1
|
Zhu G, Xie L, Hu X. Imaging of Merkel cell carcinoma of the eyelid: A case report. Oncol Lett 2024; 27:119. [PMID: 38312913 PMCID: PMC10835335 DOI: 10.3892/ol.2024.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a rare primary neuroendocrine carcinoma commonly found in older adults in areas of the skin that are susceptible to ultraviolet ray damage. The current study reports the case of a 79-year-old woman who presented to the Affiliated Hospital of Zunyi Medical University (Zunyi, China) with a painless lump in the lower eyelid of the left eye accompanied by photophobic tears for 4 months. Head computed tomography (CT) and magnetic resonance imaging (MRI) showed a space-occupying lesion ~2.8×2.4 cm in size outside the left orbital muscle cone, which was poorly demarcated from the surrounding normal tissues. Markedly intense and tortuous walking vascular shadows were observed within the tumor tissues. Fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/CT revealed increased 18F-FDG uptake in the corresponding lesions. Based on these imaging features, a malignant tumor was suspected. The patient subsequently underwent surgery. Postoperative pathology and immunohistochemistry revealed MCC. The clinical presentation of MCC is usually a painless soft-tissue nodule or mass that grows rapidly over a short period and is flesh-colored, bluish red or purple. A slightly hyperdense mass on CT, with equal T1-weighted and slightly longer T2-weighted MRI signals, and mild enhancement on contrast-enhanced scans, accompanied by significantly enhanced distorted vascular shadows and increased 18F-FDG uptake on PET/CT, are valuable in the diagnosis of eyelid MCC.
Collapse
Affiliation(s)
- Guangwen Zhu
- Department of Endocrinology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou 563003, P.R. China
| | - Liting Xie
- Department of Gynecology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou 563000, P.R. China
| | - Xianwen Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
SUMI A, CHAMBERS JK, ITO S, KOJIMA K, OMACHI T, DOI M, UCHIDA K. Different expression patterns of p63 and p73 in Felis catus papillomavirus type 2-associated feline Merkel cell carcinomas and other epidermal carcinomas. J Vet Med Sci 2024; 86:39-48. [PMID: 38030281 PMCID: PMC10849848 DOI: 10.1292/jvms.23-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a cutaneous neuroendocrine tumor, and more than 90% of feline MCC cases test positive for Felis catus papillomavirus type 2 (FcaPV2). In the present study, basal cell markers p40, p63, and p73 and the stem cell marker SOX2 and cytokeratin 14 (CK14) were immunohistochemically examined in normal fetal, infant, and adult feline skin tissues. The expression of these proteins was examined in tumors positive for FcaPV2, including MCC, basal cell carcinoma (BCC), Bowenoid in situ carcinoma (BISC), and squamous cell carcinoma (SCC). Infant and adult feline skin tissues had mature Merkel cells, which were CK14-, CK18+, CK20+, SOX2+, synaptophysin+ and CD56+, while fetal skin tissue had no mature Merkel cells. MCC was immunopositive for p73, CK18, and SOX2 in 32/32 cases, and immunonegative for CK14 in 31/32 cases and for p40 and p63 in 32/32 cases. These results indicate that MCC exhibits different immunophenotypes from Merkel cells (p73-) and basal cells (p40+, p63+, and SOX2-). In contrast, all 3 BCCs, 1 BISC, and 2 SCCs were immunopositive for the basal cell markers p40, p63, and p73. The life cycle of papillomavirus is closely associated with the differentiation of infected basal cells, which requires the transcription factor p63. Changes in p63 expression in FcaPV2-positive MCC may be associated with unique cytokeratin expression patterns (CK14-, CK18+, and CK20+). Furthermore, SOX2 appears to be involved in Merkel cell differentiation in cats, similar to humans and mice.
Collapse
Affiliation(s)
- Ayumi SUMI
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Kazuhiro KOJIMA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Masaki DOI
- Diagnostic Laboratory, Patho-Labo, Shizuoka, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Bataille A, Le Gall C, Misery L, Talagas M. Merkel Cells Are Multimodal Sensory Cells: A Review of Study Methods. Cells 2022; 11:cells11233827. [PMID: 36497085 PMCID: PMC9737130 DOI: 10.3390/cells11233827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Merkel cells (MCs) are rare multimodal epidermal sensory cells. Due to their interactions with slowly adapting type 1 (SA1) Aβ low-threshold mechanoreceptor (Aβ-LTMRs) afferents neurons to form Merkel complexes, they are considered to be part of the main tactile terminal organ involved in the light touch sensation. This function has been explored over time by ex vivo, in vivo, in vitro, and in silico approaches. Ex vivo studies have made it possible to characterize the topography, morphology, and cellular environment of these cells. The interactions of MCs with surrounding cells continue to be studied by ex vivo but also in vitro approaches. Indeed, in vitro models have improved the understanding of communication of MCs with other cells present in the skin at the cellular and molecular levels. As for in vivo methods, the sensory role of MC complexes can be demonstrated by observing physiological or pathological behavior after genetic modification in mouse models. In silico models are emerging and aim to elucidate the sensory coding mechanisms of these complexes. The different methods to study MC complexes presented in this review may allow the investigation of their involvement in other physiological and pathophysiological mechanisms, despite the difficulties in exploring these cells, in particular due to their rarity.
Collapse
Affiliation(s)
- Adeline Bataille
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Correspondence:
| | - Christelle Le Gall
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Laurent Misery
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Matthieu Talagas
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| |
Collapse
|
5
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
Michalak-Micka K, Rütsche D, Mazzone L, Büchler VL, Moehrlen U, Klar AS, Biedermann T. Human fetal skin derived merkel cells display distinctive characteristics in vitro and in bio-engineered skin substitutes in vivo. Front Bioeng Biotechnol 2022; 10:983870. [PMID: 36185452 PMCID: PMC9520781 DOI: 10.3389/fbioe.2022.983870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human skin contains specialized neuroendocrine Merkel cells responsible for fine touch sensation. In the present study, we performed in-depth analysis of Merkel cells in human fetal back skin. We revealed that these Merkel cells expressed cytokeratin 20 (CK20), were positive for the neuroendocrine markers synaptophysin and chromogranin A, and the mechanosensitive ion channel Piezo2. Further, we demonstrated that Merkel cells were present in freshly isolated human fetal epidermal cells in vitro, and in tissue-engineered human dermo-epidermal skin substitutes 4 weeks after transplantation on immune-compromised rats. Merkel cells retained the expression of CK20, synaptophysin, chromogranin A, and Piezo2 after isolation and in culture, and in the skin substitutes after transplantation. Interestingly, we observed that in fetal skin and in skin substitutes, only Merkel cells were positive for CK8, while in culture, also non-Merkel cells showed positivity for CK8. In summary, human fetal Merkel cells showed phenotypical features confirming their cell identity. This findings are of pivotal importance for the future application of fetal tissue-engineered skin in clinics.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Luca Mazzone
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children’s Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, Zurich, Switzerland
| | - Vanessa L. Büchler
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children’s Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Thomas Biedermann,
| |
Collapse
|
7
|
Yang JF, You J. Merkel cell polyomavirus and associated Merkel cell carcinoma. Tumour Virus Res 2022; 13:200232. [PMID: 34920178 PMCID: PMC8715208 DOI: 10.1016/j.tvr.2021.200232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a ubiquitous skin infection that can cause Merkel cell carcinoma (MCC), a highly lethal form of skin cancer with a nearly 50% mortality rate. Since the discovery of MCPyV in 2008, great advances have been made to improve our understanding of how the viral encoded oncoproteins contribute to MCC oncogenesis. However, our knowledge of the MCPyV infectious life cycle and its oncogenic mechanisms are still incomplete. The incidence of MCC has tripled over the past two decades, but effective treatments are lacking. Only recently have there been major victories in combatting metastatic MCC with the application of PD-1 immune checkpoint blockade. Still, these immune-based therapies are not ideal for patients with a medical need to maintain systemic immune suppression. As such, a better understanding of MCPyV's oncogenic mechanisms is needed in order to develop more effective and targeted therapies against virus-associated MCC. In this review, we discuss current areas of interest for MCPyV and MCC research and the progress made in elucidating both the natural host of MCPyV infection and the cell of origin for MCC. We also highlight the remaining gaps in our knowledge on the transcriptional regulation of MCPyV, which may be key to understanding and targeting viral oncogenesis for developing future therapies.
Collapse
Affiliation(s)
- June F Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
8
|
Thibault K. Evidence of an epithelial origin of Merkel cell carcinoma. Mod Pathol 2022; 35:446-448. [PMID: 34732840 DOI: 10.1038/s41379-021-00964-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Kervarrec Thibault
- Department of Pathology, University Hospital Center of Tours, Tours, France. .,"Biologie des infections à Polyomavirus" team, UMR INRA ISP1282, University of Tours, Tours, France.
| |
Collapse
|
9
|
Li H, Ziemer M, Stojanovic I, Saksida T, Maksimovic-Ivanic D, Mijatovic S, Djmura G, Gajic D, Koprivica I, Krajnovic T, Draca D, Simon JC, Lethaus B, Savkovic V. Mesenchymal Stem Cells From Mouse Hair Follicles Reduce Hypertrophic Scarring in a Murine Wound Healing Model. Stem Cell Rev Rep 2022; 18:2028-2044. [PMID: 35080748 PMCID: PMC9391240 DOI: 10.1007/s12015-021-10288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Wound healing of acute full-thickness injuries and chronic non-healing ulcers leads to delayed wound closure, prolonged recovery period and hypertrophic scarring, generating a demand for an autologous cell therapy and a relevant pre-clinical research models for wound healing. In this study, an immunocompetent model for wound healing was employed using a syngeneic murine cell line of mesenchymal stem cells cultured from the mouse whisker hair follicle outer root sheath (named moMSCORS). moMSCORS were isolated using an air-liquid interface method, expanded in vitro and characterized according to the MSC definition criteria - cell viability, in vitro proliferation, MSC phenotype and multi-lineage differentiations. Moreover, upon applying moMSCORS in an in vivo full-thickness wound model in the syngeneic C57BL/6 mice, the treated wounds displayed different morphology to that of the untreated wound beds. Quantitative evaluation of angiogenesis, granulation and wound closure involving clinical scoring and software-based quantification indicated a lower degree of inflammation in the treated wounds. Histological staining of treated wounds by the means of H&E, Alcian Blue, PicroSirius Red and αSMA immune labelling showed lower cellularity, less collagen filaments as well as thinner dermal and epidermal layers compared with the untreated wounds, indicating a general reduction of hypertrophic scars. The decreased inflammation, accelerated wound closure and non-hypertrophic scarring, which were facilitated by moMSCORS, hereby address a common problem of hypertrophic scars and non-physiological tissue properties upon wound closure, and additionally offer an in vivo model for the autologous cell-based wound healing.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.,Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Mirjana Ziemer
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Ivana Stojanovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Mijatovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Djmura
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Dragica Gajic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Koprivica
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Krajnovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dijana Draca
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Kervarrec T, Pissaloux D, Poilane J, Tirode F, Tallet A, Collin C, Tallegas M, Berthon P, Gaboriaud P, Sohier P, Calonje E, Luzar B, Goto K, Cokelaere K, Lamant L, Balme B, Wild R, Neuville A, Deschamps L, Auberger E, Paumier V, Bonte H, Moulonguet I, Plantier F, Cales V, Pinsolle V, Roblet D, Dupuy F, Dallot A, Seris A, Jouary T, Houben R, Schrama D, Hesbacher S, Macagno N, Battistella M, Cribier B, Vergier B, Fouchardière A, Jullie M. Recurrent
FOXK1
::
GRHL
and
GPS2
::
GRHL
fusions in trichogerminoma. J Pathol 2022; 257:96-108. [DOI: 10.1002/path.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- “Biologie des infections à polyomavirus” team, UMR INRA ISP 1282 Université de Tours Tours France
- CARADERM Network
| | - Daniel Pissaloux
- Department of Biopathology Center Léon Bérard Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer Lyon France
| | - Jeremie Poilane
- Department of Pathology Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- Department of Pathology Centre Hospitalier Universitaire de Angers Angers France
| | - Franck Tirode
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer Lyon France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
| | - Christine Collin
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
| | - Matthias Tallegas
- Department of Pathology Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
| | - Patricia Berthon
- “Biologie des infections à polyomavirus” team, UMR INRA ISP 1282 Université de Tours Tours France
| | - Pauline Gaboriaud
- “Biologie des infections à polyomavirus” team, UMR INRA ISP 1282 Université de Tours Tours France
| | - Pierre Sohier
- CARADERM Network
- Faculté de Médecine Paris Centre Santé University of Paris Paris France
- Department of Pathology Hôpital Cochin, AP‐HP Centre‐Université de Paris Paris France
| | - Eduardo Calonje
- Department of Dermatopathology St John's Institute of Dermatology, St Thomas's Hospital London UK
| | - Boštjan Luzar
- Institute of Pathology Medical Faculty University of Ljubljana Ljubljana Slovenia
| | - Keisuke Goto
- Department of Pathology Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital Tokyo Japan
- Department of Diagnostic Pathology Shizuoka Cancer Center Hospital, Sunto Japan
- Department of Diagnostic Pathology and Cytology Osaka International Cancer Institute Osaka Japan
- Department of Dermatology Hyogo Cancer Center Akashi Japan
| | | | - Laurence Lamant
- CARADERM Network
- Department of Pathology, CHU Toulouse, Institut Universitaire du Cancer Toulouse Oncopole Université Toulouse III Paul Sabatier Toulouse France
| | - Brigitte Balme
- CARADERM Network
- Department of Pathology Centre Hospitalier Universitaire de Lyon Lyon France
| | | | - Agnes Neuville
- Contades Office of Pathological Anatomy and Cytology Strasbourg France
| | - Lydia Deschamps
- CARADERM Network
- Department of Pathology, APHP Bichat Hospital Paris France
| | - Elisabeth Auberger
- Service d'anatomie et cytologie pathologiques Hopital Simone Veil Eaubonne France
| | | | | | | | - Françoise Plantier
- Department of Pathology Hôpital Cochin, AP‐HP Centre‐Université de Paris Paris France
- Cabinet Mathurin Moreau Paris France
| | - Valérie Cales
- Department of Pathology Centre hospitalier de Pau Pau France
| | - Vincent Pinsolle
- Department of plastic and reconstructive surgery Hôpital Haut‐Lévêque, Centre hospitalier universitaire de Bordeaux Pessac France
| | - Denis Roblet
- Department of Pathology Centre hospitalier d'Angouleme Saint Michel France
| | - Frantz Dupuy
- Laboratoire de cytologie et d'anatomie pathologiques», le Bouscat France
| | - Alexiane Dallot
- Centre national de Dermatopathologie‐La Roquette Paris France
| | | | - Thomas Jouary
- CARADERM Network
- Department of Dermatology Centre Hospitalier de Pau Pau France
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology University Hospital Würzburg, Josef‐Schneider‐Straße 2 Würzburg Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology University Hospital Würzburg, Josef‐Schneider‐Straße 2 Würzburg Germany
| | - Sonja Hesbacher
- Department of Dermatology, Venereology and Allergology University Hospital Würzburg, Josef‐Schneider‐Straße 2 Würzburg Germany
| | - Nicolas Macagno
- CARADERM Network
- Department of Biopathology Center Léon Bérard Lyon France
- Department of Pathology Timone University Hospital Marseille France
| | - Maxime Battistella
- CARADERM Network
- Department of Pathology, APHP Hôpital Saint Louis Université Paris 7 Paris France
| | - Bernard Cribier
- CARADERM Network
- Dermatology Clinic, Hôpitaux Universitaires & Université de Strasbourg, Hôpital Civil Strasbourg France
| | - Beatrice Vergier
- Department of Pathology, Hôpital Haut‐Lévêque, CHU de Bordeaux Pessac France
| | - Arnaud Fouchardière
- CARADERM Network
- Department of Biopathology Center Léon Bérard Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer Lyon France
| | - Marie‐Laure Jullie
- CARADERM Network
- Department of Pathology, Hôpital Haut‐Lévêque, CHU de Bordeaux Pessac France
| |
Collapse
|
11
|
Loke ASW, Longley BJ, Lambert PF, Spurgeon ME. A Novel In Vitro Culture Model System to Study Merkel Cell Polyomavirus-Associated MCC Using Three-Dimensional Organotypic Raft Equivalents of Human Skin. Viruses 2021; 13:138. [PMID: 33478104 PMCID: PMC7835998 DOI: 10.3390/v13010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a human polyomavirus causally linked to the development of Merkel cell carcinoma (MCC), an aggressive malignancy that largely arises within the dermis of the skin. In this study, we recapitulate the histopathology of human MCC tumors in vitro using an organotypic (raft) culture system that is traditionally used to recapitulate the dermal and epidermal equivalents of skin in three dimensions (3D). In the optimal culture condition, MCPyV+ MCC cells were embedded in collagen between the epidermal equivalent comprising human keratinocytes and a dermal equivalent containing fibroblasts, resulting in MCC-like lesions arising within the dermal equivalent. The presence and organization of MCC cells within these dermal lesions were characterized through biomarker analyses. Interestingly, co-culture of MCPyV+ MCC together with keratinocytes specifically within the epidermal equivalent of the raft did not reproduce human MCC morphology, nor were any keratinocytes necessary for MCC-like lesions to develop in the dermal equivalent. This 3D tissue culture system provides a novel in vitro platform for studying the role of MCPyV T antigens in MCC oncogenesis, identifying additional factors involved in this process, and for screening potential MCPyV+ MCC therapeutic strategies.
Collapse
Affiliation(s)
- Amanda S. W. Loke
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| | - B. Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| |
Collapse
|
12
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Kervarrec T, Samimi M, Hesbacher S, Berthon P, Wobser M, Sallot A, Sarma B, Schweinitzer S, Gandon T, Destrieux C, Pasqualin C, Guyétant S, Touzé A, Houben R, Schrama D. Merkel Cell Polyomavirus T Antigens Induce Merkel Cell-Like Differentiation in GLI1-Expressing Epithelial Cells. Cancers (Basel) 2020; 12:cancers12071989. [PMID: 32708246 PMCID: PMC7409360 DOI: 10.3390/cancers12071989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). It is still under discussion, in which cells viral integration and MCC development occurs. Recently, we demonstrated that a virus-positive MCC derived from a trichoblastoma, an epithelial neoplasia bearing Merkel cell (MC) differentiation potential. Accordingly, we hypothesized that MC progenitors may represent an origin of MCPyV-positive MCC. To sustain this hypothesis, phenotypic comparison of trichoblastomas and physiologic human MC progenitors was conducted revealing GLI family zinc finger 1 (GLI1), Keratin 17 (KRT 17), and SRY-box transcription factor 9 (SOX9) expressions in both subsets. Furthermore, GLI1 expression in keratinocytes induced transcription of the MC marker SOX2 supporting a role of GLI1 in human MC differentiation. To assess a possible contribution of the MCPyV T antigens (TA) to the development of an MC-like phenotype, human keratinocytes were transduced with TA. While this led only to induction of KRT8, an early MC marker, combined GLI1 and TA expression gave rise to a more advanced MC phenotype with SOX2, KRT8, and KRT20 expression. Finally, we demonstrated MCPyV-large T antigens’ capacity to inhibit the degradation of the MC master regulator Atonal bHLH transcription factor 1 (ATOH1). In conclusion, our report suggests that MCPyV TA contribute to the acquisition of an MC-like phenotype in epithelial cells.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, CHU de Tours, Avenue de la République, 37170 Chambray-les-Tours, France;
- “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (M.S.); (P.B.); (T.G.); (A.T.)
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
- Correspondence:
| | - Mahtab Samimi
- “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (M.S.); (P.B.); (T.G.); (A.T.)
- Dermatology Department, Université de Tours, CHU de Tours, Avenue de la République, 37170 Chambray-les-Tours, France
| | - Sonja Hesbacher
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
| | - Patricia Berthon
- “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (M.S.); (P.B.); (T.G.); (A.T.)
| | - Marion Wobser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
| | - Aurélie Sallot
- Plastic Surgery Department, Université de Tours, CHU de Tours, Avenue de la République, 37170 Chambray-les-Tours, France;
| | - Bhavishya Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
| | - Sophie Schweinitzer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
| | - Théo Gandon
- “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (M.S.); (P.B.); (T.G.); (A.T.)
| | - Christophe Destrieux
- Neurosurgery Department, UMR 1253, i Brain, Université De Tours, CHU de Tours, Boulevard Tonnelé, 37044 Tours, France;
| | - Côme Pasqualin
- CNRS ERL 7368, Signalisation et Transports Ioniques Membranaires, Equipe Transferts Ioniques et Rythmicité Cardiaque, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, 31 Avenue Monge, 37200 Tours, France;
| | - Serge Guyétant
- Department of Pathology, Université de Tours, CHU de Tours, Avenue de la République, 37170 Chambray-les-Tours, France;
- “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (M.S.); (P.B.); (T.G.); (A.T.)
| | - Antoine Touzé
- “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (M.S.); (P.B.); (T.G.); (A.T.)
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.H.); (M.W.); (B.S.); (S.S.); (R.H.); (D.S.)
| |
Collapse
|
14
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
15
|
Abstract
Merkel cell carcinoma is a rare and aggressive cutaneous malignancy of neuroendocrine origin-an often-missed diagnosis due to the wide histopathologic differential diagnosis of malignant small blue cell tumors. The advent of electron microscopy and immunohistochemistry staining for cytokeratin 20, a shared neuroendocrine marker, greatly improved diagnostic accuracy. Over the past decade, staging, treatment, and surveillance of the cancer have progressed at a remarkably rapid pace. Herein, the authors provide an update on the current guidelines around diagnosis and management and review the exciting advancements on the horizon.
Collapse
Affiliation(s)
- Yun Xue
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02215, USA
| | - Manisha Thakuria
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02215, USA; Department of Dermatology, Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, 450 Brookline Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
|
17
|
Kervarrec T, Aljundi M, Appenzeller S, Samimi M, Maubec E, Cribier B, Deschamps L, Sarma B, Sarosi EM, Berthon P, Levy A, Bousquet G, Tallet A, Touzé A, Guyétant S, Schrama D, Houben R. Polyomavirus-Positive Merkel Cell Carcinoma Derived from a Trichoblastoma Suggests an Epithelial Origin of this Merkel Cell Carcinoma. J Invest Dermatol 2019; 140:976-985. [PMID: 31759946 DOI: 10.1016/j.jid.2019.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
Merkel cell carcinoma (MCC), an aggressive neuroendocrine carcinoma of the skin, is to date the only human cancer known to be frequently caused by a polyomavirus. However, it is a matter of debate which cells are targeted by the Merkel cell polyomavirus (MCPyV) to give rise to the phenotypically multifaceted MCC cells. To assess the lineage of origin of MCPyV-positive MCC, genetic analysis of a very rare tumor combining benign trichoblastoma and MCPyV-positive MCC was conducted by massive parallel sequencing. Although MCPyV was found to be integrated only in the MCC part, six somatic mutations were shared by both tumor components. The mutational overlap between the trichoblastoma and MCPyV-positive MCC parts of the combined tumor implies that MCPyV integration occurred in an epithelial tumor cell before MCC development. Therefore, our report demonstrates that MCPyV-positive MCC can derive from the epithelial lineage.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France; Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France; Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.
| | - Mohanad Aljundi
- Department of Dermatology, Avicenne University Hospital, Bobigny, France
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Mahtab Samimi
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France; Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France
| | - Eve Maubec
- Department of Dermatology, Avicenne University Hospital, Bobigny, France
| | - Bernard Cribier
- Dermatology Clinic, Hôpitaux Universitaires & Université de Strasbourg, Hôpital Civil, Strasbourg, France
| | | | - Bhavishya Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Eva-Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Berthon
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Annie Levy
- Department of Pathology, Avicenne University Hospital, Bobigny, France
| | - Guilhem Bousquet
- Department of Medical Oncology, Avicenne University Hospital, Bobigny, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France
| | - Antoine Touzé
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France; Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Hahn JM, Combs KA, Lloyd CM, McFarland KL, Boyce ST, Supp DM. Identification of Merkel cells associated with neurons in engineered skin substitutes after grafting to full thickness wounds. PLoS One 2019; 14:e0213325. [PMID: 30835771 PMCID: PMC6400390 DOI: 10.1371/journal.pone.0213325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Engineered skin substitutes (ESS), prepared using primary human fibroblasts and keratinocytes with a biopolymer scaffold, were shown to provide stable closure of excised burns, but relatively little is known about innervation of ESS after grafting. This study investigated innervation of ESS and, specifically, whether Merkel cells are present in healed grafts. Merkel cells are specialized neuroendocrine cells required for fine touch sensation in skin. We discovered cells positive for keratin 20 (KRT20), a general marker for Merkel cells, in the basal epidermis of ESS after transplantation to mice, suggesting the presence of Merkel cells. Cells expressing KRT20 were not observed in ESS in vitro. However, widely separated KRT20-positive cells were observed in basal epidermis of ESS by 2 weeks after grafting. By 4 weeks, these cells increased in number and expressed keratins 18 and 19, additional Merkel cells markers. Putative Merkel cell numbers increased further between weeks 6 and 14; their densities varied widely and no specific pattern of organization was observed, similar to Merkel cell localization in human skin. KRT20-positive cells co-expressed epidermal markers E-cadherin and keratin 15, suggesting derivation from the epidermal lineage, and neuroendocrine markers synaptophysin and chromogranin A, consistent with their identification as Merkel cells. By 4 weeks after grafting, some Merkel cells in engineered skin were associated with immature afferents expressing neurofilament-medium. By 8 weeks, Merkel cells were complexed with more mature neurons expressing neurofilament-heavy. Positive staining for human leukocyte antigen demonstrated that the Merkel cells in ESS were derived from grafted human cells. The results identify, for the first time, Merkel cell-neurite complexes in engineered skin in vivo. This suggests that fine touch sensation may be restored in ESS after grafting, although this must be confirmed with future functional studies.
Collapse
Affiliation(s)
- Jennifer M. Hahn
- Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio, United States of America
| | - Kelly A. Combs
- Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio, United States of America
| | - Christopher M. Lloyd
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kevin L. McFarland
- Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio, United States of America
| | - Steven T. Boyce
- Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio, United States of America
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Dorothy M. Supp
- Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio, United States of America
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Narisawa Y, Inoue T, Nagase K. Evidence of proliferative activity in human Merkel cells: implications in the histogenesis of Merkel cell carcinoma. Arch Dermatol Res 2018; 311:37-43. [PMID: 30460510 DOI: 10.1007/s00403-018-1877-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
The cellular origin of Merkel cell carcinoma (MCC) is controversial. We previously hypothesized that MCC originates from hair follicle stem cells or Merkel cell (MC) progenitors residing within the hair follicle bulge. Examination of three cases of combined MCC led to the unexpected discovery that numerous keratin 20 (CK20)-positive MCs within the squamous cell carcinoma (SCC) component of combined MCC appeared morphologically normal with dendritic and oval shapes. Moreover, one extremely rare case of combined SCC and MCC showed both intra-epidermal and dermal MCCs. These three cases represent the first documentation of MC hyperplasia in MCC, besides various benign follicular neoplasms associated with MC hyperplasia. Therefore, to elucidate the proliferating potential of MCs and their histogenetic relationship with MCCs, we further investigated these cases based on pathological observations. We identified numerous cells co-expressing CK20 and the proliferation marker Ki-67, identical to the morphological and immunohistochemical features of normal MCs. This finding indicated that MCs can no longer be considered as pure post-mitotic cells. Instead, they have proliferative potential under specific conditions in the diseased or wounded skin, or adjacent to various skin tumors, including MCC. Intimate co-existence of two malignant cell components composed of intradermal and intra-epidermal MCCs, with the proliferation of normal-appearing MCs in the same lesion, lends support to the hypothesis that MCs and MCC cells are derived from MC progenitors residing within the hair follicle bulge. Specifically, MCCs are derived from transformed MC progenitors with potential for dual-directional differentiation towards neuroendocrine and epithelial lineages.
Collapse
Affiliation(s)
- Yutaka Narisawa
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Takuya Inoue
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Kotaro Nagase
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| |
Collapse
|
20
|
Immunohistochemical distribution of Ki67 in epidermis of thick glabrous skin of human digits. Arch Dermatol Res 2017; 310:85-93. [PMID: 29119273 DOI: 10.1007/s00403-017-1793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/27/2022]
Abstract
The glabrous skin on the flexor sides of hands and feet, compared to other integument regions, has thicker epidermis and more complex pattern of epidermal ridges, wherefore in microscopy is denominated as thick skin. The epidermis of this skin type has individually unique and permanent superficial patterns, called dermatoglyphics, which are maintained by regenerative potential of deep epidermal rete ridges, that interdigitate with adjacent dermis. Using light microscopy, we analyzed cadaveric big toes thick skin samples, described histology of deep epidermal ridges (intermediate, limiting, and transverse), and quantitatively evidenced their pattern of proliferation by immunohistochemical assessment of Ki67. Immunohistochemical distribution of Ki67 was confined to basal and suprabasal layers, with pattern of distribution specific for intermediate, limiting and transverse ridges that gradually transform within epidermal height. Deep epidermal ridges, interdigitating with dermal papillae, participate in construction of intricate epidermal base, whose possible role in epidermal regeneration was also discussed. Having a prominent morphology, this type of epidermis offers the best morphological insight in complexities of skin organization, and its understanding could challenge and improve currently accepted models of epidermal organization.
Collapse
|
21
|
Sauer CM, Chteinberg E, Rennspiess D, Kurz AK, Zur Hausen A. [Merkel cell carcinoma: cutaneous manifestation of a highly malignant pre-/pro-B cell neoplasia? : Novel concept about the cellular origin of Merkel cell carcinoma]. Hautarzt 2017; 68:204-210. [PMID: 28194491 DOI: 10.1007/s00105-017-3945-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Merkel cell carcinoma (MCC) is a relatively rare but highly malignant non-melanoma skin cancer of the elderly and immunosuppressed patients. The discovery of the Merkel cell polyomavirus (MCPyV) in 2008 significantly impacted the understanding of the etiopathogenesis of MCC. MCPyV is clonally integrated into the MCC genome and approximately 80% of MCC are MCPyV-positive. Recent results of clinical trials using blockade of the PD-1 immune modulatory pathway are promising for the future treatment of MCC. Despite this major progress of the past few years, the cellular origin of MCC still remains obscure. Based on histomorphology, gene expression profiling, and molecular analyses, we have recently hypothesized that MCC originates from pre‑/pro-B cells. Here we review putative cells of MCC, including Merkel cells, (epi‑)dermal stem cells, and pro‑/pre-B cells. In the present work, the focus is on the concept of pre‑/pro-B cells as the cellular origin of MCC, which might also impact the understanding of other human small cell malignancies of unknown cellular origin, such as small cell carcinomas of the lung and other anatomical locations. In addition, this concept might pave the way for novel treatment options, especially for advanced MCC.
Collapse
Affiliation(s)
- C M Sauer
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands.,Department of Internal Medicine IV, University Hospital Aachen, Aachen, Deutschland
| | - E Chteinberg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - D Rennspiess
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - A K Kurz
- Department of Internal Medicine IV, University Hospital Aachen, Aachen, Deutschland
| | - A Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands.
| |
Collapse
|
22
|
Merkel Cell Polyomavirus: A New DNA Virus Associated with Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:35-56. [PMID: 29052131 DOI: 10.1007/978-981-10-5765-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merkel cell polyomavirus (MCPyV or MCV) is a novel human polyomavirus that has been discovered in Merkel cell carcinoma (MCC), a highly aggressive skin cancer. MCPyV infection is widespread in the general population. MCPyV-associated MCC is one of the most aggressive skin cancers, killing more patients than other well-known cancers such as cutaneous T-cell lymphoma and chronic myelogenous leukemia (CML). Currently, however, there is no effective drug for curing this cancer. The incidence of MCC has tripled over the past two decades. With the widespread infection of MCPyV and the increase in MCC diagnoses, it is critical to better understand the biology of MCPyV and its oncogenic potential. In this chapter, we summarize recent discoveries regarding MCPyV molecular virology, host cellular tropism, mechanisms of MCPyV oncoprotein-mediated oncogenesis, and current therapeutic strategies for MCPyV-associated MCC. We also present epidemiological evidence for MCPyV infection in HIV patients and links between MCPyV and non-MCC human cancers.
Collapse
|
23
|
Sauer CM, Haugg AM, Chteinberg E, Rennspiess D, Winnepenninckx V, Speel EJ, Becker JC, Kurz AK, Zur Hausen A. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma. Crit Rev Oncol Hematol 2017; 116:99-105. [PMID: 28693804 DOI: 10.1016/j.critrevonc.2017.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/13/2017] [Accepted: 05/28/2017] [Indexed: 12/18/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens.
Collapse
Affiliation(s)
- C M Sauer
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine IV, University Hospital Aachen, Aachen, Germany
| | - A M Haugg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E Chteinberg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - D Rennspiess
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - V Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E-J Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J C Becker
- Department for Translational Dermato-Oncology (DKTK), Center for Medical Biotechnology (ZMB), University Hospital Essen, Essen, Germany
| | - A K Kurz
- Department of Internal Medicine IV, University Hospital Aachen, Aachen, Germany
| | - A Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Verhaegen ME, Mangelberger D, Harms PW, Eberl M, Wilbert DM, Meireles J, Bichakjian CK, Saunders TL, Wong SY, Dlugosz AA. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice. Cancer Res 2017; 77:3151-3157. [PMID: 28512245 DOI: 10.1158/0008-5472.can-17-0035] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/17/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Markus Eberl
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Dawn M Wilbert
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Julia Meireles
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | | | - Thomas L Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sunny Y Wong
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
25
|
Liu W, MacDonald M, You J. Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol 2016; 20:20-27. [PMID: 27521569 DOI: 10.1016/j.coviro.2016.07.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Merkel cell polyomavirus is the only polyomavirus discovered to date that is associated with a human cancer. MCPyV infection is highly prevalent in the general population. Nearly all healthy adults asymptomatically shed MCPyV from their skin. However, in elderly and immunosuppressed individuals, the infection can lead to a lethal form of skin cancer, Merkel cell carcinoma. In the last few years, new findings have established links between MCPyV infection, host immune response, and Merkel cell carcinoma development. This review discusses these recent discoveries on how MCPyV interacts with host cells to achieve persistent infection and, in the immunocompromised population, contributes to MCC development.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margo MacDonald
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Abstract
Merkel cell carcinoma (MCC, cutaneous neuroendocrine carcinoma) is a rare form of tumor of unclear histogenesis which predominantly occurs in elderly patients on areas exposed to the sun. A higher incidence and occurrence in younger people is predominantly found in immunosuppressed persons which is why a pathogenetic role is also attributed to immunosuppression in addition to ultraviolet (UV) radiation. Additionally, in 80% of cases clonally integrated polyomavirus (Merkel cell polyomavirus, MCPyV) could be detected. Clinically MCC represents an uncharacteristic tumor. Histopathologically, monomorphic dermal and/or subcutaneous nodes are found consisting of round or oval medium sized cells with a vesicular nucleus and sparse cytoplasm. The neoplastic cells of MCC express cytokeratin (CK) 20 with a dot-like perinuclear accentuation. In addition, pan-CK, neuroendocrine markers (e.g. chromogranin A and synaptophysin), neurofilament proteins, CD56, CD57, Bcl-2, TdT and PAX-5 are immunohistochemically positive. In most cases CM2B4, an antibody against MCPyV is also positive. Expression of p63 has been observed in some of the cases and in some studies was associated with a favorable prognosis. The markers thyroid transcription factor 1, mammalian achaete scute complex like 1, vimentin, S-100 and CK7 are not normally expressed by MCC. The prognosis is primarily dependent on tumor size and the lymph node status. The presence of intralymphatic tumor complexes is associated with a higher rate of local recurrence and lymph node metastasis. A larger number of intratumoral cytotoxic T-lymphocytes is accompanied by a favorable prognosis and the presence of > 50% of K-67+ neoplastic cells with an unfavorable prognosis. Further morphological, phenotypical and genetic factors have not yet been validated in larger cohorts with respect to the prognostic relevance.
Collapse
Affiliation(s)
- I Fried
- Forschungseinheit für Dermatopathologie, Klinik für Dermatologie und Venerologie, Medizinische Universität Graz, Auenbruggerplatz 8, 8036, Graz, Österreich
| | | |
Collapse
|
27
|
Wright MC, Reed-Geaghan EG, Bolock AM, Fujiyama T, Hoshino M, Maricich SM. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. ACTA ACUST UNITED AC 2015; 208:367-79. [PMID: 25624394 PMCID: PMC4315254 DOI: 10.1083/jcb.201407101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1(+) skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood.
Collapse
Affiliation(s)
- Margaret C Wright
- Center for Neurosciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Erin G Reed-Geaghan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | - Alexa M Bolock
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh and Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Tomoyuki Fujiyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Stephen M Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh and Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| |
Collapse
|
28
|
Owens DM, Lumpkin EA. Diversification and specialization of touch receptors in skin. Cold Spring Harb Perspect Med 2014; 4:4/6/a013656. [PMID: 24890830 DOI: 10.1101/cshperspect.a013656] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory specializations has been poorly understood. In addition, the relationship between cutaneous mechanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin.
Collapse
Affiliation(s)
- David M Owens
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
29
|
Merkel cell carcinoma - recent advances in the biology, diagnostics and treatment. Int J Biochem Cell Biol 2014; 53:536-46. [PMID: 24811434 DOI: 10.1016/j.biocel.2014.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
Abstract
Merkel cell carcinoma (MCC) is an uncommon primary cutaneous carcinoma with neuroendocrine differentiation. Since recent discovery of MCCs strong association with Merkel cell polyomavirus (MCPyV), there has been a rapid increase in the understanding of the carcinomas genetics, molecular biology and pathogenesis. In our study, we reviewed recent advances and controversies concerning MCC histogenesis, epidemiology, diagnostic and prognostic markers. We analyzed the association of MCPyV with MCC and the possible new targets for therapy. We also examined English-based literature regarding MCC pathogenesis published between 2008 and 2013, which lead to a deeper understanding of the topic. Our study showed that the association of MCPyV strongly influences the course of MCC. Additionally, it has been shown that a immunological response to MCPyV may in the future give hope to identify new therapeutic strategies in treatment of this fatal malignancy. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
|
30
|
|
31
|
Which are the cells of origin in merkel cell carcinoma? J Skin Cancer 2012; 2012:680410. [PMID: 23304516 PMCID: PMC3530849 DOI: 10.1155/2012/680410] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/27/2012] [Indexed: 01/01/2023] Open
Abstract
Merkel cell carcinoma (MCC), a highly aggressive skin tumour with increasing incidence, is associated with the newly discovered Merkel cell polyomavirus (MCPyV). Studies on MCC and MCPyV as well as other risk factors have significantly increased our knowledge of MCC pathogenesis, but the cells of origin, which could be important targets in future therapies, are still unknown. Merkel cells (MCs), the neuroendocrine cells of the skin, were believed to be at the origin of MCC due to their phenotypic similarities. However, for several reasons, for example, heterogeneous differentiation of MCCs and postmitotic character of MCs, it is not very likely that MCC develops from differentiated MCs. Skin stem cells, probably from the epidermal lineage, are more likely to be cells of origin in MCC. Future studies will have to address these questions more directly in order to identify the physiological cells which are transformed to MCC cells.
Collapse
|
32
|
Kouzmina M, Häyry V, Leikola J, Haglund C, Böhling T, Koljonen V, Hagström J. BMI1 expression identifies subtypes of Merkel cell carcinoma. Virchows Arch 2012; 461:647-53. [PMID: 23064620 DOI: 10.1007/s00428-012-1327-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/31/2012] [Accepted: 09/28/2012] [Indexed: 12/24/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine carcinoma. The aims of this study were to investigate the expression of the transcription factors B-lymphoma Moloney murine leukaemia virus insertion (BMI1), myelocytomatosis viral oncogene homologue (c-Myc) and Snail in MCC tumour specimens and to examine the relationship of these markers to Merkel cell polyoma virus (MCV). The study comprised of 133 patients with primary MCC. The expression of BMI1, Snail and c-Myc protein was assessed by immunohistochemistry and compared with clinical parameters, MCV status and patient survival. The presence of MCV was inversely correlated with the expression of BMI1 protein. Tumours expressing BMI1 protein more often presented with lymph node metastases. Snail protein expression was decreased in cases with metastatic dissemination. This study identified two subgroups of MCC: tumours expressing BMI1 but negative for MCV DNA and tumours negative for BMI1 expression but positive for MCV. Importantly, BMI1-positive cases often presented with lymph node metastases. Combined, these results suggest that subtypes of this malignancy exist.
Collapse
Affiliation(s)
- Maria Kouzmina
- Department of Oral and Maxillofacial Surgery, Helsinki University Central Hospital, Kasarminkatu 11-13, 00029 HUS, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Trombetta M, Packard M, Velosa C, Silverman J, Werts D, Parda D. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required? Rare Tumors 2011; 3:e12. [PMID: 21464874 PMCID: PMC3070457 DOI: 10.4081/rt.2011.e12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/22/2022] Open
Abstract
Merkel's cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.
Collapse
Affiliation(s)
- Mark Trombetta
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
34
|
Woo SH, Stumpfova M, Jensen UB, Lumpkin EA, Owens DM. Identification of epidermal progenitors for the Merkel cell lineage. Development 2010; 137:3965-71. [PMID: 21041368 DOI: 10.1242/dev.055970] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial stem cells in adult mammalian skin are known to maintain epidermal, follicular and sebaceous lineages during homeostasis. Recently, Merkel cell mechanoreceptors were identified as a fourth lineage derived from the proliferative layer of murine skin epithelium; however, the location of the stem or progenitor population for Merkel cells remains unknown. Here, we have identified a previously undescribed population of epidermal progenitors that reside in the touch domes of hairy skin, termed touch dome progenitor cells (TDPCs). TDPCs are epithelial keratinocytes and are distinguished by their unique co-expression of α6 integrin, Sca1 and CD200 surface proteins. TDPCs exhibit bipotent progenitor behavior as they give rise to both squamous and neuroendocrine epidermal lineages, whereas the remainder of the α6(+) Sca1(+) CD200(-) epidermis does not give rise to Merkel cells. Finally, TDPCs possess a unique transcript profile that appears to be enforced by the juxtaposition of TDPCs with Merkel cells within the touch dome niche.
Collapse
Affiliation(s)
- Seung-Hyun Woo
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
35
|
Taner C, Sieg P. Merkel cell carcinoma of the face: follow-up report of 10 cases in Germany. Br J Oral Maxillofac Surg 2010; 48:378-82. [DOI: 10.1016/j.bjoms.2009.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2009] [Indexed: 11/26/2022]
|
36
|
Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA, Blanpain C. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. ACTA ACUST UNITED AC 2009; 187:91-100. [PMID: 19786578 PMCID: PMC2762088 DOI: 10.1083/jcb.200907080] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lineage-tracing experiments show that the origin of specialized mechanosensory Merkel cells in the skin is epidermal progenitors, not the neural crest. Merkel cells (MCs) are located in the touch-sensitive area of the epidermis and mediate mechanotransduction in the skin. Whether MCs originate from embryonic epidermal or neural crest progenitors has been a matter of intense controversy since their discovery >130 yr ago. In addition, how MCs are maintained during adulthood is currently unknown. In this study, using lineage-tracing experiments, we show that MCs arise through the differentiation of epidermal progenitors during embryonic development. In adults, MCs undergo slow turnover and are replaced by cells originating from epidermal stem cells, not through the proliferation of differentiated MCs. Conditional deletion of the Atoh1/Math1 transcription factor in epidermal progenitors results in the absence of MCs in all body locations, including the whisker region. Our study demonstrates that MCs arise from the epidermis by an Atoh1-dependent mechanism and opens new avenues for study of MC functions in sensory perception, neuroendocrine signaling, and MC carcinoma.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels B-1070, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morrison KM, Miesegaes GR, Lumpkin EA, Maricich SM. Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol 2009; 336:76-83. [PMID: 19782676 DOI: 10.1016/j.ydbio.2009.09.032] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 11/16/2022]
Abstract
Merkel cells are specialized cells in the skin that are important for proper neural encoding of light touch stimuli. Conflicting evidence suggests that these cells are lineally descended from either the skin or the neural crest. To address this question, we used epidermal (Krt14(Cre)) and neural crest (Wnt1(Cre)) Cre-driver lines to conditionally delete Atoh1 specifically from the skin or neural crest lineages, respectively, of mice. Deletion of Atoh1 from the skin lineage resulted in loss of Merkel cells from all regions of the skin, while deletion from the neural crest lineage had no effect on this cell population. Thus, mammalian Merkel cells are derived from the skin lineage.
Collapse
Affiliation(s)
- Kristin M Morrison
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
38
|
Boulais N, Pereira U, Lebonvallet N, Gobin E, Dorange G, Rougier N, Chesne C, Misery L. Merkel cells as putative regulatory cells in skin disorders: an in vitro study. PLoS One 2009; 4:e6528. [PMID: 19668696 PMCID: PMC2722079 DOI: 10.1371/journal.pone.0006528] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/02/2009] [Indexed: 12/26/2022] Open
Abstract
Merkel cells (MCs) are involved in mechanoreception, but several lines of evidence suggest that they may also participate in skin disorders through the release of neuropeptides and hormones. In addition, MC hyperplasias have been reported in inflammatory skin diseases. However, neither proliferation nor reactions to the epidermal environment have been demonstrated. We established a culture model enriched in swine MCs to analyze their proliferative capability and to discover MC survival factors and modulators of MC neuroendocrine properties. In culture, MCs reacted to bFGF by extending outgrowths. Conversely, neurotrophins failed to induce cell spreading, suggesting that they do not act as a growth factor for MCs. For the first time, we provide evidence of proliferation in culture through Ki-67 immunoreactivity. We also found that MCs reacted to histamine or activation of the proton gated/osmoreceptor TRPV4 by releasing vasoactive intestinal peptide (VIP). Since VIP is involved in many pathophysiological processes, its release suggests a putative regulatory role for MCs in skin disorders. Moreover, in contrast to mechanotransduction, neuropeptide exocytosis was Ca2+-independent, as inhibition of Ca2+ channels or culture in the absence of Ca2+ failed to decrease the amount of VIP released. We conclude that neuropeptide release and neurotransmitter exocytosis may be two distinct pathways that are differentially regulated.
Collapse
Affiliation(s)
- Nicholas Boulais
- University of Brest, EA4326, Brest, France
- BIOPREDIC International, Rennes, France
| | | | | | - Eric Gobin
- University Hospital, Laboratory of Pathology, Brest, France
| | | | | | | | - Laurent Misery
- University of Brest, EA4326, Brest, France
- University Hospital, Department of Dermatology, Brest, France
- * E-mail:
| |
Collapse
|
39
|
Harmes DC, DiRenzo J. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses? J Mammary Gland Biol Neoplasia 2009; 14:19-27. [PMID: 19240987 PMCID: PMC3736345 DOI: 10.1007/s10911-009-9111-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/08/2009] [Indexed: 12/26/2022] Open
Abstract
Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.
Collapse
Affiliation(s)
- David C. Harmes
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA
| | - James DiRenzo
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA
| |
Collapse
|
40
|
Warner RE, Quinn MJ, Hruby G, Scolyer RA, Uren RF, Thompson JF. Management of merkel cell carcinoma: the roles of lymphoscintigraphy, sentinel lymph node biopsy and adjuvant radiotherapy. Ann Surg Oncol 2008; 15:2509-18. [PMID: 18543036 DOI: 10.1245/s10434-008-9983-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an uncommon, highly aggressive skin malignancy with a propensity to recur locally and regionally. However, its optimal treatment is uncertain. In this study, we aimed to assess the roles of lymphoscintigraphy and sentinel node (SN) biopsy, as well as radiotherapy, in the treatment of MCC. PATIENTS AND METHODS A retrospective analysis of 17 patients diagnosed with MCC (median age 74 years) over a 7-year period (median follow-up 16 months) was performed. RESULTS Of 11 patients. 3 had a positive SN biopsy and, despite adjuvant radiotherapy, 2 of these 3 developed regional lymph node (RLN) recurrence. Of the remaining 8 patients who had a negative SN biopsy, however, 5 also had RLN recurrences. There were 9 patients who received adjuvant radiotherapy (RT) to the primary site, with no in-field recurrences; and 8 who received RT to their RLN field, with only 2 developing regional nodal recurrences-both were SN biopsy positive. During the follow-up period, 2 patients died, only 1 due to MCC. CONCLUSION The results suggest that SN status may not be an accurate predictor of loco-regional recurrence in MCC. However, they strongly reinforce previous reports that radiotherapy, both locally and to regional nodes, provides effective infield disease control.
Collapse
Affiliation(s)
- Ross E Warner
- Sydney Melanoma Unit, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, 2050, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Petković M, Krstulja M, Radic J, Zamolo G, Muhvić D, Lovasic I, Kujundzic M, Franko A. Merkel cell carcinoma arising in the ear canal. Int J Surg Pathol 2008; 16:337-40. [PMID: 18387993 DOI: 10.1177/1066896907312670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A case of rare tumor, Merkel cell carcinoma, located in the ear canal of a 25-year-old woman is presented. A polypoid tumor mass was extirpated, and tympanoplasty was done at the first operation, whereas at the second operation, all the bones of the ear canal were removed. Epitympanum and cavum were filled with tumor, and the tumor mass was removed in toto. The histopathology and immunohistochemical staining characteristics of tumor confirmed the presence of Merkel cell tumor. Postoperatively, radiation therapy to the tumor bed was completed. There was no clinical or radiographic evidence of recurrence or metastasis of Merkel cell tumor for 3 years.
Collapse
Affiliation(s)
- Marija Petković
- Department of Radiotherapy and Oncology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Suciu V, Botan E, Valent A, Chami L, Spatz A, Vielh P. The potential contribution of fluorescent in situ hybridization analysis to the cytopathological diagnosis of Merkel cell carcinoma. Cytopathology 2008; 19:48-51. [PMID: 18205628 DOI: 10.1111/j.1365-2303.2007.00506.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We report the cases of two patients with head and neck Merkel cell carcinoma (MCC) who developed local recurrences confirmed by cytopathology. Interphase fluorescent in situ hybridization (FISH) analysis was performed for research purposes using centromeric probes of chromosomes 6 and 8, on cytological slides. Trisomy of chromosome 6 was found in 85% of tumour cells in the first case of MCC and case 2 exhibited trisomy 8 in 77% of tumour cells. In the absence of specific molecular markers, detection of trisomy 6 and/or trisomy 8 could help in identifying MCC. FISH analysis is easily and quickly performed on interphase nuclei obtained through fine needle aspiration and may be extended to the study of other relevant genetic abnormalities.
Collapse
Affiliation(s)
- V Suciu
- Department of Medical Biology and Pathology, Institut Gustav Roussy, Villejiuf, France.
| | | | | | | | | | | |
Collapse
|
43
|
Boulais N, Misery L. Merkel cells. J Am Acad Dermatol 2007; 57:147-65. [PMID: 17412453 DOI: 10.1016/j.jaad.2007.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/16/2007] [Accepted: 02/18/2007] [Indexed: 12/17/2022]
Abstract
Merkel cells are post-mitotic cells scattered throughout the epidermis of vertebrates. They are particularly interesting because of the close connections that they develop with sensory nerve endings and the number of peptides they can secrete. These features suggest that they may make an important contribution to skin homeostasis and cutaneous nerve development. However, these cells remain mysterious because they are difficult to study. They have not been successfully cultured and cannot be isolated, severely hampering molecular biology and functional analysis. Merkel cells probably originate in the neural crest of avians and mammalians, and their "spontaneous" appearance in the epidermis may be caused by a neuron-independent epidermal differentiation process. Their functions are still unclear: they take part in mechanoreception or at least interact with neurons, but little is known about their interactions with other epidermal cells. This review provides a new look at these least-known cells of the skin. The numerous peptides they synthesize and release may allow them to communicate with many cells other than neurons, and it is plausible that Merkel cells play a key role in skin physiology and physiopathology.
Collapse
Affiliation(s)
- Nicholas Boulais
- Unité de Physiologie Comparée et Intégrative, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
44
|
Abstract
Merkel cell carcinoma (MCC) is a rare and extremely aggressive skin cancer that arises from primary neural cells. It presents most commonly in the elderly and immunocompromised patients. Pathologically, MCC should be distinguished from extrapulmonary small cell lung cancer or metastatic small cell lung cancer or a small cell variant of melanoma. The prognosis is based largely on the stage of disease at the time of presentation. Therapeutic options for MCC include wide resection with or without adjuvant radiotherapy or chemotherapy. Novel therapies based on the understanding of the molecular aspects of MCC are currently being explored.
Collapse
Affiliation(s)
- Vy Dinh
- Department of Internal Medicine, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
45
|
Fernández-Figueras MT, Puig L, Musulén E, Gilaberte M, Lerma E, Serrano S, Ferrándiz C, Ariza A. Expression profiles associated with aggressive behavior in Merkel cell carcinoma. Mod Pathol 2007; 20:90-101. [PMID: 17115023 DOI: 10.1038/modpathol.3800717] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primary neuroendocrine carcinoma of the skin, or Merkel cell carcinoma, is the most aggressive cutaneous neoplasm. In spite of its similarities to small cell carcinomas from other locations, Merkel cell carcinoma shows many peculiarities probably related to its epidermal origin and the etiologic role of UV radiation. We have immunohistochemically investigated 43 markers on a tissue microarray in which 31 surgically resected Merkel cell carcinomas were represented. Of these, 15 patients remained free of disease after removal, whereas 16 developed metastases. Immunoreactivity was scored according to staining intensity and the percentage of positive cells. We found statistically significant correlations between metastatic tumor spread and overexpression of matrix metalloproteinase (MMP) 7, MMP10/2, tissue inhibitor of metalloproteinase 3, vascular endothelial growth factor (VEGF), P38, stromal NF-kappaB, and synaptophysin. Also detected were statistically significant correlations between the expression levels of MMP7 and VEGF, MMP7 and P21, MMP7 and P38, MMP10/2 and VEGF, P38 and synaptophysin, P38 and P53, and P21 and stromal NF-kappaB. These findings may be helpful in predicting the clinical course of Merkel cell carcinoma and are potentially useful for the development of targeted therapies.
Collapse
|
46
|
Ishizaki K, Sakurai K, Tazaki M, Inoue T. Response of Merkel cells in the palatal rugae to the continuous mechanical stimulation by palatal plate. Somatosens Mot Res 2006; 23:63-72. [PMID: 16846961 DOI: 10.1080/08990220600741069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of the present study was to investigate the responses of Merkel cells that are numerous in the palatine rugae, due to the continuous mechanical stimulation exerted by the palatal plate. Forty golden hamsters were used in this experiment. The palatal plate was made of adhesive resin and it was set on the palate of the animal. To exert a continuous pressure, a 0.8 mm elevation on the internal surface of the palatal plate was created at the middle portion of the fourth palatine ruga. Thereafter, the number of Merkel cells in the mucosa was calculated by immunohistochemical observation. Morphological changes of Merkel cells were examined by electron microscopy. There was significant difference among the control and any of the treated groups on the number of CK20 positive Merkel cells (p < 0.05) and that numbers were decreased at the sites where continuous mechanical stimulation was exerted. Degeneration of the cytoplasm mitochondria and nerve endings, and a decrease in both the number of neurosecretory granules and cytoplasmic processes were observed. Furthermore, the presence of nuclear chromatin aggregation and fragmentation was recognized. The continuous mechanical stimulation by the palatal plate affected the responses of Merkel cells and nerve endings, thus inducing a decrease in the number of Merkel cells. A portion of these changes was also associated with the expression of apoptosis.
Collapse
Affiliation(s)
- Ken Ishizaki
- Department of Complete Denture Prosthodontics, Tokyo Dental College, Chiba, Japan
| | | | | | | |
Collapse
|
47
|
Abstract
Primary neuroendocrine carcinoma of the skin is a relatively rare tumor that was first described by Cyril Toker in 1972. Since the seminal paper by Toker based on simple morphologic observations and detailed clinical correlation, our understanding of the clinical, morphological, and biological attributes of these lesions has grown exponentially with their increased awareness by pathologists and clinicians as well as with the many contributions of modern diagnostic techniques. The present review focuses principally on the various morphologic appearance that these tumors are able to adopt, the role of modern special techniques for diagnosis, and the conditions that need to be considered in their differential diagnosis.
Collapse
Affiliation(s)
- Jose Antonio Plaza
- Department of Pathology, Division of Anatomic Pathology, The Ohio State University Medical Center, Columbus, OH, USA
| | | |
Collapse
|
48
|
Dancey AL, Rayatt SS, Soon C, Ilchshyn A, Brown I, Srivastava S. Merkel cell carcinoma: a report of 34 cases and literature review. J Plast Reconstr Aesthet Surg 2006; 59:1294-9. [PMID: 17113506 DOI: 10.1016/j.bjps.2006.03.044] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/02/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer, with unclear histogenesis. To date there is no consensus on the optimal treatment of this neoplasm, with controversy surrounding the use of radiotherapy and chemotherapy. There are also limited data on biological behaviour and prognosis, with reported survival ranging from 31% at three years to 74% at five years. METHOD The medical records of 34 patients with a diagnosis of primary MCC, treated at two NHS trusts in Birmingham and Coventry, were reviewed. An extensive review of the English literature was also performed. RESULTS MCC occurred predominantly in Caucasians (97%) with a mean age of 75 years. Identified risk factors were a previous history of SCC (37%), BCC (18%) and AK (20%). Ten percent of patients showed evidence of immunocompromise. Most tumours were located on the extremity, where they reached a mean size of 2.1cm. Fifty percent had regional metastasis during the course of their disease. A sub group analysis of the excision margins showed that a 2-cm excision margin, extending to the deep fascia, resulted in a 50% incomplete excision rate and a 33% local recurrence rate. In contrast a 3-cm margin including deep fascia resulted in no incomplete excisions and a 10.5% local recurrence rate Prognosis was poor with a 40% 3-year survival. Combining the data from two trusts has produced a relatively large series and highlighted differences in patient characteristics and management between the units. We advocate a 3-cm excision margin, including fascia wherever possible, combined with post-operative radiotherapy to offer the best chance of local control. Survival is fairly dismal and in keeping with the aggressive nature of this tumour. The respective roles of radiotherapy and chemotherapy remain controversial.
Collapse
|
49
|
Righi A, Betts CM, Marchetti C, Marucci G, Montebugnoli L, Prati C, Eusebi LHU, Muzzi L, Ragazzini T, Foschini MP. Merkel cells in the oral mucosa. Int J Surg Pathol 2006; 14:206-11. [PMID: 16959700 DOI: 10.1177/1066896906290053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ninety-eight consecutive surgical biopsies of oral mucosa from 96 patients were evaluated immunohistochemically with an anti-cytokeratin 20 (CK 20) anti-body to evidence Merkel cells (MC). Fifteen cases, showing the highest number of MC, were additionally studied with chromogranin A, S-100 protein, neuro filaments, epithelial membrane antigen, and double immunostaining for CK 20 and Ki67 antibodies to evaluate MC proliferation. Electron microscopy was performed in 2 cases. MC were observed in 58 cases. The highest number of MC was found in the gingival, buccal, and palate mucosa, especially in chronically damaged oral mucosa (lichen and chronic aspecific inflammation) as well as in the mucosa overlying tumors rather than in normal or acute inflammation. MC were not observed in dysplastic or neoplastic epithelium. MC showed evidence of proliferation, as demonstrated by Ki67 positivity, in 3 cases. In conclusion, MC appear to play a role in the reparative processes of oral mucosa.
Collapse
Affiliation(s)
- Alberto Righi
- Section of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Background Merkel cell carcinoma (MCC) is an unusual primary neuroendocrine carcinoma of the skin. MCC is a fatal disease, and patients have a poor chance of survival. Moreover, MCC lacks distinguishing clinical features, and thus by the time the diagnosis is made, the tumour usually have metastasized. MCC mainly affects sun-exposed areas of elderly persons. Half of the tumours are located in the head and neck region. Methods MCC was first described in 1972. Since then, most of the cases reported, have been in small series of patients. Most of the reports concern single cases or epidemiological studies. The present study reviews the world literature on MCC. The purpose of this article is to shed light on this unknown neuroendocrine carcinoma and provide the latest information on prognostic markers and treatment options. Results The epidemiological studies have revealed that large tumour size, male sex, truncal site, nodal/distant disease at presentation, and duration of disease before presentation, are poor prognostic factors. The recommended initial treatment is extensive local excision. Adjuvant radiation therapy has recently been shown to improve survival. Thus far, no chemotherapy protocol have achieved the same objective. Conclusion Although rare, the fatality of this malignancy makes is important to understand the etiology and pathophysiology. During the last few years, the research on MCC has produced prognostic markers, which can be translated into clinical patient care.
Collapse
Affiliation(s)
- Virve Koljonen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki Finland.
| |
Collapse
|