- Toshiro Niwa
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Verhoeven CHJ, van Munster TTM, Groothuis GMM, Vos RME, Rietjens IMCM. Identification of the human P450 enzymes involved in the in vitro metabolism of the synthetic steroidal hormones Org 4060 and Org 30659. Xenobiotica 2002; 32:109-18. [PMID: 11871398 DOI: 10.1080/00498250110093026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The type of human P450 enzymes involved in the in vitro metabolism of Org 4060 and Org 30659, two synthetic steroidal hormones currently under clinical development by NV Organon for use in oral contraceptive and hormone replacement therapy, was investigated. 2. Both steroids were mainly hydroxylated at the 6beta-position in incubations with human liver microsomes. 3. The results from experiments with supersomes, correlation studies as well as inhibition studies with ketoconazole, a selective inhibitor of CYP3A, strongly suggest that the CYP3A family plays a significant role in the 6beta-hydroxylation of both steroids. 4. Measurements of kinetic parameters of P450 enzymes that could metabolize both steroids, combined with the fact that CYP3A4 is known to be the most abundant P450 enzyme in the human liver, indicate that CYP3A4 will be of major importance for the in vivo human metabolism of Org 4060 and Org 30659.
Collapse
Affiliation(s)
- C H J Verhoeven
- Department of Toxicology & Drug Disposition, Oss, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Nakajima H, Nakanishi T, Nakai K, Matsumoto S, Ida K, Ogihara T, Ohzawa N. Studies on the Metabolic Fate of M17055 a Novel Diuretic (4): Species Difference in Metabolic Pathway and Identification of Human CYP Isoform Responsible for the Metabolism of M17055. Drug Metab Pharmacokinet 2002; 17:60-74. [PMID: 15618654 DOI: 10.2133/dmpk.17.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metabolic profile of M17055, a novel diuretic, after administration to experimental animals and after incubation with human liver microsomes was investigated. 1. Extensive metabolism was observed in rats and monkeys and the structures of six metabolites (RU1, RU2, and RU3 from rat urine or liver perfusate; MU1, MU2 and MU3 from monkey urine) were assumed or identified. The clear species difference of metabolism was revealed between rats and a monkey with different structures of the isolated metabolites. 2. When these metabolites were quantified using radioactive material, RU3, RU1 and MU3 were considered to be major metabolites in rat urine, rat bile and monkey urine respectively, while in a dog, unchanged drug was observed as the major component indicating only little metabolism occurred in dog, when administered intravenously. 3. RU1 and RU2 were also generated from [(14)C]M17055 after incubation with human liver microsomes, suggesting that the metabolic pathway of M17055 in humans involves that observed in rats. 4. [(14)C]M17055 metabolism in human liver microsomes was inhibited by CYP2C8/9 and CYP3A4/5 inhibitors, and also by the antibodies that recognize CYP2C8/9/19 and CYP3A4. Significant correlations were observed between the rate of [(14)C]M17055 metabolism and the activity of testosterone 6beta-hydroxylation or tolbutamide methyl-hydroxylation. cDNA-expressed CYP3A4 and CYP2C9 could catalyze the metabolism of [(14)C]M17055. These results suggest that the metabolism of M17055 in human liver microsomes is catalyzed mainly by CYP3A4 and CYP2C9.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Drug Metabolism and Pharmacokinetics Laboratory, Research Center, Mochida Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Caraco Y, Muszkat M, Wood AJ. Phenytoin metabolic ratio: a putative marker of CYP2C9 activity in vivo. PHARMACOGENETICS 2001; 11:587-96. [PMID: 11668218 DOI: 10.1097/00008571-200110000-00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CYP2C9 mediates the oxidative metabolism of approximately 10% of drugs, some of which are characterized by a narrow therapeutic index. We aimed to validate genotype method and phenotype methodology, for evaluation of CYP2C9 activity in vivo. Thirty-one healthy subjects (22 male) received a single 300 mg dose of phenytoin. Blood was drawn periodically and urine was collected at intervals for 96 h. Plasma phenytoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) and urine S and R enantiomers of p-HPPH were determined by high-performance liquid chromatography. CYP2C9 genotyping was obtained by polymerase chain reaction followed by digestion with Sau96I and StyI for the identification of CYP2C9*2 and CYP2C9*3, respectively. Eighteen subjects were CYP2C9*1 homozygous, seven were CYP2C9*2 heterozygous, four were CYP2C9*3 heterozygous, one was CYP2C9*2 homozygous and one was compound CYP2C9*2/CYP2C9*3 heterozygous. The allele frequencies of CYP2C9*1, CYP2C9*2 and CYP2C9*3 were 0.76 [95% confidence interval (CI) 0.73-0.79], 0.16 (95% CI 0.13-0.19) and 0.08 (95% CI 0.05-0.11), respectively. The CYP2C9-mediated production of (S)-p-HPPH represented the major metabolic pathway of phenytoin biotransformation as its excretion accounted for 95.6 + 0.9% of 'total' p-HPPH excretion over the 96 h collection interval. Phenytoin metabolic clearance to produce (S)-p-HPPH (PMC), correlated significantly with (S)-p-HPPH (or 'total' p-HPPH) content in 0-8, 0-12 and 0-24 urine collections (r = 0.88, 0.85 and 0.89, respectively) and with phenytoin metabolic ratio (PMR) defined as the ratio of urine (S)-p-HPPH (or 'total' p-HPPH) to mid-interval plasma phenytoin (r = 0.90, 0.88 and 0.94, respectively). PMC and PMR exhibited a gene-dose effect so that the highest and lowest values were noted in homozygous subjects CYP2C9*1 and subjects carrying two defective alleles, respectively, whereas heterozygous subjects had intermediate values. CYP2C9 genotyping and several phenytoin metabolic indices are correlated with CYP2C9 activity in vivo. The utility of phenytoin to predict the metabolism of other CYP2C9 substrates justifies further evaluation.
Collapse
Affiliation(s)
- Y Caraco
- Clinical Pharmacology Unit, Division of Medicine, Hadassah University Hospital, Jerusalem, Israel.
| | | | | |
Collapse
|
46
|
Abstract
1. A priori knowledge of the enzyme inhibitory potential of new drug entities and the drug-metabolizing enzymes involved can be used in support of important decisions on the future progress of a drug in clinical development. 2. Important advances in the knowledge of human drug-metabolizing enzymes have largely fuelled the integration of in vitro drug metabolism and clinical drug interaction studies for use in drug development programmes. 3. The likelihood of correctly predicting in vivo drug-drug interactions appears highly dependent on selecting the correct enzyme inhibition model for use in deriving the inhibitor constant (Ki) and correctly determining the available concentration of inhibitor at the active site of the enzyme(s) of interest. 4. The uncertainty and inaccuracy of predicting the extent and duration of in vivo drug interactions currently stems from a lack of definitive models by which to assess likely substrate and inhibitor concentrations at the active site of metabolism. Additional issues contributing to the uncertainty of predicting drug interactions include assumptions of the contribution of presystemic drug extraction and the effect of inhibitors on the processes involved. 5. This review considers the practical aspects of in vitro enzyme inhibition studies and the use of in vitro-in vivo correlation approaches described in the literature to predict in vivo drug-drug interactions.
Collapse
Affiliation(s)
- R J Weaver
- Division of Metabolism & Pharmacokinetics, Servier Research and Development Ltd, Slough, UK.
| |
Collapse
|
47
|
Davila JC, Rodriguez RJ, Melchert RB, Acosta D. Predictive value of in vitro model systems in toxicology. Annu Rev Pharmacol Toxicol 2001; 38:63-96. [PMID: 9597149 DOI: 10.1146/annurev.pharmtox.38.1.63] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The application of in vitro model systems to evaluate the toxicity of xenobiotics has significantly enhanced our understanding of drug- and chemical-induced target toxicity. From a scientific perspective, there are several reasons for the popularity of in vitro model systems. From the public perspective, in vitro model systems enjoy increasing popularity because their application may allow a reduction in the number of live animals employed in toxicity testing. In this review, we present an overview of the use of in vitro model systems to investigate target organ toxicity of drugs and chemicals, and provide selective examples of these model systems to better understand cutaneous and ocular toxicity and the role of drug metabolism in the hepatotoxicity of selected agents. We conclude by examining the value and use of in vitro model systems in industrial development of new pharmaceutical agents.
Collapse
Affiliation(s)
- J C Davila
- G.D. Searle, Product Safety Assessment, Skokie, Illinois 60077, USA
| | | | | | | |
Collapse
|
48
|
Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci 2001; 12:505-13. [PMID: 11231118 DOI: 10.1016/s0928-0987(00)00215-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is generally known that the substrates and/or inhibitors of cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp) overlap with each other. In intestinal epithelial cells, it is surmised that the metabolites coexist with their parent drug. However, most studies on P-gp did not take the effects of those metabolites into consideration. Therefore, in the present study, we investigated the inhibitory effects of five substrates of CYP3A4 (nifedipine, testosterone, midazolam, amiodarone, and azelastine) and their metabolites on the P-gp-mediated transcellular transport. The transcellular transports of [(3)H]daunorubicin or [(3)H]digoxin by monolayers of LLC-GA5-COL150 cells in which P-gp was overexpressed were measured in the presence or absence of the CYP3A4 substrates and their metabolites. Nifedipine, testosterone, midazolam, and their metabolites exhibited no effects on the P-gp-mediated transport of [(3)H]daunorubicin and [(3)H]digoxin. On the other hand, the transport of [(3)H]daunorubicin was strongly inhibited by amiodarone, desethylamiodarone, azelastine, and desmethylazelastine, with IC(50) values of 22.5, 15.4, 16.0 and 11.8 microM, respectively. The transport of [(3)H]digoxin was also strongly inhibited by these compounds, with IC(50) values of 45.6, 25.2, 30.0 and 41.8 microM, respectively. Another metabolite of azelastine, 6-hydroxyazelastine, exhibited no effects on these transports. It was suggested that the CYP3A4 metabolites of which their parent drug exhibited inhibition on the P-gp-mediated transport are possibly also inhibitors. It would be possible more complicated drug-drug interactions would be caused by the metabolites as well as their parent drugs in the liver and the intestine via the inhibition of CYP3A4 and P-gp.
Collapse
Affiliation(s)
- M Katoh
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan
| | | | | | | |
Collapse
|
49
|
Ponsoda X, Pareja E, Gómez-Lechón MJ, Fabra R, Carrasco E, Trullenque R, Castell JV. Drug biotransformation by human hepatocytes. In vitro/in vivo metabolism by cells from the same donor. J Hepatol 2001; 34:19-25. [PMID: 11211902 DOI: 10.1016/s0168-8278(00)00085-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS Cultured human hepatocytes are considered a close model to human liver. However, the fact that hepatocytes are placed in a microenvironment that differs from that of the cell in the liver raises the question: to what extent does drug metabolism in vitro reflect that of the liver in vivo? This issue was examined by investigating the in vitro and in vivo metabolism of aceclofenac, an analgesic/anti-inflammatory drug. METHODS Hepatocytes isolated from programmed liver biopsies were incubated with aceclofenac, and the metabolites formed were investigated by HPLC. During the course of clinical recovery, patients were given the drug, and the metabolites, largely present in the urine, were analyzed. In vitro and in vivo data of the same individual were compared. RESULTS The relative abundance of oxidized metabolites in vitro (i.e. 4'OH-aceclofenac + 4'OH-diclofenac vs. total hydroxylated metabolites; Spearman's p = 0.855), as well the hydrolysis of aceclofenac (4'OH-diclofenac vs. 4'OH-aceclofenac + 4'OH-diclofenac; p = 0.691) correlated well with in vivo data. The conjugation of the drug in vitro (24.6 +/- 7.6%) was lower than that in vivo (44.9 +/- 5.3%). The rate of 4'OH-aceclofenac formation in vitro correlated with the amount of metabolites excreted in urine after 16 h (p = 0.95). CONCLUSIONS The in vitro/in vivo metabolism of the drug was surprisingly similar in each patient. The variability observed in vitro reflected an existing phenotypic variability among donors.
Collapse
Affiliation(s)
- X Ponsoda
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario la Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Turner ST, Schwartz GL, Chapman AB, Hall WD, Boerwinkle E. Antihypertensive pharmacogenetics: getting the right drug into the right patient. J Hypertens 2001; 19:1-11. [PMID: 11204288 DOI: 10.1097/00004872-200101000-00001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pharmacogenetic investigation seeks to identify genetic factors that contribute to interpatient and interdrug variation in responses to antihypertensive drug therapy. Classical studies have characterized single gene polymorphisms of drug metabolizing enzymes that are responsible for large interindividual differences in pharmacokinetic responses to several antihypertensive drugs. Progress is being made using candidate gene and genome scanning approaches to identify and characterize many additional genes influencing pharmacodynamic mechanisms that contribute to interindividual differences in responses to antihypertensive drug therapy. Knowledge of polymorphic variation in these genes will help to predict individual patients' blood pressure responses to antihypertensive drug therapy and may also provide new insights into molecular mechanisms responsible for elevation of blood pressure.
Collapse
Affiliation(s)
- S T Turner
- Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|