1
|
Kunacheva C, Soh YNA, Stuckey DC. Identification of soluble microbial products (SMPs) from the fermentation and methanogenic phases of anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134177. [PMID: 31783466 DOI: 10.1016/j.scitotenv.2019.134177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The production and transformation of Soluble Microbial Products (SMPs) in biological treatment systems is complex, and their genesis and reasons for production are still unclear. SMPs are important since they constitute the main fraction of effluent COD (both aerobic and anaerobic), and hence are the main precursors for disinfection by-products (DBPs). In addition, they are a key component of fouling in membrane bioreactors. Hence, it is important to identify the chemical composition of SMPs, determine their origin, and understand what system parameters influence their production so we can possibly develop strategies to control their production. This study focuses on the production and identification of SMPs in an anaerobic batch process being fed a synthetic feed. To further understand the origins of SMPs, and how they are produced, we analysed the processes of fermentation and methanogenesis independently which has never been done in detail before. SMP concentration, molecular weight distribution and carbohydrate analyses were used to estimate the amount of SMPs in the supernatants. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Time-of-Flight mass spectrometry (LC-ESI-Q-ToF) were used to identify many of the SMPs which have relative masses up to 2 kDa. Our results showed that fermentation released much higher SMP concentrations compared to methanogenesis, especially in the range of 70 k-1000 k Da and 106-1500 Da. Alkanes, alkenes, alcohols, acids, and nitrogen-compounds were the major group of compounds identified in the supernatant of both fermentation and methanogenesis, and 71% of the compounds identified were found in both phases of digestion. Results from LC-ESI-Q-ToF analysis identified components of the cell membrane, such as phosphatidylglycerol, phosphatidylethanolamine and phosphatidylserine, as well as other compounds such as flavonoids, acylglycerol, terpene and terpenoids, benzenoid, glyceride, steroid and steroid derivatives.
Collapse
Affiliation(s)
- C Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore.
| | - Y N A Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore.
| | - D C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Kunacheva C, Le C, Soh YNA, Stuckey DC. Chemical Characterization of Low Molecular Weight Soluble Microbial Products in an Anaerobic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2254-2261. [PMID: 28124898 DOI: 10.1021/acs.est.6b05791] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effluents from wastewater treatment systems contain a variety of organic compounds, including end products from the degradation of influent substrates, nonbiodegradable feed compounds, and soluble microbial products (SMPs) produced by microbial metabolism. It is important to identify the major components of these SMPs to understand what is in wastewater effluents. In this study, physical pretreatments to extract and concentrate low molecular weight SMPs (MW< 580 Da) from effluents were optimized. Liquid-liquid extraction (LLE) of a 200 mL effluent sample showed the best performance using a mixture of n-hexane, chloroform, and dichloromethane (70 mL) for extraction. For solid phase extraction (SPE), two OasisHLB cartridges were connected in-line to optimize recovery, and the eluted samples from each cartridge were analyzed separately to avoid overlapping peaks. Four solvents varying from polar to nonpolar (methanol, acetone, dichloromethane, and n-hexane) were selected to maximize the number of compound peaks eluted. A combination of SPE (OasisHLB) followed by LLE was shown to maximize compound identification and quantification. However, the compounds identified accounted for only 2.1 mg of chemical oxygen demand (COD)/L (16% of total SMP as COD) because many SMPs have considerably higher MWs. Finally, the method was validated by analyzing a variety of different reactor effluents and feeds.
Collapse
Affiliation(s)
- Chinagarn Kunacheva
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University , 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Chencheng Le
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University , 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
- Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Ni Annie Soh
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University , 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University , 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
- Department of Chemical Engineering, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
3
|
Abstract
Alka(e)nes are the predominant constituents of gasoline, diesel, and jet fuels. They can be produced naturally by a wide range of microorganisms. Bio-alka(e)nes can be used as drop-in biofuels. To date, five microbial pathways that convert free fatty acids or fatty acid derivatives into alka(e)nes have been identified or reconstituted. The discoveries open a door to achieve microbial production of alka(e)nes with high efficiency. The modules derived from these alka(e)ne biosynthetic pathways can be assembled as biological parts and synthetic biology strategies can be employed to optimize the metabolic pathways and improve alka(e)ne production.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
4
|
Dib JR, Liebl W, Wagenknecht M, Farías ME, Meinhardt F. Extrachromosomal genetic elements in Micrococcus. Appl Microbiol Biotechnol 2012; 97:63-75. [PMID: 23138713 DOI: 10.1007/s00253-012-4539-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.
Collapse
Affiliation(s)
- Julián Rafael Dib
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Chapter 13 Bacterial hydrocarbon biosynthesis revisited. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-2991(04)80154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Lipids ofMaclura aurantiaca. Chem Nat Compd 1999. [DOI: 10.1007/bf02238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
The lipid geochemistry of a Recent sapropel and associated sediments from the Hellenic Outer Ridge, eastern Mediterranean Sea. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rsta.1986.0102] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Five sections (0-7, 29-36, 53-60, 78-85 and 104-111 cm), of a 0-2 m sediment core from the Hellenic Outer Ridge, in the eastern Mediterranean Sea, have been examined for lipids. Three of these sections were from a 73 cm thick S
1
(
ca
. 6000—9000 years b.p.) sapropel layer, one from an upper ooze layer and one from a lower marl. The lipids were extracted and the major classes analysed in detail by gas chromatography and computerized gas chromatography—mass spectrometry. In all sections, the
n
-alkanes were dominated by C
25
—C
31
components, showing a high odd-over-even predominance, with smaller amounts of lower chain-length components. The acyclic ketone fraction consisted mainly of C
37
—C
39
di- and triunsaturated alken-2-ones and alken-3-ones. Alkanols, ranging from C
12
—C
32
with a high even-odd preponderance, were present in all sections, maximizing at
n
-C
22
or
n
-C
26
. The sapropel contained abundant phytol (up to 7000 ng g
-1
dry sediment), and considerable amounts of 22 :1, 24:1 and 26 :1
n
-alkenols; in the non-sapropelic sediment, phytol was only a minor com ponent, and no
n
-alkenols were detected. In addition to these alcohols, the sapropel also contained C
28
—C
32
1,13-, 1,14- and 1,15- diols and 15-keto-alkan-l-ols, the 30 :0 compound predominating in both series. In all sections, fatty acids were the most abundant lipid class. These were mainly C
12
—C
30
straight-chain compounds, maximizing at 16:0 with a high even—odd predominance; most were saturated, but C
16
, C
18
, C
20
, C
22
and C
24
monoenoic acids and small amounts of C
16
, C
18
, C
20
, C
22
and C
24
polyenoic acids were present. A range of branched and cyclic acids were also identified. The non-sapropelic upper and lower sediments differed from the sapropel in containing higher levels of branched acids (especially C
15
and C
17
iso- and anteiso-compounds) and C
18
monoenoic acids: these differences could be related to differing inputs, especially in terms of microbial communities. The sterol distributions of the sapropel displayed a wide range of structures (C
26
—C
31
), totalling over sixty different components. These included both 4-methyland 4-desmethylnuclei, a variety of C
8
—C
11
side-chains, and encompassed Δ
5
, Δ
5,22
, Δ
5,24
, Δ
5,24(28)
, Δ
22
, Δ
24(28)
, Δ
7
and Δ
8(14)
unsaturation plus a range of fully saturated stands. Major components were 4α, 23, 24-trimethyl-5α-cholest-22-en-3β-ol (dinosterol), cholest-5-en-3|I-ol (cholesterol), 24-methylcholesta-5,22-dien-3β-ol and 24-ethylcholest-5-en-3β-ol. In contrast, the non-sapropelic sediments contained very low levels of only a few sterols, chiefly cholesterol and dinosterol, probably due to input differences. In addition to sterols, the sapropel also contained small amounts of stanones and sterenes. A significant terrigenous input of lipids is evident throughout the core (especially from the
n
-alkane data), but the sapropel lipid composition appears to be predominantly of marine origin. Individual ‘biological marker’ lipids suggest inputs from Dinophycean and Haptophycean algae to the sapropel. Potential contributions of lipids from organisms such as foraminifera and pteropods, remains of which were observed in the sediment, are difficult to assess due to a paucity of data on the lipid compositions of such organisms. The lipids of the non-sapropelic sediments showed a much less prominent marine signal, especially in terms of the lower levels of phytol and sterols and the higher relative abundance of terrestrial
n
-alkanes. Two main models have been proposed to explain the formation of organic-rich sapropel facies; (i) stagnation of the water column and the establishment of anoxic conditions in bottom water and sediments, resulting in enhanced preservation of sedimentary organic matter, and (ii) increased biological production providing an increased input of organic matter to the sediments. The lipid composition strongly suggests that this sapropel received a large marine-derived input of organic matter. Since this was less evident in the overlying and underlying sediments, sapropel deposition appears to have been associated with an increased autochthonous input. The anoxic nature of the sapropel, by restricting degradation to anaerobic processes, will also have contributed to the differences in lipid composition between the sediment types. Little diagenesis of lipids in the sapropel was evident. Small amounts of sterenes and 5β(H)-stands were present, probably formed by dehydration and reduction, respectively, of precursor sterols. Diagenetic dehydration of phytol may have contributed to the presence of minor amounts of certain other isoprenoid lipids.
Collapse
|
9
|
Suen Y, Holzer GU, Hubbard JS, Tornabene TG. Biosynthesis of acyclic methyl branched polyunsaturated hydrocarbons inPseudomonas maltophilia. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01569572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
|
11
|
Goodloe R, Light RJ. Biosynthesis of hydrocarbon in anabaena variabilis in vivo incorporation of [18-14c]stearate. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0005-2760(82)90034-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
|
13
|
Major MA, Blomquist GJ. Biosynthesis of hydrocarbons in insects: Decarboxylation of long chain acids ton-alkanes inPeriplaneta. Lipids 1978. [DOI: 10.1007/bf02533722] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Cuticular hydrocarbons of the eastern subterranean termite,Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J Chem Ecol 1978. [DOI: 10.1007/bf00988058] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Lechevalier MP. Lipids in bacterial taxonomy - a taxonomist's view. CRC CRITICAL REVIEWS IN MICROBIOLOGY 1977; 5:109-210. [PMID: 844323 DOI: 10.3109/10408417709102311] [Citation(s) in RCA: 295] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
|
17
|
Blomquist GJ, Kearney GP. Biosynthesis of internally branched monomethylalkanes in the cockroach Periplaneta fuliginosa. Arch Biochem Biophys 1976; 173:546-53. [PMID: 1275507 DOI: 10.1016/0003-9861(76)90291-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Bibliography. ACTA ACUST UNITED AC 1976. [DOI: 10.1016/s0070-4571(08)71171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Kennedy RS, Finnerty WR. Microbial assimilation of hydrocarbons. I. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp. Arch Microbiol 1975; 102:75-83. [PMID: 163624 DOI: 10.1007/bf00428349] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The fine-structure analysis of the hydrocarbon oxidizing microorganism, Acinetobacter sp., demonstrated a cytoplasmic modification resulting from growth on paraffinic and olefinic hydrocarbons. 2. Intracytoplasmic hydrocarbon inclusions were documented by electron microscopy with chemical identifications obtained by gas chromatography and X-ray diffraction. 3. These results demonstrate the ability of a microorganism to accumulate hydrocarbon substrates intracellularly which, in turn, indicates the transport across the cell membrane.
Collapse
|
20
|
Makula RA, Lockwood PJ, Finnerty WR. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 1975; 121:250-8. [PMID: 1116989 PMCID: PMC285638 DOI: 10.1128/jb.121.1.250-258.1975] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A comparative analysis of the cellular and extracellular lipids of Acinetobacter species HO1-N indicated basic physiological differences in hexadecane-grown cells. The cellular lipids obtained from hexadecane-grown cells were characterized by 3- and 18-fold increases in the phospholipid fraction and the mono- and diglyceride fraction, respectively, over that obtained from nutrient broth-yeast extract-grown cells. The cellular-associated pools of hexadecane were shown to comprise approximately 8% of the dry cell weight of hexadecane-grown cells. The extracellular lipids obtained from the culture broths of hexadecane-grown cells were comprised of triglyceride, mono- and diglyceride, free fatty acid, and wax ester. These lipids were either absent or present in minor concentrations in the culture broths of nutrient broth-yeast extract-grown cells. The exponential growth of Acinetobacter sp. on hexadecane was characterized by the significant accumulation of free fatty acid, monoglyceride, and diglyceride in the culture medium. Wax ester was shown to represent a minor portion of the extracellular lipids during the exponential growth phase, appearing in significant proportion only after the culture had entered the stationary phase of growth.
Collapse
|
21
|
|
22
|
|
23
|
Oliver JD, Colwell RR. Extractable lipids of gram-negative marine bacteria: phospholipid composition. J Bacteriol 1973; 114:897-908. [PMID: 4197274 PMCID: PMC285343 DOI: 10.1128/jb.114.3.897-908.1973] [Citation(s) in RCA: 88] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phospholipid compositions of 20 strains of marine and estuarine bacteria were determined. Results showed that phospholipids of marine bacteria differed very little from those of nonmarine organisms with phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol being the predominant phospholipids in all strains examined. Lyso-phosphatidylethanolamine occurred in significant quantities among a number of the marine bacteria, and two of the isolates contained significant quantities of poly-beta-hydroxybutyrate. Effects of age and growth temperature on the phospholipid composition were also investigated. It is suggested that phylogenetic relationships among bacteria may be correlated with phospholipid composition.
Collapse
|
24
|
Buckner JS, Kolattukudy PE. Specific inhibition of alkane synthesis with accumulation of very long chain compounds by dithioerythritol, dithiothreitol, and mercaptoethanol in Pisum sativum. Arch Biochem Biophys 1973; 156:34-45. [PMID: 4730477 DOI: 10.1016/0003-9861(73)90338-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Kolattukudy PE, Walton TJ. The biochemistry of plant cuticular lipids. PROGRESS IN THE CHEMISTRY OF FATS AND OTHER LIPIDS 1973; 13:119-75. [PMID: 4602868 DOI: 10.1016/0079-6832(73)90006-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Makula RA, Finnerty WR. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids. J Bacteriol 1972; 112:398-407. [PMID: 5079069 PMCID: PMC251424 DOI: 10.1128/jb.112.1.398-407.1972] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The distribution of cellular fatty acids in defined lipid classes was analyzed in Micrococcus cerificans after growth on specified hydrocarbons. Neutral lipid, phospholipid, and cell residue fatty acids were qualitatively and quantitatively determined for M. cerificans grown on nutrient broth, tetradecane (C(14)), pentadecane (C(15)), hexadecane (C(16)), and heptadecane (C(17)), respectively. Percentage of total cellular fatty acid localized in defined lipid classes from cells grown on the above growth substrates was (i) neutral lipid-11.8, 1.81, 7.74, 23.1, and 2%; (ii) phospholipid-74.5, 65, 66.43, 62.1, and 86%; (iii) cell residue lipid-13.5, 33.29, 25.82, 14.78, and 11.9%. Phospholipid fatty acid chain length directly reflected the carbon number of the alkane substrate, with 40, 84, 98, and 77% of the fatty acids being 14, 15, 16, and 17 carbons when cells were grown on C(14), C(15), C(16), and C(17)n-alkanes, respectively. The bound lipids of the cell residue after chloroform-methanol extraction were characterized by 2-hydroxydodecanoic and 2-hydroxytetradecanoic acids plus a broad spectrum of fatty acids ranging from C(10) to C(17) chain length. An increase in total unsaturated fatty acid localized in the phospholipids was noted from cells grown on alkanes greater than 15 carbons long. An extracellular accumulation of free fatty acid (FFA) was demonstrated in hexadecane-grown cultures that was not apparent in non-hydrocarbon-grown cultures. Identification of extracellular FFA demonstrated direct derivation from hexadecane oxidation. Studies supporting inhibition of de novo fatty acid biosynthesis in relationship to extracellular FFA and hexadecane oxidation are described. The ability to alter the fatty acid composition of membrane polar lipids in a predictable manner by the alkane carbon source provides an excellent model system for the investigation of membrane structure-function relationships in M. cerificans.
Collapse
|
27
|
Oudejans RC. Hydrocarbons in the millipede Graphidostreptus tumuliporus (Karsch) (Myriapoda: Diplopoda). I. In vivo incorporation of 14 C-labelled precursors into the hydrocarbon fraction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1972; 42:15-22. [PMID: 5075765 DOI: 10.1016/0305-0491(72)90054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Kolattukudy PE, Walton TJ. Metabolism of alkyl glyceryl ethers and their noninvolvement in alkane biosynthesis in plants. Arch Biochem Biophys 1972; 150:310-7. [PMID: 5028078 DOI: 10.1016/0003-9861(72)90040-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
van der Horst D, Oudejans R. Hydrocarbons in the land snail Cepaea nemoralis (L.) (gastropoda, pulmonata). ACTA ACUST UNITED AC 1972. [DOI: 10.1016/0305-0491(72)90095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
|
31
|
Abstract
Although there is agreement on the fact that Sarcina lutea strain FD-533 has branched C-29 monoalkenes as major hydrocarbon components, there is disagreement in the literature as to the nature of the branching. This has been resolved by analyses of the fatty acids produced by permanganate-periodate treatment of each of the resolvable hydrocarbon fractions making up the C-29 complex. The three major components are identified as doubly branched, Delta(13) species with two iso terminations, one iso and one anteiso termination, and two anteiso terminations.
Collapse
|
32
|
Markey SP, Tornabene TG. Characterization of branched monounsaturated hydrocarbons of Sarcina lutea and Sarcina flava. Lipids 1971; 6:190-5. [PMID: 5574910 DOI: 10.1007/bf02533037] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Tornabene TG, Morrison SJ, Kloos WE. Aliphatic hydrocarbon contents of various members of the family Micrococcaceae. Lipids 1970; 5:929-37. [PMID: 5494944 DOI: 10.1007/bf02531125] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Kolattukudy PE. Biosynthetic relationships among very long chain hydrocarbons, ketones, and secondary alcohols and the noninvolvement of alkenyl glyceryl ethers in their biosynthesis. Arch Biochem Biophys 1970; 141:381-3. [PMID: 5480122 DOI: 10.1016/0003-9861(70)90149-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|