1
|
Jo JH, Park JH, Kim BK, Kim SJ, Park CM, Kang CK, Choi YJ, Kim H, Lee EY, Moon M, Park GW, Lee S, Lee SY, Lee JS, Lee WH, Kim JI, Kim MS. Improvement of succinate production from methane by combining rational engineering and laboratory evolution in Methylomonas sp. DH-1. Microb Cell Fact 2024; 23:297. [PMID: 39497114 PMCID: PMC11533326 DOI: 10.1186/s12934-024-02557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, methane has been considered a next-generation carbon feedstock due to its abundance and it is main component of shale gas and biogas. Methylomonas sp. DH-1 has been evaluated as a promising industrial bio-catalyst candidate. Succinate is considered one of the top building block chemicals in the agricultural, food, and pharmaceutical industries. In this study, succinate production by Methylomonas sp. DH-1 was improved by combining adaptive laboratory evolution (ALE) technology with genetic engineering in the chromosome of Methylomonas sp. DH-1, such as deletion of bypass pathway genes (succinate dehydrogenase and succinate semialdehyde dehydrogenase) or overexpression of genes related with succinate production (citrate synthase, pyruvate carboxylase and phosphoenolpyruvate carboxylase). Through ALE, the maximum consumption rate of substrate gases (methane and oxygen) and the duration maintaining high substrate gas consumption rates was enhanced compared to those of the parental strain. Based on the improved methane consumption, cell growth (OD600) increased more than twice, and the succinate titer increased by ~ 48% from 218 to 323 mg/L. To prevent unwanted succinate consumption, the succinate semialdehyde dehydrogenase gene was deleted from the genome. The first enzyme of TCA cycle (citrate synthase) was overexpressed. Pyruvate carboxylase and phosphoenolpyruvate carboxylase, which produce oxaloacetate, a substrate for citrate synthase, were also overproduced by a newly identified strong promoter. The new strong promoter was screened from RNA sequencing data. When these modifications were combined in one strain, the maximum titer (702 mg/L) was successfully improved by more than three times. This study demonstrates that successful enhancement of succinic acid production can be achieved in methanotrophs through additional genetic engineering following adaptive laboratory evolution.
Collapse
Affiliation(s)
- Jae-Hwan Jo
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Ho Park
- Institute of Biotechnology, CJ CheilJedang Co, Gyeonggi-Do, Suwon-Si, 16495, Republic of Korea
| | - Byung Kwon Kim
- Research Institute, GI Biome Inc., Seongnam, Gyeonggi-Do, 13201, Republic of Korea
| | - Seon Jeong Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chan Mi Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Chang Keun Kang
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Sangmin Lee
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Won-Heong Lee
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Il Kim
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Min-Sik Kim
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
2
|
Ohnuki J, Arimura Y, Kono T, Kino K, Kurumizaka H, Takano M. Electrostatic Ratchet for Successive Peptide Synthesis in Nonribosomal Molecular Machine RimK. J Am Chem Soc 2023. [PMID: 37452763 PMCID: PMC10375531 DOI: 10.1021/jacs.3c03926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A nonribosomal peptide-synthesizing molecular machine, RimK, adds l-glutamic acids to the C-terminus of ribosomal protein S6 (RpsF) in vivo and synthesizes poly-α-glutamates in vitro. However, the mechanism of the successive glutamate addition, which is fueled by ATP, remains unclear. Here, we investigate the successive peptide-synthesizing mechanism of RimK via the molecular dynamics (MD) simulation of glutamate binding. We first show that RimK adopts three stable structural states with respect to the ATP-binding loop and the triphosphate chain of the bound ATP. We then show that a glutamate in solution preferentially binds to a positively charged belt-like region of RimK and the bound glutamate exhibits Brownian motion along the belt. The binding-energy landscape shows that the open-to-closed transition of the ATP-binding loop and the bent-to-straight transition of the triphosphate chain of ATP can function as an electrostatic ratchet that guides the bound glutamate to the active site. We then show the binding site of the second glutamate, which allows us to infer the ligation mechanism. Consistent with MD results, the crystal structure of RimK we obtained in the presence of RpsF presents an electron density that is presumed to correspond to the C-terminus of RpsF. We finally propose a mechanism for the successive peptide synthesis by RimK and discuss its similarity to other molecular machines.
Collapse
Affiliation(s)
- Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Yasuhiro Arimura
- Institute for Quantitative Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomonori Kono
- Department of Applied Chemistry, Waseda University, Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Waseda University, Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Wang ZQ, Yang Y, Zhang JY, Zeng X, Zhang CC. Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120. Commun Biol 2023; 6:643. [PMID: 37322092 PMCID: PMC10272220 DOI: 10.1038/s42003-023-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog β-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- Institute AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Thompson CMA, Little RH, Stevenson CEM, Lawson DM, Malone JG. Structural insights into the mechanism of adaptive ribosomal modification by Pseudomonas RimK. Proteins 2023; 91:300-314. [PMID: 36134899 PMCID: PMC10092738 DOI: 10.1002/prot.26429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/05/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Bacteria are equipped with a diverse set of regulatory tools that allow them to quickly adapt to their environment. The RimK system allows for Pseudomonas spp. to adapt through post-transcriptional regulation by altering the ribosomal subunit RpsF. RimK is found in a wide range of bacteria with a conserved amino acid sequence, however, the genetic context and the role of this protein is highly diverse. By solving and comparing the structures of RimK homologs from two related but functionally divergent systems, we uncovered key structural differences that likely contribute to the different activity levels of each of these homologs. Moreover, we were able to clearly resolve the active site of this protein for the first time, resolving binding of the glutamate substrate. This work advances our understanding of how subtle differences in protein sequence and structure can have profound effects on protein activity, which can in turn result in widespread mechanistic changes.
Collapse
Affiliation(s)
- Catriona M A Thompson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.,University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Richard H Little
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Clare E M Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.,University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
5
|
Li Z, Wu Q, Zhang Y, Zhou X, Peng X. Systematic analysis of lysine malonylation in Streptococcus mutans. Front Cell Infect Microbiol 2022; 12:1078572. [PMID: 36519128 PMCID: PMC9742479 DOI: 10.3389/fcimb.2022.1078572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Protein lysine malonylation (Kmal) is a novel post-translational modification (PTM) that regulates various biological pathways such as energy metabolism and translation. Malonylation in prokaryotes, however, is still poorly understood. In this study, we performed a global Kmal analysis of the cariogenic organism Streptococcus mutans by combining antibody-based affinity enrichment and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Altogether, 392 malonyllysine sites in 159 proteins were identified. Subsequent bioinformatic analysis revealed that Kmal occurs in proteins involved in various metabolic pathways including translation machinery, energy metabolism, RNA degradation, and biosynthesis of various secondary metabolites. Quantitative analysis demonstrated that Kmal substrates were globally altered in the biofilm growth state compared to the planktonic growth state. Furthermore, a comparative analysis of the lysine malonylome of our study with previously determined lysine acetylome in S. mutans revealed that a small proportion of Kmal sites overlapped with acetylated sites, whereby suggesting that these two acylations have distinct functional implications. These results expand our knowledge of Kmal in prokaryotes, providing a resource for researching metabolic regulation of bacterial virulence and physiological functions by PTM.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Makarova KS, Blackburne B, Wolf YI, Nikolskaya A, Karamycheva S, Espinoza M, Barry CE, Bewley CA, Koonin EV. Phylogenomic analysis of the diversity of graspetides and proteins involved in their biosynthesis. Biol Direct 2022; 17:7. [PMID: 35313954 PMCID: PMC8939145 DOI: 10.1186/s13062-022-00320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bacteria and archaea produce an enormous diversity of modified peptides that are involved in various forms of inter-microbial conflicts or communication. A vast class of such peptides are Ribosomally synthesized, Postranslationally modified Peptides (RiPPs), and a major group of RiPPs are graspetides, so named after ATP-grasp ligases that catalyze the formation of lactam and lactone linkages in these peptides. The diversity of graspetides, the multiple proteins encoded in the respective Biosynthetic Gene Clusters (BGCs) and their evolution have not been studied in full detail. In this work, we attempt a comprehensive analysis of the graspetide-encoding BGCs and report a variety of novel graspetide groups as well as ancillary proteins implicated in graspetide biosynthesis and expression. Results We compiled a comprehensive, manually curated set of graspetides that includes 174 families including 115 new families with distinct patterns of amino acids implicated in macrocyclization and further modification, roughly tripling the known graspetide diversity. We derived signature motifs for the leader regions of graspetide precursors that could be used to facilitate graspetide prediction. Graspetide biosynthetic gene clusters and specific precursors were identified in bacterial divisions not previously known to encode RiPPs, in particular, the parasitic and symbiotic bacteria of the Candidate phyla radiation. We identified Bacteroides-specific biosynthetic gene clusters (BGC) that include remarkable diversity of graspetides encoded in the same loci which predicted to be modified by the same ATP-grasp ligase. We studied in details evolution of recently characterized chryseoviridin BGCs and showed that duplication and horizonal gene exchange both contribute to the diversification of the graspetides during evolution. Conclusions We demonstrate previously unsuspected diversity of graspetide sequences, even those associated with closely related ATP-grasp enzymes. Several previously unnoticed families of proteins associated with graspetide biosynthetic gene clusters are identified. The results of this work substantially expand the known diversity of RiPPs and can be harnessed to further advance approaches for their identification. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00320-2.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Brittney Blackburne
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Anastasia Nikolskaya
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marlene Espinoza
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
7
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Hemmann JL, Brühwiler MR, Bortfeld-Miller M, Vorholt JA. Structural diversity of the coenzyme methylofuran and identification of enzymes for the biosynthesis of its polyglutamate side chain. J Biol Chem 2021; 296:100682. [PMID: 33894199 PMCID: PMC8141765 DOI: 10.1016/j.jbc.2021.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022] Open
Abstract
Methylofuran (MYFR) is a formyl-carrying coenzyme essential for the oxidation of formaldehyde in most methylotrophic bacteria. In Methylorubrum extorquens, MYFR contains a large and branched polyglutamate side chain of up to 24 glutamates. These glutamates play an essential role in interfacing the coenzyme with the formyltransferase/hydrolase complex, an enzyme that generates formate. To date, MYFR has not been identified in other methylotrophs, and it is unknown whether its structural features are conserved. Here, we examined nine bacterial strains for the presence and structure of MYFR using high-resolution liquid chromatography-mass spectrometry (LC-MS). Two of the strains produced MYFR as present in M. extorquens, while a modified MYFR containing tyramine instead of tyrosine in its core structure was detected in six strains. When M. extorquens was grown in the presence of tyramine, the compound was readily incorporated into MYFR, indicating that the biosynthetic enzymes are unable to discriminate tyrosine from tyramine. Using gene deletions in combination with LC-MS analyses, we identified three genes, orf5, orfY, and orf17 that are essential for MYFR biosynthesis. Notably, the orfY and orf5 mutants accumulated short MYFR intermediates with only one and two glutamates, respectively, suggesting that these enzymes catalyze glutamate addition. Upon homologous overexpression of orf5, a drastic increase in the number of glutamates in MYFR was observed (up to 40 glutamates), further corroborating the function of Orf5 as a glutamate ligase. We thus renamed OrfY and Orf5 to MyfA and MyfB to highlight that these enzymes are specifically involved in MYFR biosynthesis.
Collapse
|
9
|
Maekura K, Tsukamoto S, Hamada-Kanazawa M, Takano M. Rimklb mutation causes male infertility in mice. Sci Rep 2021; 11:4604. [PMID: 33633267 PMCID: PMC7907349 DOI: 10.1038/s41598-021-84105-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Rimklb is a mammalian homologue of the E. coli enzyme RimK, which catalyzes addition of glutamic acid to the ribosomal protein S6. To date, no previous studies have shown any physiological role for Rimklb in mammals. In this study, using Western blotting, we found that Rimklb is distributed and expressed in mouse testis and heart. Rimklb was subsequently localized to the testicular Leydig cells using immunohistochemistry with an anti-Rimklb antibody. We generated a Rimklb mutant mouse in which a three-base deletion results in deletion of Ala 29 and substitution of Leu 30 with Val, which we named the RimklbA29del, L30V mutant mouse. RimklbA29del, L30V mutant mice show a decrease in testicular size and weight, and in vitro fertilization demonstrates complete male infertility. Furthermore, we found that a key factor in the mammalian target of the rapamycin/ribosomal protein S6 transcriptional pathway is hyperphosphorylated in the seminiferous tubules of the mutant testis. We conclude that Rimklb has important roles that include spermatogenesis in seminiferous tubules. In summary, male RimklbA29del, L30V mice are infertile.
Collapse
Affiliation(s)
- Koji Maekura
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
10
|
Pletnev P, Pupov D, Pshanichnaya L, Esyunina D, Petushkov I, Nesterchuk M, Osterman I, Rubtsova M, Mardanov A, Ravin N, Sergiev P, Kulbachinskiy A, Dontsova O. Rewiring of growth-dependent transcription regulation by a point mutation in region 1.1 of the housekeeping σ factor. Nucleic Acids Res 2020; 48:10802-10819. [PMID: 32997144 PMCID: PMC7641759 DOI: 10.1093/nar/gkaa798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/24/2023] Open
Abstract
In bacteria, rapid adaptation to changing environmental conditions depends on the interplay between housekeeping and alternative σ factors, responsible for transcription of specific regulons by RNA polymerase (RNAP). In comparison with alternative σ factors, primary σs contain poorly conserved region 1.1, whose functions in transcription are only partially understood. We found that a single mutation in region 1.1 in Escherichia coli σ70 rewires transcription regulation during cell growth resulting in profound phenotypic changes. Despite its destabilizing effect on promoter complexes, this mutation increases the activity of rRNA promoters and also decreases RNAP sensitivity to the major regulator of stringent response DksA. Using total RNA sequencing combined with single-cell analysis of gene expression we showed that changes in region 1.1 disrupt the balance between the "greed" and "fear" strategies thus making the cells more susceptible to environmental threats and antibiotics. Our results reveal an unexpected role of σ region 1.1 in growth-dependent transcription regulation and suggest that changes in this region may facilitate rapid switching of RNAP properties in evolving bacterial populations.
Collapse
Affiliation(s)
- Philipp Pletnev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | | | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | - Mikhail Nesterchuk
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia
| | - Ilya Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia
| | - Andrey Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Petr Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | - Olga Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
11
|
Grenga L, Little RH, Chandra G, Woodcock SD, Saalbach G, Morris RJ, Malone JG. Control of mRNA translation by dynamic ribosome modification. PLoS Genet 2020; 16:e1008837. [PMID: 32584816 PMCID: PMC7343187 DOI: 10.1371/journal.pgen.1008837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 05/07/2020] [Indexed: 01/28/2023] Open
Abstract
Control of mRNA translation is a crucial regulatory mechanism used by bacteria to respond to their environment. In the soil bacterium Pseudomonas fluorescens, RimK modifies the C-terminus of ribosomal protein RpsF to influence important aspects of rhizosphere colonisation through proteome remodelling. In this study, we show that RimK activity is itself under complex, multifactorial control by the co-transcribed phosphodiesterase trigger enzyme (RimA) and a polyglutamate-specific protease (RimB). Furthermore, biochemical experimentation and mathematical modelling reveal a role for the nucleotide second messenger cyclic-di-GMP in coordinating these activities. Active ribosome regulation by RimK occurs by two main routes: indirectly, through changes in the abundance of the global translational regulator Hfq and directly, with translation of surface attachment factors, amino acid transporters and key secreted molecules linked specifically to RpsF modification. Our findings show that post-translational ribosomal modification functions as a rapid-response mechanism that tunes global gene translation in response to environmental signals.
Collapse
Affiliation(s)
- Lucia Grenga
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | | | - Govind Chandra
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | | | - Gerhard Saalbach
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | - Richard James Morris
- Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | - Jacob George Malone
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Pletnev PI, Nesterchuk MV, Rubtsova MP, Serebryakova MV, Dmitrieva K, Osterman IA, Bogdanov AA, Sergiev PV. Oligoglutamylation of E. coli ribosomal protein S6 is under growth phase control. Biochimie 2019; 167:61-67. [PMID: 31520657 DOI: 10.1016/j.biochi.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Ribosomal protein S6 in Escherichia coli is modified by ATP-dependent glutamate ligase RimK. Up to four glutamate residues are added to the C-terminus of S6 protein. In this work we demonstrated that unlike the majority of ribosome modifications in E. coli, oligoglutamylation of S6 protein is regulated and happens only in the stationary phase of bacterial culture. Only S6 protein incorporated into assembled small ribosomal subunits, but not newly made free S6 protein is a substrate for RimK protein. Overexpression of the rimK gene leads to the modification of S6 protein even in the exponential phase of bacterial culture. Thus, it is unlikely that any stationary phase specific factor is needed for the modification. We propose a model that S6 modification is regulated solely via the rate of ribosome biosynthesis at limiting concentration of RimK enzyme.
Collapse
Affiliation(s)
- Philipp I Pletnev
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia; Skolkovo Institute for Science and Technology, Moscow, 143025, Russia
| | | | - Maria P Rubtsova
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia; Skolkovo Institute for Science and Technology, Moscow, 143025, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia; Skolkovo Institute for Science and Technology, Moscow, 143025, Russia
| | - Ksenia Dmitrieva
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Ilya A Osterman
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia; Skolkovo Institute for Science and Technology, Moscow, 143025, Russia
| | - Alexey A Bogdanov
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia; Skolkovo Institute for Science and Technology, Moscow, 143025, Russia.
| |
Collapse
|
13
|
Arimura Y, Kono T, Kino K, Kurumizaka H. Structural polymorphism of the Escherichia coli poly-α-L-glutamate synthetase RimK. Acta Crystallogr F Struct Biol Commun 2018; 74:385-390. [PMID: 29969101 PMCID: PMC6038451 DOI: 10.1107/s2053230x18007689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/23/2018] [Indexed: 11/11/2022] Open
Abstract
Bacterial RimK is an enzyme that catalyzes the polyglutamylation of the C-terminus of ribosomal protein S6 and the synthesis of poly-α-L-glutamate peptides using L-glutamic acid. In the present study, the crystal structure of the Escherichia coli RimK protein complexed with the ATP analogue AMP-PNP was determined at 2.05 Å resolution. Two different conformations of RimK, closed and open forms, were observed in the crystals. The structural polymorphism revealed in this study provided important information to understand the mechanism by which RimK catalyzes the synthesis of poly-α-L-glutamate peptides and the polyglutamylation of ribosomal protein S6.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomonori Kono
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
14
|
Grenga L, Little RH, Malone JG. Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiol Lett 2018; 364:3866594. [PMID: 28605536 PMCID: PMC5812540 DOI: 10.1093/femsle/fnx125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas.
Collapse
Affiliation(s)
- Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Richard H Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
15
|
Chowdhury-Paul S, Pando-Robles V, Jiménez-Jacinto V, Segura D, Espín G, Núñez C. Proteomic analysis revealed proteins induced upon Azotobacter vinelandii encystment. J Proteomics 2018; 181:47-59. [PMID: 29605291 DOI: 10.1016/j.jprot.2018.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, C.P. 62100 Cuernavaca, Morelos, México
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnologia, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México.
| |
Collapse
|
16
|
Loveland AB, Korostelev AA. Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM. Methods 2017; 137:55-66. [PMID: 29247757 DOI: 10.1016/j.ymeth.2017.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022] Open
Abstract
Bacterial ribosomal protein S1 is the largest and highly flexible protein of the 30S subunit, and one of a few core ribosomal proteins for which a complete structure is lacking. S1 is thought to participate in transcription and translation. Best understood is the role of S1 in facilitating translation of mRNAs with structured 5' UTRs. Here, we present cryo-EM analyses of the 70S ribosome that reveal multiple conformations of S1. Based on comparison of several 3D maximum likelihood classification approaches in Frealign, we propose a streamlined strategy for visualizing a highly dynamic component of a large macromolecular assembly that itself exhibits high compositional and conformational heterogeneity. The resulting maps show how S1 docks at the ribosomal protein S2 near the mRNA exit channel. The globular OB-fold domains sample a wide area around the mRNA exit channel and interact with mobile tails of proteins S6 and S18. S1 also interacts with the mRNA entrance channel, where an OB-fold domain can be localized near S3 and S5. Our analyses suggest that S1 cooperates with other ribosomal proteins to form a dynamic mesh near the mRNA exit and entrance channels to modulate the binding, folding and movement of mRNA.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Ogasawara Y, Dairi T. Biosynthesis of Oligopeptides Using ATP-Grasp Enzymes. Chemistry 2017; 23:10714-10724. [PMID: 28488371 DOI: 10.1002/chem.201700674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/08/2022]
Abstract
Peptides are biologically occurring oligomers of amino acids linked by amide bonds and are indispensable for all living organisms. Many bioactive peptides are used as antibiotics, antivirus agents, insecticides, pheromones, and food preservatives. Nature employs several different strategies to form amide bonds. ATP-grasp enzymes that catalyze amide bond formation (ATP-dependent carboxylate-amine ligases) utilize a strategy of activating carboxylic acid as an acylphosphate intermediate to form amide bonds and are involved in many different biological processes in both primary and secondary metabolisms. The recent discovery of several new ATP-dependent carboxylate-amine ligases has expanded the diversity of this group of enzymes and showed their usefulness for generating oligopeptides. In this review, an overview of findings on amide bond formation catalyzed by ATP-grasp enzymes in the past decade is presented.
Collapse
Affiliation(s)
- Yasushi Ogasawara
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
18
|
Brown CW, Sridhara V, Boutz DR, Person MD, Marcotte EM, Barrick JE, Wilke CO. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics 2017; 18:301. [PMID: 28412930 PMCID: PMC5392934 DOI: 10.1186/s12864-017-3676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/31/2017] [Indexed: 01/24/2023] Open
Abstract
Background Post-translational modification (PTM) of proteins is central to many cellular processes across all domains of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects. Results We utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal patterns for N-terminal N α acetylation, C-terminal glutamylation, and asparagine deamidation. Furthermore, we identify a possible relationship between N-terminal N α acetylation and regulation of protein degradation in stationary phase, pointing to a previously unrecognized biological function for this poorly-understood PTM. Conclusions Unbiased detection of PTM in MS/MS proteomics data facilitates the discovery of novel modification types and previously unobserved dynamic changes in modification across growth timepoints. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3676-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin W Brown
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Viswanadham Sridhara
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Maria D Person
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA. .,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA. .,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
19
|
Abstract
Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given.
Collapse
|
20
|
Somasundaram P, Koudelka T, Linke D, Tholey A. C-Terminal Charge-Reversal Derivatization and Parallel Use of Multiple Proteases Facilitates Identification of Protein C-Termini by C-Terminomics. J Proteome Res 2016; 15:1369-78. [PMID: 26939532 DOI: 10.1021/acs.jproteome.6b00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The identification of protein C-termini in complex proteomes is challenging due to the poor ionization efficiency of the carboxyl group. Amidating the negatively charged C-termini with ethanolamine (EA) has been suggested to improve the detection of C-terminal peptides and allows for a directed depletion of internal peptides after proteolysis using carboxyl reactive polymers. In the present study, the derivatization with N,N-dimethylethylenediamine (DMEDA) and (4-aminobutyl)guanidine (AG) leading to a positively charged C-terminus was investigated. C-terminal charge-reversed peptides showed improved coverage of b- and y-ion series in the MS/MS spectra compared to their noncharged counterparts. DMEDA-derivatized peptides resulted in many peptides with charge states of 3+, which benefited from ETD fragmentation. This makes the charge-reversal strategy particularly useful for the analysis of protein C-termini, which may also be post-translationally modified. The labeling strategy and the indirect enrichment of C-termini worked with similar efficiency for both DMEDA and EA, and their applicability was demonstrated on an E. coli proteome. Utilizing two proteases and different MS/MS activation mechanisms allowed for the identification of >400 C-termini, encompassing both canonical and truncated C-termini.
Collapse
Affiliation(s)
- Prasath Somasundaram
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| | - Tomas Koudelka
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| | - Dennis Linke
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| | - Andreas Tholey
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| |
Collapse
|
21
|
Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation. PLoS Genet 2016; 12:e1005837. [PMID: 26845436 PMCID: PMC4741518 DOI: 10.1371/journal.pgen.1005837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome. Post-transcriptional control of protein abundance is a significant and underexplored regulatory process by which organisms respond to environmental change. We have discovered an important new mechanism for this control in bacteria, based on the covalent modification of a small ribosomal protein by the widespread enzyme RimK. Here we show that the activity of RimK has specific effects on the levels of ribosomal proteins in the cell, which in turn affects the abundance of the important translational regulator Hfq. RimK is itself controlled by binding to the small regulatory proteins RimA and RimB and the widespread signalling molecule cyclic-di-GMP. Deletion of rimK compromises motility, virulence and plant colonisation/infection in several different Pseudomonas species. We propose that changes in intracellular RimK activity enable Pseudomonas to respond to environmental pressures by changing the nature of their ribosomes, leading in turn to an adaptive phenotypic response to their surroundings. This promotes motility and virulence during the initial stages of plant contact, and phenotypes including attachment, metabolite transport and stress control during long-term environmental adaptation.
Collapse
|
22
|
Burroughs AM, Zhang D, Aravind L. The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. Biol Direct 2015; 10:21. [PMID: 25976611 PMCID: PMC4431377 DOI: 10.1186/s13062-015-0053-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Abstract Deciphering the origin of uniquely eukaryotic features of sub-cellular systems, such as the translation apparatus, is critical in reconstructing eukaryogenesis. One such feature is the highly conserved, but poorly understood, eukaryotic protein CDC123, which regulates the abundance of the eukaryotic translation initiation eIF2 complex and binds one of its components eIF2γ. We show that the eukaryotic protein CDC123 defines a novel clade of ATP-grasp enzymes distinguished from all other members of the superfamily by a RAGNYA domain with two conserved lysines (henceforth the R2K clade). Combining the available biochemical and genetic data on CDC123 with the inferred enzymatic function, we propose that the eukaryotic CDC123 proteins are likely to function as ATP-dependent protein-peptide ligases which modify proteins by ribosome-independent addition of an oligopeptide tag. We also show that the CDC123 family emerged first in bacteria where it appears to have diversified along with the two other families of the R2K clade. The bacterial CDC123 family members are of two distinct types, one found as part of type VI secretion systems which deliver polymorphic toxins and the other functioning as potential effectors delivered to amoeboid eukaryotic hosts. Representatives of the latter type have also been independently transferred to phylogenetically unrelated amoeboid eukaryotes and their nucleo-cytoplasmic large DNA viruses. Similarly, the two other prokaryotic R2K clade families are also proposed to participate in biological conflicts between bacteriophages and their hosts. These findings add further evidence to the recently proposed hypothesis that the horizontal transfer of enzymatic effectors from the bacterial endosymbionts of the stem eukaryotes played a fundamental role in the emergence of the characteristically eukaryotic regulatory systems and sub-cellular structures. Reviewers This article was reviewed by Michael Galperin and Sandor Pongor. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0053-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
23
|
Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa. Infect Immun 2014; 82:4746-57. [PMID: 25156741 DOI: 10.1128/iai.01915-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic infections of Pseudomonas aeruginosa are generally established through production of biofilm. During biofilm formation, production of an extracellular matrix and establishment of a distinct bacterial phenotype make these infections difficult to eradicate. However, biofilm studies have been hampered by the fact that most assays utilize nonliving surfaces as biofilm attachment substrates. In an attempt to better understand the mechanisms behind P. aeruginosa biofilm formation, we performed a genetic screen to identify novel factors involved in biofilm formation on biotic and abiotic surfaces. We found that deletion of genes polB and PA14_46880 reduced biofilm formation significantly compared to that in the wild-type strain PA14 in an abiotic biofilm system. In a biotic biofilm model, wherein biofilms form on cultured airway cells, the ΔpolB and ΔPA14_46880 strains showed increased cytotoxic killing of the airway cells independent of the total number of bacteria bound. Notably, deletion mutant strains were more resistant to ciprofloxacin treatment. This phenotype was linked to decreased expression of algR, an alginate transcriptional regulatory gene, under ciprofloxacin pressure. Moreover, we found that pyocyanin production was increased in planktonic cells of mutant strains. These results indicate that inactivation of polB and PA14_46880 may inhibit transition of P. aeruginosa from a more acute infection lifestyle to the biofilm phenotype. Future investigation of these genes may lead to a better understanding of P. aeruginosa biofilm formation and chronic biofilm infections.
Collapse
|
24
|
Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 2014; 196:2718-27. [PMID: 24837290 DOI: 10.1128/jb.01579-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature.
Collapse
|
25
|
Zhao G, Jin Z, Wang Y, Allewell NM, Tuchman M, Shi D. Structure and function of Escherichia coli RimK, an ATP-grasp fold, L-glutamyl ligase enzyme. Proteins 2013; 81:1847-54. [PMID: 23609986 DOI: 10.1002/prot.24311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 11/11/2022]
Abstract
We report herein the crystal structure of Escherichia coli RimK at a resolution of 2.85 Å, an enzyme that catalyzes the post-translational addition of up to 15 C-terminal glutamate residues to ribosomal protein S6. The structure belongs to the ATP-grasp superfamily and is organized as a tetramer, consistent with gel filtration analysis. Each subunit consists of three distinct structural domains and the active site is located in the cleft between these domains. The catalytic reaction appears to occur at the junction between the three domains as ATP binds between the B and C domains, and other substrates bind nearby.
Collapse
Affiliation(s)
- Gengxiang Zhao
- Department of Integrative Systems Biology, Center for Genetic Medicine Research, Children's National Medical Center, The George Washington University, Washington, DC, 20010
| | | | | | | | | | | |
Collapse
|
26
|
Hamano Y, Arai T, Ashiuchi M, Kino K. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat Prod Rep 2013; 30:1087-97. [PMID: 23817633 DOI: 10.1039/c3np70025a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microorganisms are capable of producing a wide variety of biopolymers. Homopoly(amino acid)s and homooligo(amino acid)s, which are made up of only a single type of amino acid, are relatively rare; in fact, only two homopoly(amino acid)s have been known to occur in nature: poly(ε-L-lysine) (ε-PL) and poly(γ-glutamic acid) (γ-PGA). Bacterial enzymes that produce homooligo(amino acid)s, such as L-β-lysine-, L-valine-, L-leucine-, L-isoleucine-, L-methionine-, and L-glutamic acid-oligopeptides and poly(α-l-glutamic acid) (α-PGA) have recently been identified, as well as ε-PL synthetase and γ-PGA synthetase. This article reviews the current knowledge about these unique enzymes producing homopoly(amino acid)s and homooligo(amino acid)s.
Collapse
Affiliation(s)
- Yoshimitsu Hamano
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| | | | | | | |
Collapse
|
27
|
Mahdi AA, Briggs GS, Lloyd RG. Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase. Mol Microbiol 2012; 86:675-91. [PMID: 22957744 PMCID: PMC3533792 DOI: 10.1111/mmi.12010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
RecG is a DNA translocase that helps to maintain genomic integrity. Initial studies suggested a role in promoting recombination, a possibility consistent with synergism between recG and ruv null alleles and reinforced when the protein was shown to unwind Holliday junctions. In this article we describe novel suppressors of recG and show that the pathology seen without RecG is suppressed on reducing or eliminating PriB, a component of the PriA system for replisome assembly and replication restart. Suppression is conditional, depending on additional mutations that modify ribosomal subunit S6 or one of three subunits of RNA polymerase. The latter suppress phenotypes associated with deletion of priB, enabling the deletion to suppress recG. They include alleles likely to disrupt interactions with transcription anti-terminator, NusA. Deleting priB has a different effect in ruv strains. It provokes abortive recombination and compromises DNA repair in a manner consistent with PriB being required to limit exposure of recombinogenic ssDNA. This synergism is reduced by the RNA polymerase mutations identified. Taken together, the results reveal that RecG curbs a potentially negative effect of proteins that direct replication fork assembly at sites removed from the normal origin, a facility needed to resolve conflicts between replication and transcription.
Collapse
Affiliation(s)
- Akeel A Mahdi
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
28
|
Fawaz MV, Topper M, Firestine SM. The ATP-grasp enzymes. Bioorg Chem 2011; 39:185-91. [PMID: 21920581 PMCID: PMC3243065 DOI: 10.1016/j.bioorg.2011.08.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 12/17/2022]
Abstract
The ATP-grasp enzymes consist of a superfamily of 21 proteins that contain an atypical ATP-binding site, called the ATP-grasp fold. The ATP-grasp fold is comprised of two α+β domains that "grasp" a molecule of ATP between them and members of the family typically have an overall structural design containing three common conserved focal domains. The founding members of the family consist of biotin carboxylase, d-ala-d-ala ligase and glutathione synthetase, all of which catalyze the ATP-assisted reaction of a carboxylic acid with a nucleophile via the formation of an acylphosphate intermediate. While most members of the superfamily follow this mechanistic pathway, studies have demonstrated that two enzymes catalyze only the phosphoryl transfer step and thus are kinases instead of ligases. Members of the ATP-grasp superfamily are found in several metabolic pathways including de novo purine biosynthesis, gluconeogenesis, and fatty acid synthesis. Given the critical nature of these enzymes, researchers have actively sought the development of potent inhibitors of several members of the superfamily as antibacterial and anti-obseity agents. In this review, we will discuss the structure, function, mechanism, and inhibition of the ATP-grasp enzymes.
Collapse
Affiliation(s)
| | | | - Steven M. Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201
| |
Collapse
|
29
|
Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 2011; 333:58-62. [PMID: 21719670 PMCID: PMC3261838 DOI: 10.1126/science.1200758] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses may very well be the most abundant biological entities on the planet. Yet neither metagenomic studies nor classical phage isolation techniques have shed much light on the identity of the hosts of most viruses. We used a microfluidic digital polymerase chain reaction (PCR) approach to physically link single bacterial cells harvested from a natural environment with a viral marker gene. When we implemented this technique on the microbial community residing in the termite hindgut, we found genus-wide infection patterns displaying remarkable intragenus selectivity. Viral marker allelic diversity revealed restricted mixing of alleles between hosts, indicating limited lateral gene transfer of these alleles despite host proximity. Our approach does not require culturing hosts or viruses and provides a method for examining virus-bacterium interactions in many environments.
Collapse
Affiliation(s)
- Arbel D. Tadmor
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth A. Ottesen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jared R. Leadbetter
- Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Departments of Applied Physics and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Lodder-Gadaczek J, Becker I, Gieselmann V, Wang-Eckhardt L, Eckhardt M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. J Biol Chem 2011; 286:16693-706. [PMID: 21454531 DOI: 10.1074/jbc.m111.230136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. NAAG is an agonist at group II metabotropic glutamate receptors. In addition to its role as a neuropeptide, a number of functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump. We recently identified a NAAG synthetase (now renamed NAAG synthetase I, NAAGS-I), encoded by the ribosomal modification protein rimK-like family member B (Rimklb) gene, as a member of the ATP-grasp protein family. We show here that a structurally related protein, encoded by the ribosomal modification protein rimK-like family member A (Rimkla) gene, is another NAAG synthetase (NAAGS-II), which in addition, synthesizes the N-acetylated tripeptide N-acetylaspartylglutamylglutamate (NAAG(2)). In contrast, NAAG(2) synthetase activity was undetectable in cells expressing NAAGS-I. Furthermore, we demonstrate by mass spectrometry the presence of NAAG(2) in murine brain tissue and sciatic nerves. The highest concentrations of both, NAAG(2) and NAAG, were found in sciatic nerves, spinal cord, and the brain stem, in accordance with the expression level of NAAGS-II. To our knowledge the presence of NAAG(2) in the vertebrate nervous system has not been described before. The physiological role of NAAG(2), e.g. whether it acts as a neurotransmitter, remains to be determined.
Collapse
Affiliation(s)
- Julia Lodder-Gadaczek
- Institute of Biochemistry and Molecular Biology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
31
|
Poly-alpha-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12. Appl Environ Microbiol 2011; 77:2019-25. [PMID: 21278279 DOI: 10.1128/aem.02043-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-L-α-amino acids have various applications because of their biodegradable properties and biocompatibility. Microorganisms contain several enzymes that catalyze the polymerization of L-amino acids in an ATP-dependent manner, but the products from these reactions contain amide linkages at the side residues of amino acids: e.g., poly-γ-glutamic acid, poly-ε-lysine, and cyanophycin. In this study, we found a novel catalytic activity of RimK, a ribosomal protein S6-modifying enzyme derived from Escherichia coli K-12. This enzyme catalyzed poly-α-glutamic acid synthesis from unprotected L-glutamic acid (Glu) by hydrolyzing ATP to ADP and phosphate. RimK synthesized poly-α-glutamic acid of various lengths; matrix-assisted laser desorption ionization-time of flight-mass spectrometry showed that a 46-mer of Glu (maximum length) was synthesized at pH 9. Interestingly, the lengths of polymers changed with changing pH. RimK also exhibited 86% activity after incubation at 55°C for 15 min, thus showing thermal stability. Furthermore, peptide elongation seemed to be catalyzed at the C terminus in a stepwise manner. Although RimK showed strict substrate specificity toward Glu, it also used, to a small extent, other amino acids as C-terminal substrates and synthesized heteropeptides. In addition, RimK-catalyzed modification of ribosomal protein S6 was confirmed. The number of Glu residues added to the protein varied with pH and was largest at pH 9.5.
Collapse
|
32
|
Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E. Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase. J Biol Chem 2010; 285:29826-33. [PMID: 20657015 DOI: 10.1074/jbc.m110.152629] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present work was to determine the identity of the enzymes that synthesize N-acetylaspartylglutamate (NAAG), the most abundant dipeptide present in vertebrate central nervous system (CNS), and β-citrylglutamate, a structural analogue of NAAG present in testis and immature brain. Previous evidence suggests that NAAG is not synthesized on ribosomes but presumably is synthesized by a ligase. As attempts to detect this ligase in brain extracts failed, we searched the mammalian genomes for putative enzymes that could catalyze this type of reaction. Mammalian genomes were found to encode two putative ligases homologous to Escherichia coli RIMK, which ligates glutamates to the C terminus of ribosomal protein S6. One of them, named RIMKLA, is almost exclusively expressed in the CNS, whereas RIMKLB, which shares 65% sequence identity with RIMKLA, is expressed in CNS and testis. Both proteins were expressed in bacteria or HEK293T cells and purified. RIMKLA catalyzed the ATP-dependent synthesis of N-acetylaspartylglutamate from N-acetylaspartate and l-glutamate. RIMKLB catalyzed this reaction as well as the synthesis of β-citrylglutamate. The nature of the reaction products was confirmed by mass spectrometry and NMR. RIMKLA was shown to produce stoichiometric amounts of NAAG and ADP, in agreement with its belonging to the ATP-grasp family of ligases. The molecular identification of these two enzymes will facilitate progress in the understanding of the function of NAAG and β-citrylglutamate.
Collapse
Affiliation(s)
- François Collard
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Burg DW, Lauro FM, Williams TJ, Raftery MJ, Guilhaus M, Cavicchioli R. Analyzing the Hydrophobic Proteome of the Antarctic Archaeon Methanococcoides burtonii Using Differential Solubility Fractionation. J Proteome Res 2009; 9:664-76. [DOI: 10.1021/pr9007865] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominic W. Burg
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia and Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Federico M. Lauro
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia and Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Timothy J. Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia and Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Mark J. Raftery
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia and Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Michael Guilhaus
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia and Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia and Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, 2052, NSW, Australia
| |
Collapse
|
34
|
Sato T, Iino T. Genetic analyses of the antibiotic resistance of Bifidobacterium bifidum strain Yakult YIT 4007. Int J Food Microbiol 2009; 137:254-8. [PMID: 20051305 DOI: 10.1016/j.ijfoodmicro.2009.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/16/2009] [Accepted: 12/08/2009] [Indexed: 12/11/2022]
Abstract
Bifidobacterium bifidum strain Yakult YIT 4007 (abbreviated as B. bifidum YIT 4007) is a commercial strain and resistant to erythromycin, neomycin, and streptomycin. Resistances to these antibiotics were endowed by sequential isolation of resistant mutants from its susceptible progenitor strain YIT 4001. Comparison of nucleotide sequences of various candidate genes of both strains led us to find that B. bifidum YIT 4007 had mutations on three copies of 23S ribosomal RNA genes, an 8 bp deletion of the rluD gene for pseudouridine synthase, and a mutation on the rpsL gene for ribosomal protein S12. The responsibility of these mutations to antibiotic resistances was supported by analyses of newly isolated mutants resistant to these antibiotics. The antibiotic resistances of B. bifidum YIT 4007 were evidently acquired by mutations of the structural genes on the chromosome and not associated with mobile genetic elements like insertion sequences, phages, and plasmids.
Collapse
Affiliation(s)
- Takashi Sato
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan.
| | | |
Collapse
|
35
|
Iyer LM, Abhiman S, Maxwell Burroughs A, Aravind L. Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. MOLECULAR BIOSYSTEMS 2009; 5:1636-60. [PMID: 20023723 DOI: 10.1039/b917682a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have shown that the ubiquitin system had its origins in ancient cofactor/amino acid biosynthesis pathways. Preliminary studies also indicated that conjugation systems for other peptide tags on proteins, such as pupylation, have evolutionary links to cofactor/amino acid biosynthesis pathways. Following up on these observations, we systematically investigated the non-ribosomal amidoligases of the ATP-grasp, glutamine synthetase-like and acetyltransferase folds by classifying the known members and identifying novel versions. We then established their contextual connections using information from domain architectures and conserved gene neighborhoods. This showed remarkable, previously uncharacterized functional links between diverse peptide ligases, several peptidases of unrelated folds and enzymes involved in synthesis of modified amino acids. Using the network of contextual connections we were able to predict numerous novel pathways for peptide synthesis and modification, amine-utilization, secondary metabolite synthesis and potential peptide-tagging systems. One potential peptide-tagging system, which is widely distributed in bacteria, involves an ATP-grasp domain and a glutamine synthetase-like ligase, both of which are circularly permuted, an NTN-hydrolase fold peptidase and a novel alpha helical domain. Our analysis also elucidates key steps in the biosynthesis of antibiotics such as friulimicin, butirosin and bacilysin and cell surface structures such as capsular polymers and teichuronopeptides. We also report the discovery of several novel ribosomally synthesized bacterial peptide metabolites that are cyclized via amide and lactone linkages formed by ATP-grasp enzymes. We present an evolutionary scenario for the multiple convergent origins of peptide ligases in various folds and clarify the bacterial origin of eukaryotic peptide-tagging enzymes of the TTL family.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
36
|
Horie A, Tomita T, Saiki A, Kono H, Taka H, Mineki R, Fujimura T, Nishiyama C, Kuzuyama T, Nishiyama M. Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat Chem Biol 2009; 5:673-9. [DOI: 10.1038/nchembio.198] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 05/01/2009] [Indexed: 11/09/2022]
|
37
|
Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS One 2009; 4:e5463. [PMID: 19424499 PMCID: PMC2675058 DOI: 10.1371/journal.pone.0005463] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/15/2009] [Indexed: 12/14/2022] Open
Abstract
Background Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD50 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably ΔpyrB and ΔrecA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD50 of >103 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD50 of ≥107 CFU. Conclusions/Significance The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.
Collapse
|
38
|
Monier A, Claverie JM, Ogata H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol 2008; 9:R106. [PMID: 18598358 PMCID: PMC2530865 DOI: 10.1186/gb-2008-9-7-r106] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/20/2008] [Accepted: 07/03/2008] [Indexed: 11/26/2022] Open
Abstract
Phylogenetic mapping of metagenomics data reveals the taxonomic distribution of large DNA viruses in the sea, including giant viruses of the Mimiviridae family. Background Viruses are ubiquitous and the most abundant biological entities in marine environments. Metagenomics studies are increasingly revealing the huge genetic diversity of marine viruses. In this study, we used a new approach - 'phylogenetic mapping' - to obtain a comprehensive picture of the taxonomic distribution of large DNA viruses represented in the Sorcerer II Global Ocean Sampling Expedition metagenomic data set. Results Using DNA polymerase genes as a taxonomic marker, we identified 811 homologous sequences of likely viral origin. As expected, most of these sequences corresponded to phages. Interestingly, the second largest viral group corresponded to that containing mimivirus and three related algal viruses. We also identified several DNA polymerase homologs closely related to Asfarviridae, a viral family poorly represented among isolated viruses and, until now, limited to terrestrial animal hosts. Finally, our approach allowed the identification of a new combination of genes in 'viral-like' sequences. Conclusion Albeit only recently discovered, giant viruses of the Mimiviridae family appear to constitute a diverse, quantitatively important and ubiquitous component of the population of large eukaryotic DNA viruses in the sea.
Collapse
Affiliation(s)
- Adam Monier
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, IFR-88, Université de la Méditerranée Parc Scientifique de Luminy, avenue de Luminy, FR-13288 Marseille, France.
| | | | | |
Collapse
|
39
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
40
|
Bore E, Hébraud M, Chafsey I, Chambon C, Skjæret C, Moen B, Møretrø T, Langsrud Ø, Rudi K, Langsrud S. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology (Reading) 2007; 153:935-946. [PMID: 17379704 DOI: 10.1099/mic.0.29288-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benzalkonium chloride (BC) is a commonly used disinfectant and preservative. This study describes changes in expression level at the transcriptomic and proteomic level for Escherichia coli K-12 gradually adapted to a tolerance level to BC of 7-8 times the initial MIC. Results from DNA arrays and two-dimensional gel electrophoresis for global gene and protein expression studies were confirmed by real-time quantitative PCR. Peptide mass fingerprinting by MALDI-TOF MS was used to identify differentially expressed proteins. Changes in expression level in adapted cells were shown for porins, drug transporters, glycolytic enzymes, ribosomal subunits and several genes and proteins involved in protection against oxidative stress and antibiotics. Adapted strains showed increased tolerance to several antibiotics. In conclusion, E. coli K-12 adapted to higher tolerance to BC acquired several general resistance mechanisms, including responses normally related to the multiple antibiotic resistance (Mar) regulon and protection against oxidative stress. The results revealed that BC treatment might result in superoxide stress in E. coli.
Collapse
Affiliation(s)
- Erlend Bore
- The Norwegian University of Life Science (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Michel Hébraud
- Plate-forme Protéomique, INRA site de Theix, 63122 Saint-Genès Champanelle, France
- UR454 Microbiologie-Equipe QuaSA, INRA site de Theix, 63122 Saint-Genès Champanelle, France
| | - Ingrid Chafsey
- UR454 Microbiologie-Equipe QuaSA, INRA site de Theix, 63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- Plate-forme Protéomique, INRA site de Theix, 63122 Saint-Genès Champanelle, France
| | - Camilla Skjæret
- The Norwegian University of Life Science (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Birgitte Moen
- The Norwegian University of Life Science (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Trond Møretrø
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Øyvind Langsrud
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Knut Rudi
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Solveig Langsrud
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| |
Collapse
|
41
|
Chi A, Bai DL, Geer LY, Shabanowitz J, Hunt DF. Analysis of intact proteins on a chromatographic time scale by electron transfer dissociation tandem mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 259:197-203. [PMID: 17364019 PMCID: PMC1826913 DOI: 10.1016/j.ijms.2006.09.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Direct analysis of intact proteins on a chromatographic time scale is demonstrated on a modified linear ion trap mass spectrometer using sequential ion/ion reactions, electron transfer and proton transfer, to dissociate the sample and to convert the resulting peptide fragments to a mixture of singly and doubly charged species. Proteins are converted to gas-phase, multiply-charged, positive ions by electrospray ionization and then allowed to react with fluoranthene radical anions. Electron transfer to the multiply charged protein promotes random fragmentation of amide bonds along the protein backbone. Multiply charged fragment ions are then deprotonated in a second ion/ion reaction with even-electron benzoate anions. M/z values for the resulting singly and doubly charged ions are used to read a sequence of 15-40 amino acids at both the N-terminus and the C-terminus of the protein. This information, along with the measured mass of the intact protein, are employed to identify known proteins and to detect the presence of post-translational modifications. In this study, we analyze intact proteins from the Escherchia coli 70S ribosomal protein complex and identify 46 of the 55 known unique components in a single, 90 min, on-line, chromatography experiment. Truncated versions of the above proteins along with several post-translational modifications are also detected.
Collapse
|
42
|
Glaser P, Kunst F, Arnaud M, Coudart MP, Gonzales W, Hullo MF, Ionescu M, Lubochinsicy B, Marcelino L, Moszer I, Presecan E, Santana M, Schneider E, Schwelzer J, Vertes A, Rapoport G, Danchin A. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333deg. Mol Microbiol 2006; 10:371-384. [PMID: 28776854 DOI: 10.1111/j.1365-2958.1993.tb01963.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the framework of the European project aimed at the sequencing of the Bacillus subtilis genome the DNA region located between gerB (314°) and sacXV (333°) was assigned to the Institut Pasteur. In this paper we describe the cloning and sequencing of a segment of 97 kb of contiguous DNA. Ninety-two open reading frames were predicted to encode putative proteins among which only forty-two were found to display significant similarities to known proteins present in databanks, e.g. amino acid permeases, proteins involved in cell wall or antibiotic biosynthesis, various regulatory proteins, proteins of several dehydrogenase families and enzymes II of the phosphotransferase system involved in sugar transport. Additional experiments led to the identification of the products of new B. subtilis genes, e.g. galactokinase and an operon involved in thiamine biosynthesis.
Collapse
Affiliation(s)
- P Glaser
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - F Kunst
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M Arnaud
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M-P Coudart
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - W Gonzales
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M-F Hullo
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M Ionescu
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - B Lubochinsicy
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - L Marcelino
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - I Moszer
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - E Presecan
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M Santana
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - E Schneider
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - J Schwelzer
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - A Vertes
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - G Rapoport
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - A Danchin
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| |
Collapse
|
43
|
Aldor IS, Krawitz DC, Forrest W, Chen C, Nishihara JC, Joly JC, Champion KM. Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Environ Microbiol 2005; 71:1717-28. [PMID: 15811994 PMCID: PMC1082529 DOI: 10.1128/aem.71.4.1717-1728.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield.
Collapse
Affiliation(s)
- Ilana S Aldor
- Department of Early-Stage Analytical Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sato A, Kobayashi G, Hayashi H, Yoshida H, Wada A, Maeda M, Hiraga S, Takeyasu K, Wada C. The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 2005; 10:393-408. [PMID: 15836769 DOI: 10.1111/j.1365-2443.2005.00851.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obg proteins belong to a subfamily of GTP binding proteins, which are highly conserved from bacteria to human. Mutations of obgE genes cause pleiotropic defects in various species but the function remained unclear. Here we examine the function of ObgE, the Obg homolog in Escherichia coli. The growth rate correlates with the amount of ObgE in cells. Co-fractionation experiments further suggest that ObgE binds to 30S and 50S ribosomal subunits, but not to 70S ribosome. Pull-down assays suggest that ObgE associates with several specific ribosomal proteins of 30S and 50S subunits, as well as RNA helicase CsdA. Purified ObgE cosediments with 16S and 23S ribosomal RNAs in vitro in the presence of GTP. Finally, mutation of ObgE affects pre-16Sr-RNA processing, ribosomal protein levels, and ribosomal protein modification, thereby significantly reducing 70S ribosome levels. This evidence implicates that ObgE functions in ribosomal biogenesis, presumably through the binding to rRNAs and/or rRNA-ribosomal protein complexes, perhaps as an rRNA/ribosomal protein folding chaperone or scaffold protein.
Collapse
Affiliation(s)
- Aya Sato
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fernandez A, Thibessard A, Borges F, Gintz B, Decaris B, Leblond-Bourget N. Characterisation of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. Arch Microbiol 2004; 182:364-72. [PMID: 15378231 DOI: 10.1007/s00203-004-0712-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During industrial processes, the dairy organism Streptococcus thermophilus is exposed to stress conditions. Its ability to survive and grow in an aerobic environment indicates that it must possess defensive mechanisms against reactive oxygen species. To identify the genes involved in oxidative stress defence, a collection of mutants was generated by random insertional mutagenesis and screened for menadione sensitivity and resistance. Results obtained for resistant clones allowed the identification of eight loci. The insertions affected genes whose homologues in other bacteria were previously identified as being involved in stress response(deoB, gst) or transcription regulation (rggC) and five ORFs of unknown function. The tolerance of the eight mutants to air-exposure, methyl viologen and H2O2 was studied. Real-time quantitative PCR was used to analyse the transcript level of mutated genes and revealed that most were down-regulated during oxidative stress.
Collapse
Affiliation(s)
- Annabelle Fernandez
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128, Faculté des Sciences de l'Université Henri Poincaré Nancy 1, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
46
|
Sakai H, Vassylyeva MN, Matsuura T, Sekine SI, Gotoh K, Nishiyama M, Terada T, Shirouzu M, Kuramitsu S, Vassylyev DG, Yokoyama S. Crystal structure of a lysine biosynthesis enzyme, LysX, from Thermus thermophilus HB8. J Mol Biol 2003; 332:729-40. [PMID: 12963379 DOI: 10.1016/s0022-2836(03)00946-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The thermophilic bacterium Thermus thermophilus synthesizes lysine through the alpha-aminoadipate pathway, which uses alpha-aminoadipate as a biosynthetic intermediate of lysine. LysX is the essential enzyme in this pathway, and is believed to catalyze the acylation of alpha-aminoadipate. We have determined the crystal structures of LysX and its complex with ADP at 2.0A and 2.38A resolutions, respectively. LysX is composed of three alpha+beta domains, each composed of a four to five-stranded beta-sheet core flanked by alpha-helices. The C-terminal and central domains form an ATP-grasp fold, which is responsible for ATP binding. LysX has two flexible loop regions, which are expected to play an important role in substrate binding and protection. In spite of the low level of sequence identity, the overall fold of LysX is surprisingly similar to that of other ATP-grasp fold proteins, such as D-Ala:D-Ala ligase, PurT-encoded glycinamide ribonucleotide transformylase, glutathione synthetase, and synapsin I. In particular, they share a similar spatial arrangement of the amino acid residues around the ATP-binding site. This observation strongly suggests that LysX is an ATP-utilizing enzyme that shares a common evolutionary ancestor with other ATP-grasp fold proteins possessing a carboxylate-amine/thiol ligase activity.
Collapse
Affiliation(s)
- Hiroaki Sakai
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li H, Xu H, Graham DE, White RH. Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci U S A 2003; 100:9785-90. [PMID: 12909715 PMCID: PMC187843 DOI: 10.1073/pnas.1733391100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Indexed: 11/18/2022] Open
Abstract
Proteins in the ATP-grasp superfamily of amide bond-forming ligases have evolved to function in a number of unrelated biosynthetic pathways. Previously identified homologs encoding glutathione synthetase, d-alanine:d-alanine ligase and the bacterial ribosomal protein S6:glutamate ligase have been vertically inherited within certain organismal lineages. Although members of this specificity-diverse superfamily share a common reaction mechanism, the nonoverlapping set of amino acid and peptide substrates recognized by each family provided few clues as to their evolutionary history. Two members of this family have been identified in the hyperthermophilic marine archaeon Methanococcus jannaschii and shown to catalyze the final reactions in two coenzyme biosynthetic pathways. The MJ0620 (mptN) locus encodes a tetrahydromethanopterin:alpha-l-glutamate ligase that forms tetrahydrosarcinapterin, a single carbon-carrying coenzyme. The MJ1001 (cofF) locus encodes a gamma-F420-2:alpha-l-glutamate ligase, which caps the gamma-glutamyl tail of the hydride carrier coenzyme F420. These two genes share a common ancestor with the ribosomal protein S6:glutamate ligase and a putative alpha-aminoadipate ligase, defining the first group of ATP-grasp enzymes with a shared amino acid substrate specificity. As in glutathione biosynthesis, two unrelated amino acid ligases catalyze sequential reactions in coenzyme F420 polyglutamate formation: a gamma-glutamyl ligase adds 1-3 l-glutamate residues and the ATP-grasp-type ligase described here caps the chain with a single alpha-linked l-glutamate residue. The analogous pathways for glutathione, F420, folate, and murein peptide biosyntheses illustrate convergent evolution of nonribosomal peptide biosynthesis through the recruitment of single-step amino acid ligases.
Collapse
Affiliation(s)
- Hong Li
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
48
|
Weichart D, Querfurth N, Dreger M, Hengge-Aronis R. Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli. J Bacteriol 2003; 185:115-25. [PMID: 12486047 PMCID: PMC141834 DOI: 10.1128/jb.185.1.115-125.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the involvement of proteolysis in the regulation of stationary-phase adaptation, the clpA, clpX, and clpP protease mutants of Escherichia coli were subjected to proteome analysis during growth and during carbon starvation. For most of the growth-phase-regulated proteins detected on our gels, the clpA, clpX, or clpP mutant failed to mount the growth-phase regulation found in the wild type. For example, in the clpP and clpA mutant cultures, the Dps protein, the WrbA protein, and the periplasmic lysine-arginine-ornithine binding protein ArgT did not display the induction typical for late-stationary-phase wild-type cells. On the other hand, in the protease mutants, a number of proteins accumulated to a higher degree than in the wild type, especially in late stationary phase. The proteins affected in this manner include the LeuA, TrxB, GdhA, GlnA, and MetK proteins and alkyl hydroperoxide reductase (AhpC). These proteins may be directly degraded by ClpAP or ClpXP, respectively, or their expression could be modulated by a protease-dependent mechanism. From our data we conclude that the levels of most major growth-phase-regulated proteins in E. coli are at some point controlled by the activity of at least one of the ClpP, ClpA, and ClpX proteins. Cultures of the strains lacking functional ClpP or ClpX also displayed a more rapid loss of viability during extended stationary phase than the wild type. Therefore, regulation by proteolysis seems to be more important, especially in resting cells, than previously suspected.
Collapse
Affiliation(s)
- Dieter Weichart
- Institut für Biologie-Mikrobiologie, Freie Universitaet Berlin, Königin-Luise Strasse 12-16, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
49
|
Brinkman AB, Bell SD, Lebbink RJ, de Vos WM, van der Oost J. The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 2002; 277:29537-49. [PMID: 12042311 DOI: 10.1074/jbc.m203528200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the archaeal transcription apparatus resembles the eukaryal RNA polymerase II system, many bacterial-like regulators can be found in archaea. Particularly, all archaeal genomes sequenced to date contain genes encoding homologues of Lrp (leucine-responsive regulatory protein). Whereas Lrp-like proteins in bacteria are involved in regulation of amino acid metabolism, their physiological role in archaea is unknown. Although several archaeal Lrp-like proteins have been characterized recently, no target genes apart from their own coding genes have been discovered yet, and no ligands for these regulators have been identified so far. In this study, we show that the Lrp-like protein LysM from Sulfolobus solfataricus is involved in the regulation of lysine and possibly also arginine biosynthesis, encoded by the lys gene cluster. Exogenous lysine is the regulatory signal for lys gene expression and specifically serves as a ligand for LysM by altering its DNA binding affinity. LysM binds directly upstream of the TFB-responsive element of the intrinsically weak lysW promoter, and DNA binding is favored in the absence of lysine, when lysWXJK transcription is maximal. The combined in vivo and in vitro data are most compatible with a model in which the bacterial-like LysM activates the eukarya-like transcriptional machinery. As with transcriptional activation by Escherichia coli Lrp, activation by LysM is apparently dependent on a co-activator, which remains to be identified.
Collapse
Affiliation(s)
- Arie B Brinkman
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Abstract
In Escherichia coli, the response to oxidative stress due to elevated levels of superoxide is mediated, in part, by the soxRS regulon. One member of the soxRS regulon, nfsA, encodes the major oxygen-insensitive nitroreductase in Escherichia coli which catalyzes the reduction of nitroaromatic and nitroheterocyclic compounds by NADPH. In this study we investigate the regulation of nfsA in response to the superoxide generating compound paraquat. The transcription start site (TSS) of nfsA was located upstream of the ybjC gene, a small open reading frame of unknown function located directly upstream of nfsA, suggesting that these two genes form an operon. The activity of the promoter associated with this TSS was confirmed with lacZ fusions and was shown to be inducible by paraquat. Footprinting and band shift analysis showed that purified His-tagged SoxS protein binds to a 20-base sequence 10 bases upstream of the -35 promoter sequence in the forward orientation, suggesting that the ybjC-nfsA promoter is a class I SoxS-dependent promoter.
Collapse
Affiliation(s)
- E Suzanne Paterson
- Department of Biology, Carleton University,Ottawa, Ontario K1S 5B6, Canada
| | | | | |
Collapse
|