1
|
Żylicz JJ, Heard E. Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annu Rev Biochem 2020; 89:255-282. [PMID: 32259458 DOI: 10.1146/annurev-biochem-062917-012655] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
Collapse
Affiliation(s)
- Jan J Żylicz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, PSL University, 75248 Paris Cedex 05, France.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, United Kingdom
| | - Edith Heard
- Directors' Research, EMBL Heidelberg, 69117 Heidelberg, Germany;
| |
Collapse
|
2
|
Katoh K, Aiba K, Fukushi D, Yoshimura J, Suzuki Y, Mitsui J, Morishita S, Tuji S, Yamada K, Wakamatsu N. Clinical and molecular genetic characterization of two female patients harboring the Xq27.3q28 deletion with different ratios of X chromosome inactivation. Hum Mutat 2020; 41:1447-1460. [PMID: 32485067 DOI: 10.1002/humu.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 11/10/2022]
Abstract
A heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is very rare in females, with only 10 patients having been reported. Here, we examined two female patients with different clinical features harboring the Xq27.3q28 deletion and determined the chromosomal breakpoints. Moreover, we assessed the X chromosome inactivation (XCI) in peripheral blood from both patients. Both patients had an almost overlapping deletion at Xq27.3q28, however, the more severe patient (Patient 1) showed skewed XCI of the normal X chromosome (79:21) whereas the milder patient (Patient 2) showed random XCI. Therefore, deletion at Xq27.3q28 critically affected brain development, and the ratio of XCI of the normal X chromosome greatly affected the clinical characteristics of patients with deletion at Xq27.3q28. As the chromosomal breakpoints were determined, we analyzed a change in chromatin domains termed topologically associated domains (TADs) using published Hi-C data on the Xq27.3q28 region, and found that only patient 1 had a possibility of a drastic change in TADs. The altered chromatin topologies on the Xq27.3q28 region might affect the clinical features of patient 1 by changing the expression of genes just outside the deletion and/or the XCI establishment during embryogenesis resulting in skewed XCI.
Collapse
Affiliation(s)
- Kimiko Katoh
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kaori Aiba
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyo Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Tuji
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.,Department of Neurology, Neurology and Stroke Center, Takamatsu Municipal Hospital, Takamatsu, Kagawa, Japan.,Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
3
|
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64:139-147. [PMID: 32535328 DOI: 10.1016/j.ceb.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
X chromosome inactivation (XCI) is the process whereby one of the X chromosomes in female mammalian cells is silenced to equalize X-linked gene expression with males. XCI depends on the long noncoding RNA Xist, which coats the inactive X chromosome in cis and triggers a cascade of events that ultimately lead to chromosome-wide transcriptional silencing that is stable for the lifetime of an organism. In recent years, the discovery of proteins that interact with Xist have led to new insights into how the initiation of XCI occurs. Nevertheless, there are still various unknowns about the mechanisms by which Xist orchestrates and maintains stable X-linked silencing. Here, we review recent work elucidating the role of Xist and its protein partners in mediating chromosome-wide transcriptional repression, as well as discuss a model by which Xist may compartmentalize proteins across the inactive X chromosome to enable both the initiation and maintenance of XCI.
Collapse
Affiliation(s)
- Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
5
|
Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Crit Rev Biochem Mol Biol 2015; 50:337-58. [PMID: 26155735 DOI: 10.3109/10409238.2015.1064350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, generally it is assumed that the genes inherited from each parent are expressed to similar levels. However, it is now apparent that in non-sex chromosomes, 6-10% of genes are selected for monoallelic expression. Monoallelic expression or allelic exclusion is established either in an imprinted (parent-of-origin) or a stochastic manner. The stochastic model explains random selection while the imprinted model describes parent-of-origin specific selection of alleles for expression. Allelic exclusion occurs during X chromosome inactivation, parent-of-origin expression of imprinted genes and stochastic monoallelic expression of cell surface molecules, clustered protocadherin (PCDH) genes. Mis-regulation or loss of allelic exclusion contributes to developmental diseases. Epigenetic mechanisms are fundamental players that determine this type of expression despite a homogenous genetic background. DNA methylation and histone modifications are two mediators of the epigenetic phenomena. The majority of DNA methylation is found on cytosines of the CpG dinucleotide in mammals. Several covalent modifications of histones change the electrostatic forces between DNA and histones modifying gene expression. Long-range chromatin interactions organize chromatin into transcriptionally permissive and prohibitive regions leading to simultaneous regulation of gene expression and repression. Non-coding RNAs (ncRNAs) are also players in regulating gene expression. Together, these epigenetic mechanisms fine-tune gene expression levels essential for normal development and survival. In this review, first we discuss what is known about monoallelic gene expression. Then, we focus on the molecular mechanisms that regulate expression of three monoallelically expressed gene classes: the X-linked genes, selected imprinted genes and PCDH genes.
Collapse
Affiliation(s)
- Shabnam Massah
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | - Timothy V Beischlag
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | | |
Collapse
|
6
|
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes (Basel) 2015; 6:353-71. [PMID: 26110314 PMCID: PMC4488668 DOI: 10.3390/genes6020353] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed.
Collapse
Affiliation(s)
- Anthony T Annunziato
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
7
|
Insights into chromatin structure and dynamics in plants. BIOLOGY 2013; 2:1378-410. [PMID: 24833230 PMCID: PMC4009787 DOI: 10.3390/biology2041378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.
Collapse
|
8
|
The WSTF-ISWI chromatin remodeling complex transiently associates with the human inactive X chromosome during late S-phase prior to BRCA1 and γ-H2AX. PLoS One 2012; 7:e50023. [PMID: 23166813 PMCID: PMC3498190 DOI: 10.1371/journal.pone.0050023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/16/2012] [Indexed: 01/08/2023] Open
Abstract
Replicating the genome prior to each somatic cell division not only requires precise duplication of the genetic information, but also accurately reestablishing the epigenetic signatures that instruct how the genetic material is to be interpreted in the daughter cells. The mammalian inactive X chromosome (Xi), which is faithfully inherited in a silent state in each daughter cell, provides an excellent model of epigenetic regulation. While much is known about the early stages of X chromosome inactivation, much less is understood with regards to retaining the Xi chromatin through somatic cell division. Here we report that the WSTF-ISWI chromatin remodeling complex (WICH) associates with the Xi during late S-phase as the Xi DNA is replicated. Elevated levels of WICH at the Xi is restricted to late S-phase and appears before BRCA1 and γ-H2A.X. The sequential appearance of WICH and BRCA1/γ-H2A.X implicate each as performing important but distinct roles in the maturation and maintenance of heterochromatin at the Xi.
Collapse
|
9
|
Finding a balance: how diverse dosage compensation strategies modify histone h4 to regulate transcription. GENETICS RESEARCH INTERNATIONAL 2011; 2012:795069. [PMID: 22567401 PMCID: PMC3335593 DOI: 10.1155/2012/795069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023]
Abstract
Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.
Collapse
|
10
|
Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Marshall Graves JA. Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 2011; 6:e19040. [PMID: 21541345 PMCID: PMC3081832 DOI: 10.1371/journal.pone.0019040] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI.
Collapse
Affiliation(s)
- Julie Chaumeil
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Paul D. Waters
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Edda Koina
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Clément Gilbert
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Terence J. Robinson
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Jennifer A. Marshall Graves
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
11
|
Gontan C, Jonkers I, Gribnau J. Long Noncoding RNAs and X Chromosome Inactivation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:43-64. [PMID: 21287133 DOI: 10.1007/978-3-642-16502-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In female somatic cells, one of the two X chromosomes is inactivated to equalize the dose of sex-linked gene products between female and male cells. X chromosome inactivation X chromosome inactivation (XCI) is initiated very early during development and requires Xist Xist , which is a noncoding X-linked gene. Upon initiation of XCI, Xist-RNA spreads along the X chromosome in cis, and Xist spreading is required for the recruitment of different chromatin remodeling complexes involved in the establishment and maintenance of the inactive X chromosome. Because XCI acts chromosomewise, Xist-mediated silencing has served as an important paradigm to study the function of noncoding RNAs (ncRNA) in gene silencing. In this chapter, we describe the current knowledge about the structure and function of Xist. We also discuss the important cis- and trans-regulatory elements and proteins in the initiation, establishment, and maintenance of XCI. In addition, we highlight new findings with other ncRNAs involved in gene repression and discuss these findings in relation to Xist-mediated gene silencing.
Collapse
Affiliation(s)
- Cristina Gontan
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
12
|
Dispirito JR, Shen H. Histone acetylation at the single-cell level: a marker of memory CD8+ T cell differentiation and functionality. THE JOURNAL OF IMMUNOLOGY 2010; 184:4631-6. [PMID: 20308634 DOI: 10.4049/jimmunol.0903830] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following stimulation, memory T (T(M)) cells rapidly express many effector functions, a hallmark feature that allows them to provide protective immunity. Recent studies suggest that genes involved in this rapid recall response may maintain an open chromatin structure in resting T(M) cells via epigenetic modifications. However, these studies have mostly focused on a few loci, and the techniques used required a large number of cells. We have developed a flow cytometric assay measuring histone modifications in individual murine T cells in combination with lineage-specific markers. In this study, we show that the per-cell level of a marker of open chromatin, diacetylated histone H3 (diAcH3), increases as naive CD8(+) T cells develop into T(M) cells, demonstrating a novel correlation between the differentiation state of a CD8(+) T cell and its abundance of a specific histone modification. Furthermore, our results show that T(M) cells defective in rapid recall ability have less diAcH3 than their fully functional counterparts, indicating that the diAcH3 level of individual T(M) cells is a useful marker for assessing their functionality.
Collapse
Affiliation(s)
- Joanna R Dispirito
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
13
|
Petty EL, Collette KS, Cohen AJ, Snyder MJ, Csankovszki G. Restricting dosage compensation complex binding to the X chromosomes by H2A.Z/HTZ-1. PLoS Genet 2009; 5:e1000699. [PMID: 19851459 PMCID: PMC2760203 DOI: 10.1371/journal.pgen.1000699] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/23/2009] [Indexed: 01/15/2023] Open
Abstract
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome-specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.
Collapse
Affiliation(s)
- Emily L. Petty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karishma S. Collette
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alysse J. Cohen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Martha J. Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Chromatin: linking structure and function in the nucleolus. Chromosoma 2008; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
|
15
|
Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM. Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 2007; 119:135-42. [PMID: 18160793 DOI: 10.1159/000109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 06/11/2007] [Indexed: 11/19/2022] Open
Abstract
The facultative heterochromatic X chromosome in leptotene spermatocytes of the grasshopper Eyprepocnemis plorans showed marked hypoacetylation for lysine 9 in the H3 histone (H3-K9) with no sign of histone H2AX phosphorylation. Since H3-K9 hypoacetylation precedes the meiotic appearance of phosphorylated H2AX (gamma-H2AX), which marks the beginning of recombinational DNA double-strand breaks (DSBs), it seems that meiotic sex-chromosome inactivation (MSCI) in this grasshopper occurs prior to the beginning of recombination and hence synapsis (which in this species begins later than recombination). In addition, all constitutively heterochromatic chromosome regions harbouring a 180-bp tandem-repeat DNA and rDNA (B chromosomes and pericentromeric regions of A chromosomes) were H3-K9 hypoacetylated at early leptotene even though they will synapse at subsequent stages. This also suggests that meiotic silencing in this grasshopper might be independent of synapsis. The H3-K9 hypoacetylated state of facultative and constitutive heterochromatin persisted during subsequent meiotic stages and was even apparent in round spermatids. Finally, the fact that B chromosomes are differentially hypoacetylated in testis and embryo interphase cells suggests that they might be silenced early in development and remain this way for most (or all) life-cycle stages.
Collapse
Affiliation(s)
- J Cabrero
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
16
|
Salstrom JL. X-inactivation and the dynamic maintenance of gene silencing. Mol Genet Metab 2007; 92:56-62. [PMID: 17604203 DOI: 10.1016/j.ymgme.2007.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 01/25/2023]
Abstract
X-inactivation has long been a topic of fascination for educators, researchers, and clinicians alike. From complex patterns of inheritance to phenotypic variation among females with X-linked traits, a myriad of hypothesis and interpretations exist. Once thought to be random yet complete, X-inactivation has proven itself the poster child of the exception rather than the rule. Indeed, patterns of X-inactivation are all too often non-random, and many X-linked genes are capable of escaping X-inactivation. Similarly, X-inactivation is well-known for being stably maintained for life, but some previously inactivated X-linked genes reactivate with increasing age. Moreover, recent papers illustrate that X-inactivation can be challenged in other ways, thereby rendering the stability of X-inactivation compromised. This review describes factors involved in the maintenance of X-inactivation as we know it and discusses these emerging data that suggest a more dynamic model of the maintenance of X-inactivation may be in order.
Collapse
Affiliation(s)
- Jennifer L Salstrom
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 6505 Gonda Center-Mail Code 708822, 695 Charles E Young Drive South, Los Angeles, CA 90095-708822, USA.
| |
Collapse
|
17
|
Chaumeil J, Le Baccon P, Wutz A, Heard E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 2006; 20:2223-37. [PMID: 16912274 PMCID: PMC1553206 DOI: 10.1101/gad.380906] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During early mammalian female development, one of the two X chromosomes becomes inactivated. Although X-chromosome coating by Xist RNA is essential for the initiation of X inactivation, little is known about how this signal is transformed into transcriptional silencing. Here we show that exclusion of RNA Polymerase II and transcription factors from the Xist RNA-coated X chromosome represents the earliest event following Xist RNA accumulation described so far in differentiating embryonic stem (ES) cells. Paradoxically, exclusion of the transcription machinery occurs before gene silencing is complete. However, examination of the three-dimensional organization of X-linked genes reveals that, when transcribed, they are always located at the periphery of, or outside, the Xist RNA domain, in contact with the transcription machinery. Upon silencing, genes shift to a more internal location, within the Xist RNA compartment devoid of transcription factors. Surprisingly, the appearance of this compartment is not dependent on the A-repeats of the Xist transcript, which are essential for gene silencing. However, the A-repeats are required for the relocation of genes into the Xist RNA silent domain. We propose that Xist RNA has multiple functions: A-repeat-independent creation of a transcriptionally silent nuclear compartment; and A-repeat-dependent induction of gene repression, which is associated with their translocation into this silent domain.
Collapse
Affiliation(s)
- Julie Chaumeil
- Mammalian Developmental Epigenetic Group, UMR 218, Curie Institute, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
18
|
Benson LJ, Gu Y, Yakovleva T, Tong K, Barrows C, Strack CL, Cook RG, Mizzen CA, Annunziato AT. Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J Biol Chem 2006; 281:9287-96. [PMID: 16464854 DOI: 10.1074/jbc.m512956200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Histone posttranslational modifications that accompany DNA replication, nucleosome assembly, and H2A/H2B exchange were examined in human tissue culture cells. Through microsequencing analysis and chromatin immunoprecipitation, it was found that a subset of newly synthesized H3.2/H3.3 is modified by acetylation and methylation at sites that correlate with transcriptional competence. Immunoprecipitation experiments suggest that cytosolic predeposition complexes purified from cells expressing FLAG-H4 contain H3/H4 dimers, not tetramers. Studies of the deposition of newly synthesized H2A/H2B onto replicating and nonreplicating chromatin demonstrated that H2A/H2B exchange takes place in chromatin regions that contain acetylated H4; however, there is no single pattern of H4 acetylation that accompanies exchange. H2A/H2B exchange is also largely independent of the deposition of replacement histone variant, H3.3. Finally, immunoprecipitation of nucleosomes replicated in the absence of de novo nucleosome assembly showed that histone modifications do not prevent the transfer of parental histones to newly replicated DNA and thus have the potential to serve as means of epigenetic inheritance. Our experiments provide an in-depth analysis of the "histone code" associated with chromatin replication and dynamic histone exchange in human cells.
Collapse
Affiliation(s)
- Laura J Benson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In many multicellular organisms, males have one X chromosome and females have two. Dosage compensation refers to a regulatory mechanism that insures the equalization of X-linked gene products in males and females. The mechanism has been studied at the molecular level in model organisms belonging to three distantly related taxa; in these organisms, equalization is achieved by shutting down one of the two X chromosomes in the somatic cells of females, by decreasing the level of transcription of the two doses of X-linked genes in females relative to males, or by increasing the level of transcription of the single dose of X-linked genes in males. The study of dosage compensation in these different forms has revealed the existence of an amazing number of interacting chromatin remodeling mechanisms that affect the function of entire chromosomes.
Collapse
Affiliation(s)
- John C Lucchesi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
20
|
Kalantry S, Mills KC, Yee D, Otte AP, Panning B, Magnuson T. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat Cell Biol 2006; 8:195-202. [PMID: 16415857 PMCID: PMC1400591 DOI: 10.1038/ncb1351] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/05/2005] [Indexed: 11/09/2022]
Abstract
The Polycomb group (PcG) encodes an evolutionarily conserved set of chromatin-modifying proteins that are thought to maintain cellular transcriptional memory by stably silencing gene expression. In mouse embryos that are mutated for the PcG protein Eed, X-chromosome inactivation (XCI) is not stably maintained in extra-embryonic tissues. Eed is a component of a histone-methyltransferase complex that is thought to contribute to stable silencing in undifferentiated cells due to its enrichment on the inactive X-chromosome in cells of the early mouse embryo and in stem cells of the extra-embryonic trophectoderm lineage. Here, we demonstrate that the inactive X-chromosome in Eed(-/-) trophoblast stem cells and in cells of the trophectoderm-derived extra-embryonic ectoderm in Eed(-/-) embryos remain transcriptionally silent, despite lacking the PcG-mediated histone modifications that normally characterize the facultative heterochromatin of the inactive X-chromosome. Whereas undifferentiated Eed(-/-) trophoblast stem cells maintained XCI, reactivation of the inactive X-chromosome occurred when these cells were differentiated. These results indicate that PcG complexes are not necessary to maintain transcriptional silencing of the inactive X-chromosome in undifferentiated stem cells. Instead, PcG proteins seem to propagate cellular memory by preventing transcriptional activation of facultative heterochromatin during differentiation.
Collapse
MESH Headings
- Animals
- CDX2 Transcription Factor
- Cell Differentiation/genetics
- Cell Line
- Cells, Cultured
- Ectoderm/metabolism
- Embryo, Mammalian/metabolism
- Endoderm/metabolism
- Enhancer of Zeste Homolog 2 Protein
- Epigenesis, Genetic
- Gene Expression/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Heterochromatin/metabolism
- Histone-Lysine N-Methyltransferase
- Histones/metabolism
- Homeodomain Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Methylation
- Mice
- Mice, Knockout
- Mice, Transgenic
- Polycomb Repressive Complex 2
- Polycomb-Group Proteins
- Proteins/metabolism
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- T-Box Domain Proteins/genetics
- Transcription Factors/metabolism
- Trophoblasts/metabolism
- X Chromosome/genetics
- X Chromosome/metabolism
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Sundeep Kalantry
- Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Kyle C. Mills
- Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Della Yee
- Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Arie P. Otte
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Terry Magnuson
- Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
- *To whom correspondence should be addressed: , 103 Mason Farm Road, MBRB 4312, Chapel Hill, NC 27599-7264, tel (919) 843-6015, fax (919) 843-6365
| |
Collapse
|
21
|
Abstract
A major challenge in biology is to understand how genetic information is interpreted to direct the formation of specialized tissues within a multicellular organism. During differentiation, changes in chromatin structure and nuclear organization establish heritable patterns of gene expression in response to signals. Epigenetic states can be broadly divided into three categories: euchromatin, constitutive heterochromatin and facultative hetereochromatin. Although the static epigenetic profiles of expressed and silent loci are relatively well characterized, less is known about the transition between active and repressed states. Furthermore, it is important to expand on localized models of chromatin structure at specific genetic addresses to examine the entire nucleus. Changes in nuclear organization, replication timing and global chromatin modifications should be integrated when attempting to describe the epigenetic signature of a given cell type. It is also crucial to examine the temporal aspect of these changes. In this context, the capacity for cellular differentiation reflects both the repertoire of available transcription factors and the accessibility of cis-regulatory elements, which is governed by chromatin structure. Understanding this interplay between epigenetics and transcription will help us to understand differentiation pathways and, ultimately, to manipulate or reverse them.
Collapse
Affiliation(s)
- Katharine L Arney
- Lymphocyte Development, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
22
|
Gartler SM, Varadarajan KR, Luo P, Canfield TK, Traynor J, Francke U, Hansen RS. Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins. BMC Biol 2004; 2:21. [PMID: 15377381 PMCID: PMC521681 DOI: 10.1186/1741-7007-2-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 09/20/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. RESULTS We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. CONCLUSIONS These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.
Collapse
Affiliation(s)
- Stanley M Gartler
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Ping Luo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Theresa K Canfield
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jeff Traynor
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Uta Francke
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - R Scott Hansen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, Heard E. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 2004; 24:5475-84. [PMID: 15169908 PMCID: PMC419884 DOI: 10.1128/mcb.24.12.5475-5484.2004] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3 tail modifications are among the earliest chromatin changes in the X-chromosome inactivation process. In this study we investigated the relative profiles of two important repressive marks on the X chromosome: methylation of H3 lysine 9 (K9) and 27 (K27). We found that both H3K9 dimethylation and K27 trimethylation characterize the inactive X in somatic cells and that their relative kinetics of enrichment on the X chromosome as it undergoes inactivation are similar. However, dynamic changes of H3K9 and H3K27 methylation on the inactivating X chromosome compared to the rest of the genome are distinct, suggesting that these two modifications play complementary and perhaps nonredundant roles in the establishment and/or maintenance of X inactivation. Furthermore, we show that a hotspot of H3K9 dimethylation 5' to Xist also displays high levels of H3 tri-meK27. However, analysis of this region in G9a mutant embryonic stem cells shows that these two methyl marks are dependent on different histone methyltransferases.
Collapse
Affiliation(s)
- Claire Rougeulle
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
- Corresponding author. Mailing address for Claire Rougeulle: CNRS URA 2578, Unité de Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France. Phone: 33-1-45-68-86-53. Fax: 33-1-45-68-86-56. E-mail: . Mailing address for Edith Heard: CNRS UMR 218, Institut Curie, 26 rue d'Ulm, Paris 75005, France. Phone: 33-1-42-34-66-91. Fax: 33-1-46-33-30-16. E-mail:
| | - Julie Chaumeil
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Kavitha Sarma
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - C. David Allis
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Danny Reinberg
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Philip Avner
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Edith Heard
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
- Corresponding author. Mailing address for Claire Rougeulle: CNRS URA 2578, Unité de Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France. Phone: 33-1-45-68-86-53. Fax: 33-1-45-68-86-56. E-mail: . Mailing address for Edith Heard: CNRS UMR 218, Institut Curie, 26 rue d'Ulm, Paris 75005, France. Phone: 33-1-42-34-66-91. Fax: 33-1-46-33-30-16. E-mail:
| |
Collapse
|
24
|
Chadwick BP, Willard HF. Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 2003; 14:359-67. [PMID: 15015743 DOI: 10.1016/j.semcdb.2003.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X chromosome inactivation refers to the developmentally regulated process of silencing gene expression from all but one X chromosome per cell in female mammals in order to equalize the levels of X chromosome derived gene expression between the sexes. While much attention has focused on the genetic and epigenetic events early in development that initiate the inactivation process, it is also important to understand the events that ensure maintenance of the inactive state through subsequent cell divisions. Gene silencing at the inactive X chromosome is irreversible in somatic cells and is achieved through the formation of facultative heterochromatin (visible as the Barr body) that is remarkably stable and faithfully preserved. Here we review the many features of inactive X chromatin in terminally differentiated cells and address the highly redundant mechanisms of maintaining the inactive X chromatin.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Molecular Genetics & Microbiology, Institute for Genome Sciences and Policy, 103 Research Drive, Box 3382, Duke University Medical Center Durham, NC 27710, USA.
| | | |
Collapse
|
25
|
Ouspenski II, Van Hooser AA, Brinkley BR. Relevance of histone acetylation and replication timing for deposition of centromeric histone CENP-A. Exp Cell Res 2003; 285:175-88. [PMID: 12706113 DOI: 10.1016/s0014-4827(03)00011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A centromere-specific variant of histone H3, centromere protein A (CENP-A), is a critical determinant of centromeric chromatin, and its location on the chromosome may determine centromere identity. To search for factors that direct CENP-A deposition at a specific chromosomal locus, we took advantage of the observation that CENP-A, when expressed at elevated levels, can get incorporated at ectopic sites on the chromosome, in addition to the centromere. As core histone hypoacetylation and DNA replication timing have been implicated as epigenetic factors that may be important for centromere identity, we hypothesized that the sites of preferential CENP-A deposition will be distinguished by these parameters. We found that, on human dicentric chromosomes, ectopically expressed CENP-A preferentially incorporates at the active centromere only, despite the fact that the levels of histone acetylation and replication timing were indistinguishable at the two centromeres. In CHO cells, ectopically expressed CENP-A is preferentially targeted to some, but not all telomeric regions. Again, these regions could not be distinguished from other telomeres by their acetylation levels or replication timing. Thus histone acetylation and replication timing are not sufficient for specifying the sites of CENP-A deposition and likely for centromere identity.
Collapse
Affiliation(s)
- Ilia I Ouspenski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
26
|
Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AHFM, Jenuwein T, Otte AP, Brockdorff N. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 2003; 4:481-95. [PMID: 12689588 DOI: 10.1016/s1534-5807(03)00068-6] [Citation(s) in RCA: 496] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies have implicated the Eed-Enx1 Polycomb group complex in the maintenance of imprinted X inactivation in the trophectoderm lineage in mouse. Here we show that recruitment of Eed-Enx1 to the inactive X chromosome (Xi) also occurs in random X inactivation in the embryo proper. Localization of Eed-Enx1 complexes to Xi occurs very early, at the onset of Xist expression, but then disappears as differentiation and development progress. This transient localization correlates with the presence of high levels of the complex in totipotent cells and during early differentiation stages. Functional analysis demonstrates that Eed-Enx1 is required to establish methylation of histone H3 at lysine 9 and/or lysine 27 on Xi and that this, in turn, is required to stabilize the Xi chromatin structure.
Collapse
Affiliation(s)
- Jose Silva
- X Inactivation Group, MRC Clinical Sciences Centre, ICSM, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cheung P. Generation and Characterization of Antibodies Directed Against Di-Modified Histones, and Comments on Antibody and Epitope Recognition. Methods Enzymol 2003; 376:221-34. [PMID: 14975309 DOI: 10.1016/s0076-6879(03)76015-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Peter Cheung
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Canada
| |
Collapse
|
28
|
Eissenberg JC, Wallrath LL. Heterochromatin, Position Effects, and the Genetic Dissection of Chromatin. ACTA ACUST UNITED AC 2003; 74:275-99. [PMID: 14510079 DOI: 10.1016/s0079-6603(03)01016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Joel C Eissenberg
- Department of Biochemistry and Molecular Biology, St. Louis School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
29
|
Kristjuhan A, Walker J, Suka N, Grunstein M, Roberts D, Cairns BR, Svejstrup JQ. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol Cell 2002; 10:925-33. [PMID: 12419235 PMCID: PMC9035295 DOI: 10.1016/s1097-2765(02)00647-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Changes in histone acetylation at promoters correlate with transcriptional activation and repression, but whether acetylation of histones in the coding region of genes is important for transcription is less clear. Here, we show that cells lacking the histone acetyltransferases Gcn5 and Elp3 have widespread and severe histone H3 hypoacetylation in chromatin. Surprisingly, severe hypoacetylation in the promoter does not invariably affect the ability of TBP to bind the TATA element, or transcription of the gene. By contrast, similar hypoacetylation of the coding region correlates with inhibition of transcription, and inhibition correlates better with the overall charge of the histone H3 tail than with hypoacetylation of specific lysine residues. These data provide insights into the effects of histone H3 hypoacetylation in vivo and underscore the importance of the overall charge of the histone tail for transcription.
Collapse
Affiliation(s)
- Arnold Kristjuhan
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
| | - Jane Walker
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
| | - Noriyuki Suka
- Department of Biological Chemistry UCLA School of Medicine and The Molecular Biology Institute University of California, Los Angeles Los Angeles, California 90095
| | - Michael Grunstein
- Department of Biological Chemistry UCLA School of Medicine and The Molecular Biology Institute University of California, Los Angeles Los Angeles, California 90095
| | - Douglas Roberts
- Howard Hughes Medical Institute and Department of Oncological Science Huntsman Cancer Institute University of Utah Salt Lake City, Utah 84112
| | - Bradley R. Cairns
- Howard Hughes Medical Institute and Department of Oncological Science Huntsman Cancer Institute University of Utah Salt Lake City, Utah 84112
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
- Correspondence:
| |
Collapse
|
30
|
Chadwick BP, Willard HF. Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 2002; 157:1113-23. [PMID: 12082075 PMCID: PMC2173542 DOI: 10.1083/jcb.200112074] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
One of several features acquired by chromatin of the inactive X chromosome (Xi) is enrichment for the core histone H2A variant macroH2A within a distinct nuclear structure referred to as a macrochromatin body (MCB). In addition to localizing to the MCB, macroH2A accumulates at a perinuclear structure centered at the centrosome. To better understand the association of macroH2A1 with the centrosome and the formation of an MCB, we investigated the distribution of macroH2A1 throughout the somatic cell cycle. Unlike Xi-specific RNA, which associates with the Xi throughout interphase, the appearance of an MCB is predominantly a feature of S phase. Although the MCB dissipates during late S phase and G2 before reforming in late G1, macroH2A1 remains associated during mitosis with specific regions of the Xi, including at the X inactivation center. This association yields a distinct macroH2A banding pattern that overlaps with the site of histone H3 lysine-4 methylation centered at the DXZ4 locus in Xq24. The centrosomal pool of macroH2A1 accumulates in the presence of an inhibitor of the 20S proteasome. Therefore, targeting of macroH2A1 to the centrosome is likely part of a degradation pathway, a mechanism common to a variety of other chromatin proteins.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | |
Collapse
|
31
|
Abstract
X-chromosome inactivation leads to divergent fates for two homologous chromosomes. Whether one X remains active or becomes silenced depends on the activity of Xist, a gene expressed only from the inactive X and whose RNA product 'paints' the X in cis. Recent work argues that Xist RNA itself is the acting agent for initiating the silencing step. Xist RNA contains separable domains for RNA localization and chromosome silencing. While no Xist RNA-interacting factors have been identified, a growing collection of chromatin alterations have been identified on the inactive X, including variant histone H2A composition and histone H3 methylation. Some or all of these changes may be critical for chromosome-wide silencing. As none of the silencing proteins identified so far is unique to X chromosome inactivation, the specificity must partly reside in Xist RNA whose spread along the X orchestrates general silencing factors for this specific task.
Collapse
Affiliation(s)
- Dena E Cohen
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
32
|
Mermoud JE, Popova B, Peters AHFM, Jenuwein T, Brockdorff N. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol 2002; 12:247-51. [PMID: 11839280 DOI: 10.1016/s0960-9822(02)00660-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In female mammals, a single X chromosome is stably and heritably silenced early in embryogenesis. The inactive X is characterized by asynchronous DNA replication and epigenetic chromatin modifications, including DNA methylation, histone H3/H4 hypoacetylation, and incorporation of a variant histone macroH2A. X inactivation is initiated by a cis-acting RNA molecule, the X-inactive specific transcript (Xist), which coats the chromosome. However, the mechanism by which Xist induces chromosome silencing is poorly understood. An important approach towards answering this question has been to determine the temporal order of epigenetic chromatin modifications in an in vitro model system, differentiating XX embryonic stem (ES) cells, and thereby to identify candidate targets for Xist RNA. To date, these studies have demonstrated that, following accumulation of Xist RNA, the transition to late replication of the X chromosome is the earliest detectable event. H4 hypoacetylation, macroH2A1.2 incorporation, and DNA methylation all occur subsequently. Recently, it has been shown that chromatin of the inactive X is also characterized by methylation of histone H3 at lysine 9 (H3-K9). Here we show that H3-K9 methylation is a very early event in the process of X inactivation, which closely parallels the onset of Xist RNA accumulation.
Collapse
Affiliation(s)
- Jacqueline E Mermoud
- X Inactivation Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Morrison AJ, Sardet C, Herrera RE. Retinoblastoma protein transcriptional repression through histone deacetylation of a single nucleosome. Mol Cell Biol 2002; 22:856-65. [PMID: 11784861 PMCID: PMC133558 DOI: 10.1128/mcb.22.3.856-865.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 10/11/2001] [Accepted: 10/16/2001] [Indexed: 01/26/2023] Open
Abstract
The retinoblastoma protein, pRb, controls transcription through recruitment of histone deacetylase to particular E2F-responsive genes. We determined the acetylation level of individual nucleosomes present in the cyclin E promoter of RB(+/+) and RB(-/-) mouse embryo fibroblasts. We also determined the effects of pRb on nucleosomal conformation by examining the thiol reactivity of histone H3 of individual nucleosomes. We found that pRb represses the cyclin E promoter through histone deacetylation of a single nucleosome, to which it and histone deacetylase 1 bind. In addition, the conformation of this nucleosome is modulated by pRb-directed histone deacetylase activity. Thus, the repressive role of pRb in cyclin E transcription and therefore cell cycle progression can be mapped to its control of the acetylation status and conformation of a single nucleosome.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
34
|
Peters AHFM, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 2002; 30:77-80. [PMID: 11740497 DOI: 10.1038/ng789] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Post-translational modifications of histone amino termini are an important regulatory mechanism that induce transitions in chromatin structure, thereby contributing to epigenetic gene control and the assembly of specialized chromosomal subdomains. Methylation of histone H3 at lysine 9 (H3-Lys9) by site-specific histone methyltransferases (Suv39h HMTases) marks constitutive heterochromatin. Here, we show that H3-Lys9 methylation also occurs in facultative heterochromatin of the inactive X chromosome (Xi) in female mammals. H3-Lys9 methylation is retained through mitosis, indicating that it might provide an epigenetic imprint for the maintenance of the inactive state. Disruption of the two mouse Suv39h HMTases abolishes H3-Lys9 methylation of constitutive heterochromatin but not that of the Xi. In addition, HP1 proteins, which normally associate with heterochromatin, do not accumulate with the Xi. These observations suggest the existence of an Suv39h-HP1-independent pathway regulating H3-Lys9 methylation of facultative heterochromatin.
Collapse
Affiliation(s)
- Antoine H F M Peters
- Research Institute of Molecular Pathology, The Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 2002; 30:73-6. [PMID: 11740495 DOI: 10.1038/ng787] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies of histone methylation have shown that H3 can be methylated at lysine 4 (Lys4) or lysine 9 (Lys9). Whereas H3-Lys4 methylation has been correlated with active gene expression, H3-Lys9 methylation has been linked to gene silencing and assembly of heterochromatin in mouse and Schizosaccharomyces pombe. The chromodomain of mouse HP1 (and Swi6 in S. pombe) binds H3 methylated at Lys9, and methylation at this site is thought to mark and promote heterochromatin assembly. We have used a well-studied model of mammalian epigenetic silencing, the human inactive X chromosome, to show that enrichment for H3 methylated at Lys9 is also a distinguishing mark of facultative heterochromatin. In contrast, H3 methylated at Lys4 is depleted in the inactive X chromosome, except in three 'hot spots' of enrichment along its length. Chromatin immunoprecipitation analyses further show that Lys9 methylation is associated with promoters of inactive genes, whereas Lys4 methylation is associated with active genes on the X chromosome. These data demonstrate that differential methylation at two distinct sites of the H3 amino terminus correlates with contrasting gene activities and may be part of a 'histone code' involved in establishing and maintaining facultative heterochromatin.
Collapse
Affiliation(s)
- Barbara A Boggs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
36
|
Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 2001; 107:727-38. [PMID: 11747809 DOI: 10.1016/s0092-8674(01)00598-0] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coating of the X chromosome by Xist RNA is an essential trigger for X inactivation. However, little is known about the early chromatin remodeling events that transform this signal into transcriptional silencing. Here we report that methylation of histone H3 lysine 9 on the inactive X chromosome occurs immediately after Xist RNA coating and before transcriptional inactivation of X-linked genes. X-chromosomal H3 Lys-9 methylation occurs during the same window of time as H3 Lys-9 hypoacetylation and H3 Lys-4 hypomethylation. Histone H3 modifications thus represent the earliest known chromatin changes during X inactivation. We also identify a unique "hotspot" of H3 Lys-9 methylation 5' to Xist, and we propose that this acts as a nucleation center for Xist RNA-dependent spread of inactivation along the X chromosome via H3 Lys-9 methylation.
Collapse
Affiliation(s)
- E Heard
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Ye Q, Hu YF, Zhong H, Nye AC, Belmont AS, Li R. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol 2001; 155:911-21. [PMID: 11739404 PMCID: PMC2150890 DOI: 10.1083/jcb.200108049] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The breast cancer susceptibility gene BRCA1 encodes a protein that has been implicated in multiple nuclear functions, including transcription and DNA repair. The multifunctional nature of BRCA1 has raised the possibility that the polypeptide may regulate various nuclear processes via a common underlying mechanism such as chromatin remodeling. However, to date, no direct evidence exists in mammalian cells for BRCA1-mediated changes in either local or large-scale chromatin structure. Here we show that targeting BRCA1 to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity is independently conferred by three subdomains within the transactivation domain of BRCA1, namely activation domain 1, and the two BRCA1 COOH terminus (BRCT) repeats. In addition, we demonstrate a similar chromatin unfolding activity associated with the transactivation domains of E2F1 and tumor suppressor p53. However, unlike E2F1 and p53, BRCT-mediated chromatin unfolding is not accompanied by histone hyperacetylation. Cancer-predisposing mutations of BRCA1 display an allele-specific effect on chromatin unfolding: 5' mutations that result in gross truncation of the protein abolish the chromatin unfolding activity, whereas those in the 3' region of the gene markedly enhance this activity. A novel cofactor of BRCA1 (COBRA1) is recruited to the chromosome site by the first BRCT repeat of BRCA1, and is itself sufficient to induce chromatin unfolding. BRCA1 mutations that enhance chromatin unfolding also increase its affinity for, and recruitment of, COBRA1. These results indicate that reorganization of higher levels of chromatin structure is an important regulated step in BRCA1-mediated nuclear functions.
Collapse
Affiliation(s)
- Q Ye
- Department of Biochemistry and Molecular Genetics, Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 2001; 276:38307-19. [PMID: 11479283 DOI: 10.1074/jbc.m100290200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation, a reversible modification of the core histones, is widely accepted to be involved in remodeling chromatin organization for genetic reprogramming. Histone acetylation is a dynamic process that is regulated by two classes of enzymes, the histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although promoter-specific acetylation and deacetylation has received most of the recent attention, it is superimposed upon a broader acting and dynamic acetylation that profoundly affects many nuclear processes. In this study, we monitored this broader histone acetylation as cells enter and exit mitosis. In contrast to the hypothesis that HATs and HDACs remain bound to mitotic chromosomes to provide an epigenetic imprint for postmitotic reactivation of the genome, we observed that HATs and HDACs are spatially reorganized and displaced from condensing chromosomes as cells progress through mitosis. During mitosis, HATs and HDACs are unable to acetylate or deacetylate chromatin in situ despite remaining fully catalytically active when isolated from mitotic cells and assayed in vitro. Our results demonstrate that HATs and HDACs do not stably bind to the genome to function as an epigenetic mechanism of selective postmitotic gene activation. Our results, however, do support a role for spatial organization of these enzymes within the cell nucleus and their relationship to euchromatin and heterochromatin postmitotically in the reactivation of the genome.
Collapse
Affiliation(s)
- M J Kruhlak
- Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chadwick BP, Valley CM, Willard HF. Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome. Nucleic Acids Res 2001; 29:2699-705. [PMID: 11433014 PMCID: PMC55781 DOI: 10.1093/nar/29.13.2699] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromatin on the inactive X chromosome (Xi) of female mammals is enriched for the histone variant macroH2A that can be detected at interphase as a distinct nuclear structure referred to as a macro chromatin body (MCB). Green fluorescent protein-tagged and Myc epitope-tagged macroH2A readily form an MCB in the nuclei of transfected female, but not male, cells. Using targeted disruptions, we have identified two macrochromatin domains within macroH2A that are independently capable of MCB formation and association with the Xi. Complete removal of the non-histone C-terminal tail does not reduce the efficiency of association of the variant histone domain of macroH2A with the Xi, indicating that the histone portion alone can target the Xi. The non-histone domain by itself is incapable of MCB formation. However, when directed to the nucleosome by fusion to core histone H2A or H2B, the non-histone tail forms an MCB that appears identical to that of the endogenous protein. Mutagenesis of the non-histone portion of macroH2A localized the region required for MCB formation and targeting to the Xi to an approximately 190 amino acid region.
Collapse
Affiliation(s)
- B P Chadwick
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
40
|
Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth F, Stevenin J, Almouzni G, Tora L. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 2001; 20:3187-96. [PMID: 11406595 PMCID: PMC150203 DOI: 10.1093/emboj/20.12.3187] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Initiation of transcription of protein-encoding genes by RNA polymerase II (Pol II) was thought to require transcription factor TFIID, a complex comprised of the TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s). In the presence of TBP-free TAF(II) complex (TFTC), initiation of Pol II transcription can occur in the absence of TFIID. TFTC containing the GCN5 acetyltransferase acetylates histone H3 in a nucleosomal context. We have identified a 130 kDa subunit of TFTC (SAP130) that shares homology with the large subunit of UV-damaged DNA-binding factor. TFTC preferentially binds UV-irradiated DNA, UV-damaged DNA inhibits TFTC-mediated Pol II transcription and TFTC is recruited in parallel with the nucleotide excision repair protein XP-A to UV-damaged DNA. TFTC preferentially acetylates histone H3 in nucleosomes assembled on UV-damaged DNA. In agreement with this, strong histone H3 acetylation occurs in intact cells after UV irradiation. These results suggest that the access of DNA repair machinery to lesions within chromatin may be facilitated by TFTC via covalent modification of chromatin. Thus, our experiments reveal a molecular link between DNA damage recognition and chromatin modification.
Collapse
Affiliation(s)
| | - Jonathan G. Moggs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of ‘Transcriptional and post-transcriptional control of gene regulation’, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU de Strasbourg and
Institut Curie, UMR 218 du CNRS, 26, rue d’Ulm, 75248 Paris Cedex 05, France Present address: Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK Corresponding author e-mail:
| | | | | | | | | | - Geneviève Almouzni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of ‘Transcriptional and post-transcriptional control of gene regulation’, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU de Strasbourg and
Institut Curie, UMR 218 du CNRS, 26, rue d’Ulm, 75248 Paris Cedex 05, France Present address: Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK Corresponding author e-mail:
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of ‘Transcriptional and post-transcriptional control of gene regulation’, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU de Strasbourg and
Institut Curie, UMR 218 du CNRS, 26, rue d’Ulm, 75248 Paris Cedex 05, France Present address: Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK Corresponding author e-mail:
| |
Collapse
|
41
|
Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 2001; 152:375-84. [PMID: 11266453 PMCID: PMC2199617 DOI: 10.1083/jcb.152.2.375] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromatin on the mammalian inactive X chromosome differs in a number of ways from that on the active X. One protein, macroH2A, whose amino terminus is closely related to histone H2A, is enriched on the heterochromatic inactive X chromosome in female cells. Here, we report the identification and localization of a novel and more distant histone variant, designated H2A-Bbd, that is only 48% identical to histone H2A. In both interphase and metaphase female cells, using either a myc epitope-tagged or green fluorescent protein-tagged H2A-Bbd construct, the inactive X chromosome is markedly deficient in H2A-Bbd staining, while the active X and the autosomes stain throughout. In double-labeling experiments, antibodies to acetylated histone H4 show a pattern of staining indistinguishable from H2A-Bbd in interphase nuclei and on metaphase chromosomes. Chromatin fractionation demonstrates association of H2A-Bbd with the histone proteins. Separation of micrococcal nuclease-digested chromatin by sucrose gradient ultracentrifugation shows cofractionation of H2A-Bbd with nucleosomes, supporting the idea that H2A-Bbd is incorporated into nucleosomes as a substitute for the core histone H2A. This finding, in combination with the overlap with acetylated forms of H4, raises the possibility that H2A-Bbd is enriched in nucleosomes associated with transcriptionally active regions of the genome. The distribution of H2A-Bbd thus distinguishes chromatin on the active and inactive X chromosomes.
Collapse
Affiliation(s)
- Brian P. Chadwick
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, Ohio 44106-4955
| | - Huntington F. Willard
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, Ohio 44106-4955
| |
Collapse
|
42
|
Abstract
In many sexually dimorphic species, a mechanism is required to ensure equivalent levels of gene expression from the sex chromosomes. In mammals, such dosage compensation is achieved by X-chromosome inactivation, a process that presents a unique medley of biological puzzles: how to silence one but not the other X chromosome in the same nucleus; how to count the number of X's and keep only one active; how to choose which X chromosome is inactivated; and how to establish this silent state rapidly and efficiently during early development. The key to most of these puzzles lies in a unique locus, the X-inactivation centre and a remarkable RNA--Xist--that it encodes.
Collapse
Affiliation(s)
- P Avner
- Unité de Génétique Moléculaire Murine Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| | | |
Collapse
|
43
|
Abstract
Posttranslational modifications of the N-terminal tails of the core histones within the nucleosome particle are thought to act as signals from the chromatin to the cell for various processes. The experiments presented here show that the acetylation of histones H3 and H4 in polytene chromosomes does not change during heat shock. In contrast, the global level of phosphorylated H3 decreased dramatically during a heat shock, with an observed increase in H3 phosphorylation at the heat shock loci. Additional experiments confirm that this change in phosphorylated H3 distribution is dependent on functional heat shock transcription factor activity. These experiments suggest that H3 phosphorylation has an important role in the induction of transcription during the heat shock response.
Collapse
Affiliation(s)
- S J Nowak
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
44
|
Gilbert SL, Pehrson JR, Sharp PA. XIST RNA associates with specific regions of the inactive X chromatin. J Biol Chem 2000; 275:36491-4. [PMID: 11006266 DOI: 10.1074/jbc.c000409200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microscopy studies have shown that XIST RNA colocalizes with the inactive X chromosome (Xi). However, the molecular basis for this colocalization is unknown. Here we provide two lines of evidence from chromatin immunoprecipitation experiments that XIST RNA physically associates with the Xi chromatin. First, XIST RNA can be co-precipitated by antiserum against macroH2A, a histone H2A variant enriched in the Xi. Second, XIST RNA can be co-precipitated by antisera that recognize unacetylated, but not acetylated, isoforms of histones H3 and H4. The specificity of XIST RNA association with hypoacetylated chromatin, together with the previous finding that hypoacetylated histone H4 is enriched at promoters of X-inactivated genes, raises the possibility that XIST RNA may contribute to the hypoacetylation of specific regions of the Xi so as to alter the expression of X-linked genes.
Collapse
Affiliation(s)
- S L Gilbert
- Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
45
|
Pile LA, Wassarman DA. Chromosomal localization links the SIN3-RPD3 complex to the regulation of chromatin condensation, histone acetylation and gene expression. EMBO J 2000; 19:6131-40. [PMID: 11080159 PMCID: PMC305822 DOI: 10.1093/emboj/19.22.6131] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Revised: 08/31/2000] [Accepted: 09/22/2000] [Indexed: 11/12/2022] Open
Abstract
Acetylation of core histone N-terminal tails influences chromatin condensation and transcription. To examine how the SIN3-RPD3 deacetylase complex contributes to these events in vivo, we examined binding of SIN3 and RPD3 to Drosophila salivary gland polytene chromosomes. The binding patterns of SIN3 and RPD3 were highly coincident, suggesting that the SIN3-RPD3 complex is the most abundant chromatin-bound RPD3 complex in salivary gland cells. SIN3- RPD3 binding was restricted to less condensed, hypoacetylated euchromatic interbands and was absent from moderately condensed, hyperacetylated euchromatic bands and highly condensed, differentially acetylated centric heterochromatin. Consistent with its demonstrated role in transcriptional repression, SIN3-RPD3 did not co-localize with RNA polymer ase II. Chromatin binding of the complex, mediated by SMRTER, decreased upon ecdysone-induced transcriptional activation but was restored when transcription was reduced. These results implicate SIN3-RPD3 in maintaining histone acetylation levels or patterns within less condensed chromatin domains and suggest that SIN3-RPD3 activity is required, in the absence of an activation signal, to repress transcription of particular genes within transcriptionally active chromatin domains.
Collapse
Affiliation(s)
- L A Pile
- National Institutes of Health, National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, Building 18T, Room 101, Bethesda, MD 20892, USA
| | | |
Collapse
|
46
|
Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 2000; 5:905-15. [PMID: 10911985 DOI: 10.1016/s1097-2765(00)80256-7] [Citation(s) in RCA: 643] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Histone acetylation and phosphorylation have separately been suggested to affect chromatin structure and gene expression. Here we report that these two modifications are synergistic. Stimulation of mammalian cells by epidermal growth factor (EGF) results in rapid and sequential phosphorylation and acetylation of H3, and these dimodified H3 molecules are preferentially associated with the EGF-activated c-fos promoter in a MAP kinase-dependent manner. In addition, the prototypical histone acetyltransferase Gcn5 displays an up to 10-fold preference for phosphorylated (Ser-10) H3 over nonphosphorylated H3 as substrate in vitro, suggesting that H3 phosphorylation can affect the efficiency of subsequent acetylation reactions. Together, these results illustrate how the addition of multiple histone modifications may be coupled during the process of gene expression.
Collapse
Affiliation(s)
- P Cheung
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | |
Collapse
|
47
|
Andrews KT, Walduck A, Kelso MJ, Fairlie DP, Saul A, Parsons PG. Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int J Parasitol 2000; 30:761-8. [PMID: 10856511 DOI: 10.1016/s0020-7519(00)00043-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The histones of Plasmodium falciparum represent a potential new target for anti-malarial compounds. A naturally occurring compound, apicidin, has recently been shown to inhibit the in vitro growth of P. falciparum. Apicidin was shown to hyperacetylate histones, suggesting that its mode of action is through histone deacetylase inhibition. We have tested the ability of known histone deacetylase inhibitors, mammalian tumour suppressor compounds, and cytodifferentiating agents to inhibit the in vitro growth of a drug sensitive and resistant strain of P. falciparum. Seven of the tested compounds had microM IC50 values, and trichostatin A, a histone deacetylation inhibitor and cytodifferentiating agent, was active at low nM concentrations. One compound, suberic acid bisdimethylamide, which selectively arrests tumour cells as opposed to normal mammalian cells, had an in vivo cytostatic effect against the acute murine malaria Plasmodium berghei, and one round of treatment with the compound failed to select for resistant mutations. These results suggest a promising role for histone deacetylase inhibitors and cytodifferentiating agents as antimalarial drug candidates.
Collapse
Affiliation(s)
- K T Andrews
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, 300 Herston Road, Queensland 4029, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Boisvert FM, Hendzel MJ, Bazett-Jones DP. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 2000; 148:283-92. [PMID: 10648561 PMCID: PMC2174275 DOI: 10.1083/jcb.148.2.283] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes.
Collapse
Affiliation(s)
| | - Michael J. Hendzel
- Department of Cell Biology and Anatomy, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
49
|
Abstract
From worms to humans, recognizing and modifying a specific chromosome is essential for dosage compensation, the mechanism by which equal X-linked gene expression in males and females is achieved. Recent molecular genetic and biochemical studies have provided new insights into how regulatory factors in Drosophila are recruited and assembled on the X chromosome, leading to the essential hypertranscription of its genes.
Collapse
Affiliation(s)
- H Amrein
- Department of Genetics, Duke University Medical Center, Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J Cell Biol 1999; 147:1399-408. [PMID: 10613899 PMCID: PMC2174253 DOI: 10.1083/jcb.147.7.1399] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The histone macroH2A1.2 has been implicated in X chromosome inactivation on the basis of its accumulation on the inactive X chromosome (Xi) of adult female mammals. We have established the timing of macroH2A1.2 association with the Xi relative to the onset of X-inactivation in differentiating murine embryonic stem (ES) cells using immuno-RNA fluorescence in situ hybridization (FISH). Before X-inactivation we observe a single macroH2A1.2-dense region in both undifferentiated XX and XY ES cells that does not colocalize with X inactive specific transcript (Xist) RNA, and thus appears not to associate with the X chromosome(s). This pattern persists through early stages of differentiation, up to day 7. Then the frequency of XY cells containing a macroH2A1.2-rich domain declines. In contrast, in XX cells there is a striking relocalization of macroH2A1.2 to the Xi. Relocalization occurs in a highly synchronized wave over a 2-d period, indicating a precisely regulated association. The timing of macroH2A1.2 accumulation on the Xi suggests it is not necessary for the initiation or propagation of random X-inactivation.
Collapse
Affiliation(s)
- J E Mermoud
- X-Inactivation Group, Medical Research Council Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, United Kingdom.
| | | | | | | |
Collapse
|