1
|
Desai SA. Novel Ion Channel Genes in Malaria Parasites. Genes (Basel) 2024; 15:296. [PMID: 38540355 PMCID: PMC10970509 DOI: 10.3390/genes15030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Ion channels serve many cellular functions including ion homeostasis, volume regulation, signaling, nutrient acquisition, and developmental progression. Although the complex life cycles of malaria parasites necessitate ion and solute flux across membranes, the whole-genome sequencing of the human pathogen Plasmodium falciparum revealed remarkably few orthologs of known ion channel genes. Contrasting with this, biochemical studies have implicated the channel-mediated flux of ions and nutritive solutes across several membranes in infected erythrocytes. Here, I review advances in the cellular and molecular biology of ion channels in malaria parasites. These studies have implicated novel parasite genes in the formation of at least two ion channels, with additional ion channels likely present in various membranes and parasite stages. Computational approaches that rely on homology to known channel genes from higher organisms will not be very helpful in identifying the molecular determinants of these activities. Given their unusual properties, novel molecular and structural features, and essential roles in pathogen survival and development, parasite channels should be promising targets for therapy development.
Collapse
Affiliation(s)
- Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
2
|
Wang M, Bao T, Yan W, Fang D, Yu Y, Liu Z, Yin G, Wan M, Mao C, Shi D. Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models. Bioact Mater 2020; 6:1140-1149. [PMID: 33134607 PMCID: PMC7588752 DOI: 10.1016/j.bioactmat.2020.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do not have the motion ability, thus the efficiency of the contact between the adsorbent and the Pb(II)-contaminated Hb is relatively low. Herein, a kind of magnetic nanomotor adsorbent with movement ability under alternating magnetic field based on Fe3O4 nanoparticle modified with meso-2, 3-dimercaptosuccinic acid (DMSA) was prepared and a blood Pb(II) removal strategy was further proposed. During the removal process, the nanomotor adsorbent can enter the RBCs, then the contact probability between the nanomotor adsorbent and the Pb(II)-contaminated Hb can be increased by the active movement of nanomotor. Through the strong coordination of functional groups in DMSA, the nanomotor adsorbent can adsorb Pb(II), and finally be separated from blood by permanent magnetic field. The in vivo extracorporeal blood circulation experiment verifies the ability of the adsorbent to remove blood Pb(II) in pig models, which may provide innovative ideas for blood heavy metal removal in the future.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianyi Bao
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guoyong Yin
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
- Corresponding author.
| |
Collapse
|
3
|
Caruso A, Vollmer J, Machacek M, Kortvely E. Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease. PLoS Comput Biol 2020; 16:e1008139. [PMID: 33006965 PMCID: PMC7531836 DOI: 10.1371/journal.pcbi.1008139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions.
Collapse
Affiliation(s)
- Antonello Caruso
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
4
|
Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson's disease. Mitochondrion 2017; 34:91-100. [PMID: 28242362 DOI: 10.1016/j.mito.2017.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunction is associated with a large number of human diseases, including neurological and muscular degeneration, cardiovascular disorders, obesity, diabetes, aging and rare mitochondrial diseases. Replacement of dysfunctional mitochondria with functional exogenous mitochondria is proposed as a general principle to treat these diseases. Here we found that mitochondria isolated from human hepatoma cell could naturally enter human neuroblastoma SH-SY5Y cell line, and when the mitochondria were intravenously injected into mice, all of the mice were survived and no obvious abnormality appeared. The results of in vivo distribution suggested that the exogenous mitochondria distributed in various tissues including brain, liver, kidney, muscle and heart, which would benefit for multi-systemically mitochondrial diseases. In normal mice, mitochondrial supplement improved their endurance by increase of energy production in forced swimming test; and in experimental Parkinson's disease (PD) model mice induced by respiratory chain inhibitor MPTP, mitochondrial replacement prevented experimental PD progress through increasing the activity of electron transport chain, decreasing reactive oxygen species level, and preventing cell apoptosis and necrosis. Since effective drugs remain elusive to date for mitochondrial diseases, the strategy of mitochondrial replacement would provide an essential and innovative approach as mitochondrial therapy.
Collapse
Affiliation(s)
- Xianxun Shi
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ming Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chen Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Sidhaye AA, Bhuran KC, Zambare S, Abubaker M, Nirmalan N, Singh KK. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine (Lond) 2016; 11:2809-2828. [PMID: 27759489 DOI: 10.2217/nnm-2016-0235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin (HSA), into parasitized red blood cells (pRBCs). We have designed HSA-based nanoparticles as a potential drug-delivery option for antimalarials. METHODS Artemether-loaded nanoparticles (AANs) were designed and antimalarial activity evaluated in vitro/in vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. RESULTS Selective internalization of AAN into Plasmodium-infected RBCs in preference to healthy erythrocytes was observed using confocal imaging. In vitro studies showed 50% dose reduction for AAN as compared with drug-only controls to achieve IC50 levels of inhibition. The nanoparticles exhibited twofold higher peak drug concentrations in RBCs with antimalarial activity at 50% of therapeutic doses in P. bergei infected mice. CONCLUSION Novel HSA-based nanoparticles offer safe and effective approach for selective targeting of antimalarial drugs.
Collapse
Affiliation(s)
- Aditi A Sidhaye
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Kanchan C Bhuran
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Sneha Zambare
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Munna Abubaker
- School of Environment & Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | - Niroshini Nirmalan
- School of Environment & Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | - Kamalinder K Singh
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India.,School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
6
|
Aditya N, Vathsala P, Vieira V, Murthy R, Souto E. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci 2013; 201-202:1-17. [PMID: 24192063 DOI: 10.1016/j.cis.2013.10.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 01/28/2023]
Abstract
Malaria is an infectious disease that mainly affects children and pregnant women from tropical countries. The mortality rate of people infected with malaria per year is enormous and became a public health concern. The main factor that has contributed to the success of malaria proliferation is the increased number of drug resistant parasites. To counteract this trend, research has been done in nanotechnology and nanomedicine, for the development of new biocompatible systems capable of incorporating drugs, lowering the resistance progress, contributing for diagnosis, control and treatment of malaria by target delivery. In this review, we discussed the main problems associated with the spread of malaria and the most recent developments in nanomedicine for anti-malarial drug delivery.
Collapse
|
7
|
Desai SA, Bezrukov SM, Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 2000; 406:1001-5. [PMID: 10984055 DOI: 10.1038/35023000] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growth of the malaria parasite in human red blood cells (RBCs) is accompanied by an increased uptake of many solutes including anions, sugars, purines, amino acids and organic cations. Although the pharmacological properties and selectivity of this uptake suggest that a chloride channel is involved, the precise mechanism has not been identified. Moreover, the location of this uptake in the infected RBC is unknown because tracer studies are complicated by possible uptake through fluid-phase pinocytosis or membranous ducts. Here we have studied the permeability of infected RBCs using the whole-cell voltage-clamp method. With this method, uninfected RBCs had ohmic whole-cell conductances of less than 100 pS, consistent with their low tracer permeabilities. In contrast, trophozoite-infected RBCs exhibited voltage-dependent, non-saturating currents that were 150-fold larger, predominantly carried by anions and abruptly abolished by channel blockers. Patch-clamp measurements and spectral analysis confirmed that a small (< 10 pS) ion channel on the infected RBC surface, present at about 1,000 copies per cell, is responsible for these currents. Because its pharmacological properties and substrate selectivities match those seen with tracer studies, this channel accounts for the increased uptake of small solutes in infected RBCs. The surface location of this new channel and its permeability to organic solutes needed for parasite growth indicate that it may have a primary role in a sequential diffusive pathway for parasite nutrient acquisition.
Collapse
Affiliation(s)
- S A Desai
- The Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
8
|
Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G, Maier-Borst W, Heene DL. Plasma protein (albumin) catabolism by the tumor itself--implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 1997; 26:77-100. [PMID: 9298326 DOI: 10.1016/s1040-8428(97)00015-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- G Stehle
- I. Department of Medicine, Faculty for Clinical Medicine, Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pouvelle B, Gormley JA, Taraschi TF. Characterization of trafficking pathways and membrane genesis in malaria-infected erythrocytes. Mol Biochem Parasitol 1994; 66:83-96. [PMID: 7984190 DOI: 10.1016/0166-6851(94)90038-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The origin of membraneous structures in the cytoplasm of human erythrocytes infected with the malaria parasite, Plasmodium falciparum, was determined by confocal fluorescence imaging microscopy. When infectious merozoites invaded erythrocytes labeled with the fluorescent, lipophilic, non-exchangeable molecules DiIC16 or DiOC16, a ring of fluorescence was observed surrounding the internal parasite, indicating that the parasitophorous vacuolar membrane (PVM) is formed in part from the erythrocyte membrane. As the parasites matured, fluorescent vesicles were seen to be exported into the erythrocyte cytoplasm, beginning at 6 h post-invasion. During intraerythrocytic development, these dyes were transferred from the PVM to the parasite. When fluorescently labeled merozoites were released from these cells and invaded unlabeled erythrocytes, fluorescence was confined to the parasite throughout the entire erythrocytic cycle. Taken together, these results demonstrate that all vesicles/membranous compartments in the erythrocyte cytoplasm of parasitized erythrocytes (IRBC) contain membrane derived from the PVM. Based on this information, we define pathways that the parasite utilizes to export proteins and lipids to the host cell cytoplasm and surface membrane. When IRBC were labeled post-invasion with DiIC16 or DiOC16 and the parasites allowed to mature for one life cycle, the dyes were confined to the erythrocyte membrane, demonstrating that the host cell membrane of IRBC does not endocytose and there is no membrane exchange from the erythrocyte to the parasite. This investigation helps to resolve two long-standing controversies and provides new insights into the transport pathways that malaria parasites utilize during their development within host erythrocytes.
Collapse
Affiliation(s)
- B Pouvelle
- Department of Pathology and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107
| | | | | |
Collapse
|
10
|
Taraschi TF, Nicolas E. The parasitophorous duct pathway: New opportunities for antimalarial drug and vaccine development. ACTA ACUST UNITED AC 1994; 10:399-401. [PMID: 15275547 DOI: 10.1016/0169-4758(94)90232-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T F Taraschi
- Department of Pathology and Cell Biology, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
11
|
Loyevsky M, Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik ZI. The antimalarial action of desferal involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. J Clin Invest 1993; 91:218-24. [PMID: 8423220 PMCID: PMC330017 DOI: 10.1172/jci116174] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We designed the N-methylanthranilic-desferrioxamine (MA-DFO) as a fluorescent iron (III) chelator with improved membrane permeation properties. Upon binding of iron (III), MA-DFO fluorescence is quenched, thus allowing traceability of drug-iron (III) interactions. MA-DFO is well tolerated by mammalian cells in culture. Its antimalarial activity is pronounced: IC50 values on in vitro (24-h) growth of Plasmodium falciparum were 3 +/- 1 microM for MA-DFO compared with 30 +/- 8 for DFO. The onset of growth inhibition of rings or trophozoites occurs 2-4 h after exposure to 13 microM MA-DFO. This effect is commensurate with MA-DFO permeation into infected cells. In a 24-h exposure to MA-DFO or DFO, trophozoites take up either compound to approximately 10% of the external concentration, rings to 5%, and noninfected cells to < 1%. Red cells encapsulated with millimolar concentrations of DFO or MA-DFO fully support parasite invasion and growth. We conclude that extracellular MA-DFO and DFO gain selective access into parasites by bypassing the host. The rate-limiting step is permeation through the parasite membrane, which MA-DFO accomplishes faster than DFO, in accordance with its higher hydrophobicity. These views are consistent with the proposed duct, which apparently provides parasitized cells with a window to the external medium.
Collapse
Affiliation(s)
- M Loyevsky
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Sherman IW, Zidovetzki R. A parasitophorous duct in Plasmodium-infected red blood cells. ACTA ACUST UNITED AC 1992; 8:2-3. [PMID: 15463515 DOI: 10.1016/0169-4758(92)90294-c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- I W Sherman
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
13
|
Wasserman M, Vernot JP, Mendoza PM. Role of calcium and erythrocyte cytoskeleton phosphorylation in the invasion of Plasmodium falciparum. Parasitol Res 1990; 76:681-8. [PMID: 2251243 DOI: 10.1007/bf00931087] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of calcium in the invasion of the human erythrocyte by the parasite Plasmodium falciparum was studied. The intraerythrocytic and intraparasitic concentrations of Ca2+ were modified using calcium-ionophore A23187 and the chelator EGTA. The Ca2+ inside the parasite appeared to be necessary for the normal completion of invasion. We determined that in recently invaded erythrocytes (2 h), the Ca2+ concentration increased about 10 times. Merozoite invasion produced a decrease in beta-spectrin phosphorylation and an increase in the phosphorylation of a protein with band 4.1 mobility. These changes were similar to those produced by an ionophore-mediated Ca2+ influx in uninfected erythrocytes. These facts support the idea that a calcium influx into erythrocytes might precede or accompany merozoite invasion, triggering a series of molecular events, including phosphorylation and dephosphorylation of cystoskeletal proteins.
Collapse
Affiliation(s)
- M Wasserman
- Group of Biochemistry, Instituto Nacional de Salud, Bogotá, Colombia
| | | | | |
Collapse
|