1
|
Nojiri M, Takata T, Sasaki A, Tamari Y, Matsubayashi N, Hu N, Sakurai Y, Suzuki M, Tanaka H. Evaluation of dose calculation method with a combination of Monte Carlo method and removal-diffusion equation in heterogeneous geometry for boron neutron capture therapy. Biomed Phys Eng Express 2025; 11:025045. [PMID: 39787622 DOI: 10.1088/2057-1976/ada7fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT. This study aimed to verify the partial-MC-RD calculation method, which utilizes the MC-RD calculation method for a portion of the entire neutron energy range, in terms of calculation accuracy and time as the dose calculation method. We applied the partial-MC-RD calculation method to calculate the total dose for head phantom, comprising soft tissue, brain tissue, and bone. The calculation time and accuracy were evaluated based on the full-MC method. Our accuracy verifications indicated that the partial-MC-RD calculation was mostly comparable with full-MC calculation in the accuracy. However, the assumptions and approximation used in the RD calculation mainly occurred the discrepancy from the full-MC calculation result. Additionally, the partial-MC-RD calculation reduced the time required to approximately 45% for the irradiation to the top and cheek region of head phantom, compared to the full-MC calculation. In conclusion, the MC-RD calculation method can be the basis of a fast dose calculation method in BNCT.
Collapse
Affiliation(s)
- Mai Nojiri
- Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Akinori Sasaki
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Yuki Tamari
- School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake-shi, Aichi, 470-1192, Japan
| | - Nishiki Matsubayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Naonori Hu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| |
Collapse
|
2
|
Punshon LD, Fabbrizi MR, Phoenix B, Green S, Parsons JL. Current Insights into the Radiobiology of Boron Neutron Capture Therapy and the Potential for Further Improving Biological Effectiveness. Cells 2024; 13:2065. [PMID: 39768156 PMCID: PMC11674336 DOI: 10.3390/cells13242065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Photon (X-ray) radiotherapy is the most common treatment used in cancer therapy. However, the exposure of normal tissues and organs at risk to ionising radiation often results in a significant incidence of low-grade adverse side effects, whilst high-grade toxicities also occur at concerningly high rates. As an alternative, boron neutron capture therapy (BNCT) aims to create densely ionising helium and lithium ions directly within cancer cells, thus sparing the surrounding normal cells and tissues but also leading to significantly more effective tumour control than X-rays. Although very promising for patients with recurring and highly invasive tumours, BNCT does not currently have widespread use worldwide, in part due to limited and reliable neutron sources for clinical use. Another limitation is devising strategies leading to the selective and optimal accumulation of boron within the cancer cells. Boronophenylalanine (BPA) is currently the major compound used in BNCT which takes advantage of the amino acid transporter LAT1 that is overexpressed in a number of human cancers. Additionally, there is a lack of in-depth knowledge regarding the impact of BNCT on cellular DNA, and the molecular mechanisms that are responsive to the treatment, which are important in developing optimal therapeutic strategies using BNCT, are unclear. In this review, we highlight the current knowledge of the radiobiology of BNCT acquired from in vitro and in vivo studies, particularly in the context of DNA damage and repair, but also present evidence of established and new boron-containing compounds aimed at enhancing the specificity and effectiveness of the treatment.
Collapse
Affiliation(s)
- Leah D. Punshon
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (L.D.P.); (M.R.F.)
| | - Maria Rita Fabbrizi
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (L.D.P.); (M.R.F.)
| | - Ben Phoenix
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK;
| | - Stuart Green
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
| | - Jason L. Parsons
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (L.D.P.); (M.R.F.)
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
3
|
Ishikawa A, Tanaka H, Nakamura S, Kumada H, Sakurai Y, Watanabe K, Yoshihashi S, Tanagami Y, Uritani A, Kiyanagi Y. Effect of neutron beam properties on dose distributions in a water phantom for boron neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2024; 65:765-775. [PMID: 39373032 PMCID: PMC11630089 DOI: 10.1093/jrr/rrae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/16/2024] [Indexed: 10/08/2024]
Abstract
From the viewpoints of the advantage depths (ADs), peak tumor dose and skin dose, we evaluated the effect on the dose distribution of neutron beam properties, namely the ratio between thermal and epithermal neutron fluxes (thermal/epithermal ratio), fast neutron component and γ-ray component. Several parameter surveys were conducted with respect to the beam properties of neutron sources for boron neutron capture therapy assuming boronophenylalanine as the boron agent using our dose calculation tool, called SiDE. The ADs decreased by 3% at a thermal/epithermal ratio of 20-30% compared with the current recommendation of 5%. The skin dose increased with the increasing thermal/epithermal ratio, reaching a restricted value of 14 Gyeq at a thermal/epithermal ratio of 48%. The fast neutron component was modified using two different models, namely the 'linear model', in which the fast neutron intensity decreases log-linearly with the increasing neutron energy, and the 'moderator thickness (MT) model', in which the fast neutron component is varied by adjusting the MT in a virtual beam shaping assembly. Although a higher fast neutron component indicated a higher skin dose, the increment was <10% at a fast neutron component of <1 × 10-12 Gy cm2 for both models. Furthermore, in the MT model, the epithermal neutron intensity at a fast neutron component of 6.8 × 10-13 Gy cm2 was 41% higher compared with that of 2 × 10-13 Gy cm2. The γ-ray component also caused no significant disadvantages up to several times larger compared with the current recommendation.
Collapse
Affiliation(s)
- Akihisa Ishikawa
- Research Group for Nuclear Sensing, Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
- Department of Applied Energy, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroki Tanaka
- Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Satoshi Nakamura
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Kumada
- Proton Medical Research Center, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Sakurai
- Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Kenichi Watanabe
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sachiko Yoshihashi
- Department of Applied Energy, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yuki Tanagami
- Department of Applied Energy, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Akira Uritani
- Department of Applied Energy, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yoshiaki Kiyanagi
- Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
4
|
Shiba S, Shimo T, Yamanaka M, Yagihashi T, Sakai M, Ohno T, Tokuuye K, Omura M. Increased cell killing effect in neutron capture enhanced proton beam therapy. Sci Rep 2024; 14:28484. [PMID: 39557960 PMCID: PMC11574088 DOI: 10.1038/s41598-024-79045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Thermal neutrons generated in the body during proton beam therapy (PBT) can be used to cause boron neutron capture reactions and have recently been proposed as neutron capture enhanced PBT (NCEPBT). However, the cell killing effect of NCEPBT remains underexplored. Here, we show an increase in the cell killing effect of NCEPBT. Using Monte Carlo simulations, we showed that neutrons generated by proton beam irradiation are uniformly spread on tissue culture plates. Human salivary gland tumor cell line (HSG), human osteosarcoma cell line (MG63), human tongue squamous cell carcinoma cell line (SAS), and human malignant melanoma cell line (G-361) were irradiated with X-rays, proton beams, and proton beams with 10B-enriched boronophenylalanine (boron concentration of 20 and 80 ppm). The relative biological effectiveness (RBE) values of proton beams alone, proton beams with 20 ppm boron, and proton beams with 80 ppm boron for HSG, MG63, SAS, and G-361 were 1.02, 1.07, and 1.23; 1.01, 1.08, and 1.44; 1.05, 1.09, and 1.46; and 1.04, 1.13, and 1.63, respectively. NCEPBT with high boron concentration showed high RBE and a high sensitizing effect. Our results confirm an increase in the cell killing effect of NCEPBT, should aid in its clinical use, and warrant its further investigation.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, Japan.
- Radiological Research Division, Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
| | - Takahiro Shimo
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Makoto Sakai
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | - Koichi Tokuuye
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| |
Collapse
|
5
|
Younous K, El Kafhali M, Bouadel I, Biyi A, Sebihi R. Efficacy and safety of Boron Neutron Capture Therapy: a systematic review. Int J Radiat Biol 2024; 100:1611-1621. [PMID: 39401330 DOI: 10.1080/09553002.2024.2413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Boron Neutron Capture Therapy (BNCT) is an innovative radiation therapy with significant potential in cancer treatment. This systematic review aimed to comprehensively evaluate the efficacy, safety, and applicability of BNCT across various cancer types. METHODS AND MATERIALS Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a systematic search in PubMed, Scopus, Cochrane CENTRAL, ClinicalTrials.gov, and ICTRP from inception until May 27, 2023. Eligible studies were selected based on predefined criteria, and statistical analyses were performed using IBM SPSS (Statistical Package for the Social Sciences) to assess correlations between histological factors, treatment outcomes, and adverse effects. RESULTS The initial search identified 925 studies (498 from Scopus, 333 from PubMed, 16 from ClinicalTrials.gov, 41 from ICTRP, and 30 from Cochrane CENTRAL). After removing duplicates and applying selection criteria, 121 full-text articles were assessed, with 39 studies meeting the inclusion criteria. An additional study published in 2024 was included during the peer review process, bringing the total to 40 studies. The analysis revealed that BNCT demonstrates promising efficacy across various cancers, with a manageable safety profile. However, outcome variability and adverse effects were noted among the studies. CONCLUSIONS BNCT shows substantial promise as a treatment modality for multiple cancer types, offering potential benefits with acceptable safety profiles. Nonetheless, further research is essential to refine its clinical application and ensure consistent safety and efficacy.
Collapse
Affiliation(s)
- Khaoula Younous
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| | - Morad El Kafhali
- Physical Sciences and Engineering, Innovative Research and Applied Physics (IRAP), Moulay Ismail University, Meknes, Morocco
| | - Ikbal Bouadel
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| | - Abdelhamid Biyi
- Nuclear Medicine Department, Mohamed V University of Rabat, Rabat, Morocco
| | - Rajaa Sebihi
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
6
|
Barth RF, Gupta N, Kawabata S. Evaluation of sodium borocaptate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of cancer: an update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun (Lond) 2024; 44:893-909. [PMID: 38973634 PMCID: PMC11337926 DOI: 10.1002/cac2.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment modality based on the nuclear capture and fission reactions that occur when boron-10, a stable isotope, is irradiated with neutrons of the appropriate energy to produce boron-11 in an unstable form, which undergoes instantaneous nuclear fission to produce high-energy, tumoricidal alpha particles. The primary purpose of this review is to provide an update on the first drug used clinically, sodium borocaptate (BSH), by the Japanese neurosurgeon Hiroshi Hatanaka to treat patients with brain tumors and the second drug, boronophenylalanine (BPA), which first was used clinically by the Japanese dermatologist Yutaka Mishima to treat patients with cutaneous melanomas. Subsequently, BPA has become the primary drug used as a boron delivery agent to treat patients with several types of cancers, specifically brain tumors and recurrent tumors of the head and neck region. The focus of this review will be on the initial studies that were carried out to define the pharmacokinetics and pharmacodynamics of BSH and BPA and their biodistribution in tumor and normal tissues following administration to patients with high-grade gliomas and their subsequent clinical use to treat patients with high-grade gliomas. First, we will summarize the studies that were carried out in Japan with BSH and subsequently at our own institution, The Ohio State University, and those of several other groups. Second, we will describe studies carried out in Japan with BPA and then in the United States that have led to its use as the primary drug that is being used clinically for BNCT. Third, although there have been intense efforts to develop new and better boron delivery agents for BNCT, none of these have yet been evaluated clinically. The present report will provide a guide to the future clinical evaluation of new boron delivery agents prior to their clinical use for BNCT.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Nilendu Gupta
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Shinji Kawabata
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
7
|
Rasouli FS, Yahyaee A, Masoudi SF. Using ANN for thermal neutron shield designing for BNCT treatment room. Sci Rep 2024; 14:14805. [PMID: 38926477 PMCID: PMC11208447 DOI: 10.1038/s41598-024-65207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Occupational radiation protection should be applied to the design of treatment rooms for various radiation therapy techniques, including BNCT, where escaping particles from the beam port of the beam shaping assembly (BSA) may reach the walls or penetrate through the entrance door. The focus of the present study is to design an alternative shielding material, other than the conventional material of lead, that can be considered as the material used in the door and be able to effectively absorb the BSA neutrons which have slowed down to the thermal energy range of < 1 eV after passing through the walls and the maze of the room. To this aim, a thermal neutron shield, composed of polymer composite and polyethylene, has been simulated using the Geant4 Monte Carlo code. The neutron flux and dose values were predicted using an artificial neural network (ANN), eliminating the need for time-consuming Monte Carlo simulations in all possible suggestions. Additionally, this technique enables simultaneous optimization of the parameters involved, which is more effective than the traditional sequential and separate optimization process. The results indicated that the optimized shielding material, chosen through ANN calculations that determined the appropriate thickness and weight percent of its compositions, can decrease the dose behind the door to lower than the allowable limit for occupational exposure. The stability of ANN was tested by considering uncertainties with the Gaussian distributions of random numbers to the testing data. The results are promising as they indicate that ANNs could be used as a reliable tool for accurately predicting the dosimetric results, providing a drastically powerful alternative approach to the time-consuming Monte Carlo simulations.
Collapse
Affiliation(s)
- Fatemeh S Rasouli
- Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Atefeh Yahyaee
- Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - S Farhad Masoudi
- Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
8
|
Nakamura S, Imamichi S, Shimada K, Takemori M, Kanai Y, Iijima K, Chiba T, Nakayama H, Nakaichi T, Mikasa S, Urago Y, Kashihara T, Takahashi K, Nishio T, Okamoto H, Itami J, Ishiai M, Suzuki M, Igaki H, Masutani M. Relative biological effectiveness for epithermal neutron beam contaminated with fast neutrons in the linear accelerator-based boron neutron capture therapy system coupled to a solid-state lithium target. JOURNAL OF RADIATION RESEARCH 2023:7192974. [PMID: 37295954 PMCID: PMC10354855 DOI: 10.1093/jrr/rrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to quantify the relative biological effectiveness (RBE) for epithermal neutron beam contaminated with fast neutrons in the accelerator-based boron neutron capture therapy (BNCT) system coupled to a solid-state lithium target. The experiments were performed in National Cancer Center Hospital (NCCH), Tokyo, Japan. Neutron irradiation with the system provided by Cancer Intelligence Care Systems (CICS), Inc. was performed. X-ray irradiation, which was assigned as the reference group, was also performed using a medical linear accelerator (LINAC) equipped in NCCH. The four cell lines (SAS, SCCVII, U87-MG and NB1RGB) were utilized to quantify RBE value for the neutron beam. Before both of those irradiations, all cells were collected and dispensed into vials. The doses of 10% cell surviving fraction (SF) (D10) were calculated by LQ model fitting. All cell experiments were conducted in triplicate at least. Because the system provides not only neutrons, but gamma-rays, the contribution from the gamma-rays to the survival fraction were subtracted in this study. D10 value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was 4.26, 4.08, 5.81 and 2.72 Gy, respectively, while that acquired by the X-ray irradiation was 6.34, 7.21, 7.12 and 5.49 Gy, respectively. Comparison of both of the D10 values, RBE value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was calculated as 1.7, 2.2, 1.3 and 2.5, respectively, and the average RBE value was 1.9. This study investigated RBE of the epithermal neutron beam contaminated with fast neutrons in the accelerator-based BNCT system coupled to a solid-state lithium target.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Shoji Imamichi
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Kenzi Shimada
- Cancer Intelligence Care Systems, Inc. 3-5-7 Ariake, Koto-ku, Tokyo, 135-0063, Japan
| | - Mihiro Takemori
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Yui Kanai
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-5880, Japan
| | - Kotaro Iijima
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahito Chiba
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Hiroki Nakayama
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Tetsu Nakaichi
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Mikasa
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuka Urago
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Tairo Kashihara
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Hiroyuki Okamoto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masamichi Ishiai
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mitsuko Masutani
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| |
Collapse
|
9
|
Improved Boron Neutron Capture Therapy Using Integrin αvβ3-Targeted Long-Retention-Type Boron Carrier in a F98 Rat Glioma Model. BIOLOGY 2023; 12:biology12030377. [PMID: 36979069 PMCID: PMC10045558 DOI: 10.3390/biology12030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Integrin αvβ3 is more highly expressed in high-grade glioma cells than in normal tissues. In this study, a novel boron-10 carrier containing maleimide-functionalized closo-dodecaborate (MID), serum albumin as a drug delivery system, and cyclic arginine-glycine-aspartate (cRGD) that can target integrin αvβ3 was developed. The efficacy of boron neutron capture therapy (BNCT) targeting integrin αvβ3 in glioma cells in the brain of rats using a cRGD-functionalized MID-albumin conjugate (cRGD-MID-AC) was evaluated. F98 glioma cells exposed to boronophenylalanine (BPA), cRGD-MID-AC, and cRGD + MID were used for cellular uptake and neutron-irradiation experiments. An F98 glioma-bearing rat brain tumor model was used for biodistribution and neutron-irradiation experiments after BPA or cRGD-MID-AC administration. BNCT using cRGD-MID-AC had a sufficient cell-killing effect in vitro, similar to that with BNCT using BPA. In biodistribution experiments, cRGD-MID-AC accumulated in the brain tumor, with the highest boron concentration observed 8 h after administration. Significant differences were observed between the untreated group and BNCT using cRGD-MID-AC groups in the in vivo neutron-irradiation experiments through the log-rank test. Long-term survivors were observed only in BNCT using cRGD-MID-AC groups 8 h after intravenous administration. These findings suggest that BNCT with cRGD-MID-AC is highly selective against gliomas through a mechanism that is different from that of BNCT with BPA.
Collapse
|
10
|
Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, Florio T, Baldassari S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022; 11:cells11244029. [PMID: 36552793 PMCID: PMC9776957 DOI: 10.3390/cells11244029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine-fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| | | | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, 09124 Cagliari, Italy
| | - Federica Barbieri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | | | - Tullio Florio
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| |
Collapse
|
11
|
Cheng X, Li F, Liang L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Curr Oncol 2022; 29:7868-7886. [PMID: 36290899 PMCID: PMC9601095 DOI: 10.3390/curroncol29100622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary modality that is used to treat a variety of malignancies, using neutrons to irradiate boron-10 (10B) nuclei that have entered tumor cells to produce highly linear energy transfer (LET) alpha particles and recoil 7Li nuclei (10B [n, α] 7Li). Therefore, the most important part in BNCT is to selectively deliver a large number of 10B to tumor cells and only a small amount to normal tissue. So far, BNCT has been used in more than 2000 cases worldwide, and the efficacy of BNCT in the treatment of head and neck cancer, malignant meningioma, melanoma and hepatocellular carcinoma has been confirmed. We collected and collated clinical studies of second-generation boron delivery agents. The combination of different drugs, the mode of administration, and the combination of multiple treatments have an important impact on patient survival. We summarized the critical issues that must be addressed, with the hope that the next generation of boron delivery agents will overcome these challenges.
Collapse
Affiliation(s)
- Xiang Cheng
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
| | - Fanfan Li
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| | - Lizhen Liang
- Hefei Comprehensive National Science Center, Institute of Energy, Building 9, Binhu Excellence City Phase I, 16 Huayuan Avenue, Baohe District, Hefei 230031, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| |
Collapse
|
12
|
Hu N, Tanaka H, Ono K. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system. Med Phys 2022; 49:6609-6621. [PMID: 35941788 PMCID: PMC9804710 DOI: 10.1002/mp.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The aim of this study is to design and evaluate a neutron filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system. METHODS An LiF-sintered plate composed of 99%-enriched 6 Li was utilized to filter out low-energy neutrons to increase the average neutron energy at the beam exit. A 5-mm thick filter to fit inside a 12-cm diameter circular collimator was manufactured, and experimental measurements were performed to measure the thermal neutron flux and gamma-ray dose rate inside a water phantom. The experimental measurements were compared with the Monte Carlo simulation, particle, and heavy ion transport code system. Following the experimental verification, three filter designs were modeled, and the thermal neutron flux and the biologically weighted dose distribution inside a phantom were simulated. Following the phantom simulation, a dummy patient CT dataset was used to simulate a boron neutron capture therapy (BNCT) irradiation of the brain. A mock tumor located at 4, 6, 8 cm along the central axis and 4-cm off-axis was set, and the dose distribution was simulated for a maximum total biologically weighted brain dose of 12.5 Gy with a beam entering from the vertex. RESULTS All three filters improved the beam penetration of the accelerator-based neutron source. Filter design C was found to be the most suitable filter, increasing the advantage depth from 9.1 to 9.9 cm. Compared with the unfiltered beam, the mean weighted dose in the tumor located at a depth of 8 cm along the beam axis was increased by ∼25%, and 34% for the tumor located at a depth of 8 cm and off-axis by 4 cm. CONCLUSION A neutron filtration system for an accelerator-based BNCT system was investigated using Monte Carlo simulation. The proposed filter design significantly improved the dose distribution for the treatment of deep targets in the brain.
Collapse
Affiliation(s)
- Naonori Hu
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan,Particle Radiation Oncology Research CenterKyoto UniversityInstitute for Integrated Radiation and Nuclear ScienceOsakaJapan
| | - Hiroki Tanaka
- Particle Radiation Oncology Research CenterKyoto UniversityInstitute for Integrated Radiation and Nuclear ScienceOsakaJapan
| | - Koji Ono
- Kansai BNCT Joint Clinical InstituteOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐8686Japan
| |
Collapse
|
13
|
The use of radiosensitizing agents in the therapy of glioblastoma multiforme-a comprehensive review. Strahlenther Onkol 2022; 198:507-526. [PMID: 35503461 PMCID: PMC9165247 DOI: 10.1007/s00066-022-01942-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/30/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Glioblastoma is the most common malignant brain tumor in human adults. Despite several improvements in resective as well as adjuvant therapy over the last decades, its overall prognosis remains poor. As a means of improving patient outcome, the possibility of enhancing radiation response by using radiosensitizing agents has been tested in an array of studies. METHODS A comprehensive review of clinical trials involving radiation therapy in combination with radiosensitizing agents on patients diagnosed with glioblastoma was performed in the National Center for Biotechnology Information's PubMed database. RESULTS A total of 96 papers addressing this matter were published between 1976 and 2021, of which 63 matched the subject of this paper. All papers were reviewed, and their findings discussed in the context of their underlining mechanisms of radiosensitization. CONCLUSION In the history of glioblastoma treatment, several approaches of optimizing radiation-effectiveness using radiosensitizers have been made. Even though several different strategies and agents have been explored, clear evidence of improved patient outcome is still missing. Tissue-selectiveness and penetration of the blood-brain barrier seem to be major roadblocks; nevertheless, modern strategies try to circumvent these obstacles, using novel sensitizers based on preclinical data or alternative ways of delivery.
Collapse
|
14
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Abbene L, Principato F, Buttacavoli A, Gerardi G, Bettelli M, Zappettini A, Altieri S, Auricchio N, Caroli E, Zanettini S, Protti N. Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for Prompt Gamma-Ray Measurements in BNCT. SENSORS (BASEL, SWITZERLAND) 2022; 22:1502. [PMID: 35214414 PMCID: PMC8878856 DOI: 10.3390/s22041502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Recently, new high-resolution cadmium-zinc-telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94% 7Li nuclides from the 10B(n, α)7Li reaction, are very appealing for the development of single-photon emission computed tomography (SPECT) systems and Compton cameras in BNCT. High-resolution gamma-ray spectra from 10B samples under thermal neutrons were measured at the T.R.I.G.A. Mark II research nuclear reactor of the University of Pavia (Italy).
Collapse
Affiliation(s)
- Leonardo Abbene
- Department of Physics and Chemistry (DiFC)—Emilio Segrè, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy; (L.A.); (A.B.); (G.G.)
| | - Fabio Principato
- Department of Physics and Chemistry (DiFC)—Emilio Segrè, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy; (L.A.); (A.B.); (G.G.)
| | - Antonino Buttacavoli
- Department of Physics and Chemistry (DiFC)—Emilio Segrè, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy; (L.A.); (A.B.); (G.G.)
| | - Gaetano Gerardi
- Department of Physics and Chemistry (DiFC)—Emilio Segrè, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy; (L.A.); (A.B.); (G.G.)
| | - Manuele Bettelli
- IMEM/CNR, Parco Area delle Scienze 37/A, 43100 Parma, Italy; (M.B.); (A.Z.)
| | - Andrea Zappettini
- IMEM/CNR, Parco Area delle Scienze 37/A, 43100 Parma, Italy; (M.B.); (A.Z.)
| | - Saverio Altieri
- Department of Physics, University of Pavia and Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy; (S.A.); (N.P.)
| | | | - Ezio Caroli
- INAF/OAS Bologna, 40129 Bologna, Italy; (N.A.); (E.C.)
| | | | - Nicoletta Protti
- Department of Physics, University of Pavia and Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy; (S.A.); (N.P.)
| |
Collapse
|
16
|
Dai Q, Yang Q, Bao X, Chen J, Han M, Wei Q. The Development of Boron Analysis and Imaging in Boron Neutron Capture Therapy (BNCT). Mol Pharm 2022; 19:363-377. [PMID: 35040321 DOI: 10.1021/acs.molpharmaceut.1c00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a selective biological targeted nuclide technique for cancer therapy. It has the following attractive features: good targeting, high effectiveness, and causes slight damage to surrounding healthy tissue compared with other traditional methods. It has been considered as one of the promising methods for the treatment of various cancers. Measuring 10B concentrations is vital for BNCT. However, the existing technology and equipment cannot satisfy the real-time and accurate measurement requirements, and more efficient methods are in demand. The development of methods and imaging applied in BNCT to help measure boron concentration is described in this review.
Collapse
Affiliation(s)
- Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - QiYao Yang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
17
|
Kanygin V, Kichigin A, Zaboronok A, Kasatova A, Petrova E, Tsygankova A, Zavjalov E, Mathis BJ, Taskaev S. In Vivo Accelerator-Based Boron Neutron Capture Therapy for Spontaneous Tumors in Large Animals: Case Series. BIOLOGY 2022; 11:138. [PMID: 35053138 PMCID: PMC8773183 DOI: 10.3390/biology11010138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
(1) Background: accelerator-based neutron sources are a new frontier for BNCT but many technical issues remain. We aimed to study such issues and results in larger-animal BNCT (cats and dogs) with naturally occurring, malignant tumors in different locations as an intermediate step in translating current research into clinical practice. (2) Methods: 10 pet cats and dogs with incurable, malignant tumors that had no treatment alternatives were included in this study. A tandem accelerator with vacuum insulation was used as a neutron source. As a boron-containing agent, 10B-enriched sodium borocaptate (BSH) was used at a dose of 100 mg/kg. Animal condition as well as tumor progression/regression were monitored. (3) Results: regression of tumors in response to treatment, improvements in the overall clinical picture, and an increase in the estimated duration and quality of life were observed. Treatment-related toxicity was mild and reversible. (4) Conclusions: our study contributes to preparations for human BNCT clinical trials and suggests utility for veterinary oncology.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Aleksandr Kichigin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Alexander Zaboronok
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
| | - Elena Petrova
- Veterinary Clinic “Best”, 57 Frunze Str., 630005 Novosibirsk, Russia;
| | - Alphiya Tsygankova
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, 10, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Ibaraki, Japan;
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
He H, Li J, Jiang P, Tian S, Wang H, Fan R, Liu J, Yang Y, Liu Z, Wang J. The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol 2021; 16:216. [PMID: 34743756 PMCID: PMC8573925 DOI: 10.1186/s13014-021-01939-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Boron neutron capture therapy (BNCT) was first proposed as early as 1936, and research on BNCT has progressed relatively slowly but steadily. BNCT is a potentially useful tool for cancer treatment that selectively damages cancer cells while sparing normal tissue. BNCT is based on the nuclear reaction that occurs when 10B capture low-energy thermal neutrons to yield high-linear energy transfer (LET) α particles and recoiling 7Li nuclei. A large number of 10B atoms have to be localized within the tumor cells for BNCT to be effective, and an adequate number of thermal neutrons need to be absorbed by the 10B atoms to generate lethal 10B (n, α)7Li reactions. Effective boron neutron capture therapy cannot be achieved without appropriate boron carriers. Improvement in boron delivery and the development of the best dosing paradigms for both boronophenylalanine (BPA) and sodium borocaptate (BSH) are of major importance, yet these still have not been optimized. Here, we present a review of this treatment modality from the perspectives of radiation oncology, biology, and physics. This manuscript provides a brief introduction of the mechanism of cancer-cell-selective killing by BNCT, radiobiological factors, and progress in the development of boron carriers and neutron sources as well as the results of clinical study.
Collapse
Affiliation(s)
- Huifang He
- Department of Radiotherapy, Peking University International Hospital, Beijing, China
| | - Jiyuan Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ping Jiang
- Department of Radiotherapy, Peking University 3rd Hospital, Beijing, 100191, China
| | - Suqing Tian
- Department of Radiotherapy, Peking University 3rd Hospital, Beijing, 100191, China
| | - Hao Wang
- Department of Radiotherapy, Peking University 3rd Hospital, Beijing, 100191, China
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyan Yang
- Department of Radiotherapy, Peking University International Hospital, Beijing, China
| | - Zhibo Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Junjie Wang
- Department of Radiotherapy, Peking University 3rd Hospital, Beijing, 100191, China.
| |
Collapse
|
19
|
Fukuda H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021; 10:2881. [PMID: 34831103 PMCID: PMC8616259 DOI: 10.3390/cells10112881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/22/2023] Open
Abstract
BNCT is a radiotherapeutic method for cancer treatment that uses tumor-targeting 10B-compounds. BNCT for cutaneous melanoma using BPA, a phenylalanine derivative, was first initiated by Mishima et al. in 1987. This article reviews the radiobiological basis of melanoma control and damage to normal tissues as well as the results of clinical studies. Experimental studies showed that the compound biological effectiveness (CBE) values of the 10B (n, α)7Li reaction for melanoma control ranged from 2.5 to 3.3. The CBE values of the 10B (n, α)7Li reaction for skin damage ranged from 2.4 to 3.7 with moist desquamation as the endpoint. The required single radiation dose for controlling human melanoma was estimated to be 25 Gy-Eq or more by analyzing the 50% tumor control dose data of conventional fractionated radiotherapy. From the literature, the maximum permissible dose to human skin by single irradiation was estimated to be 18 Gy-Eq. With respect to the pharmacokinetics of BPA in patients with melanoma treated with 85-350 mg/kg BPA, the melanoma-to-blood ratio ranged from 2.1-3.8 and the skin-to-blood ratio was 1.31 ± 0.22. Good local tumor control and long-term survival of the patients were achieved in two clinical trials of BNCT conducted in Japan.
Collapse
Affiliation(s)
- Hiroshi Fukuda
- Department of Radiology, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
20
|
Gubanova NV, Tsygankova AR, Zavjalov EL, Romashchenko AV, Orlov YL. Biodistribution of 10B in Glioma Orthotopic Xenograft Mouse Model after Injection of L-para-Boronophenylalanine and Sodium Borocaptate. Biomedicines 2021; 9:biomedicines9070722. [PMID: 34201895 PMCID: PMC8301403 DOI: 10.3390/biomedicines9070722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (10B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boron-carrying compounds—L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closo-dodecaborate (BSH)—have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required. This study evaluated the boron concentration in intracranial grafts of human glioma U87MG cells and normal tissues of the brain and other organs of mice at 1, 2.5 and 5 h after administration of the boron-carrying compounds. A detailed statistical analysis of the boron biodistribution dynamics was performed to find a ‘window of opportunity’ for BNCT. The data demonstrate variations in boron accumulation in different tissues depending on the compound used, as well as significant inter-animal variation. The protocol of administration of BPA and BSH compounds used did not allow achieving the parameters necessary for the successful course of BNCT in a glioma orthotopic xenograft mouse model.
Collapse
Affiliation(s)
- Natalya V. Gubanova
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
- Correspondence:
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii L. Zavjalov
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
| | - Alexander V. Romashchenko
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119911 Moscow, Russia
| |
Collapse
|
21
|
Pharmacokinetics of 10B-p-boronophenylalanine (BPA) in the blood and tumors in human patients: A critical review with special reference to tumor-to-blood (T/B) ratios using resected tumor samples. Appl Radiat Isot 2020; 166:109308. [PMID: 32823081 DOI: 10.1016/j.apradiso.2020.109308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022]
Abstract
We reviewed 10B concentration kinetics in the blood and tumors in human patients administered with BPA. The 10B concentration in the blood peaked at the end of intravenous infusion of BPA, followed by a biphasic-decreasing curve with half-lives for the first and second components of the curve being 0.7-3.7 and 7.2-12.0 h, respectively. The mean tumor-to-blood (T/B) ratio obtained from resected tumor samples was 3.40 ± 0.83 for melanoma and the ratio ranged from 1.4 to 4.7 for glioblastoma.
Collapse
|
22
|
Kim A, Suzuki M, Matsumoto Y, Fukumitsu N, Nagasaki Y. Non-isotope enriched phenylboronic acid-decorated dual-functional nano-assembles for an actively targeting BNCT drug. Biomaterials 2020; 268:120551. [PMID: 33307363 DOI: 10.1016/j.biomaterials.2020.120551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The feasibility of boron neutron capture therapy (BNCT) greatly depends on the selective accumulation of 10B in tumors. The p-boronophenylalanine-fructose (BPA-f) complex has been established as a conventional BNCT agent due to its preferential uptake into tumors, which is driven by amino acid transporters. However, the retention of BPA-f in tumors is highly limited because of an antiport mechanism, which is regulated by a gradient of amino acid concentration across the cancer cell membrane. Thus, to preserve a high 10B concentration in tumors, patients are inevitably subjected to a constant intravenous infusion. To this end, we employed a phenylboronic acid (PBA)-decorated polymeric nanoparticle (NanoPBA) as a sialic acid-targeting BNCT agent. In this manner, the PBA can exhibit dual functionalities, i.e., exhibiting a neutron capture capacity and hypersialyated cancer cell targeting effect. Our developed NanoPBA possesses a supramolecular structure composed of a core and shell comprised of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) segments, respectively. The PBA moiety is installed at the PEG end, providing an unusually strong targeting effect, supposedly via multivalent binding onto the cancer cell membrane. As in BNCT, we verified the feasibility of NanoPBA against a B16 melanoma-bearing mouse model. By virtue of efficient tumor targeting, even at a 100-fold lower dose than BPA-f, the NanoPBA achieved a potent antitumor effect.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan; Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Nobuyoshi Fukumitsu
- Department of Radiation Oncology, Kobe Proton Center, 1-6-8 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan; Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
23
|
Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond) 2020; 40:406-421. [PMID: 32805063 PMCID: PMC7494062 DOI: 10.1002/cac2.12089] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy (BNCT). We analyzed the current status and future directions of BNCT for cancer treatment, as well as the main issues related to its introduction. This review highlights the principles of BNCT and the key milestones in its development: new boron delivery drugs and different types of charged particle accelerators are described; several important aspects of BNCT implementation are discussed. BCNT could be used alone or in combination with chemotherapy and radiotherapy, and it is evaluated in light of the outlined issues. For the speedy implementation of BCNT in medical practice, it is necessary to develop more selective boron delivery agents and to generate an epithermal neutron beam with definite characteristics. Pharmacological companies and research laboratories should have access to accelerators for large-scale screening of new, more specific boron delivery agents.
Collapse
Affiliation(s)
- Mayya Alexandrovna Dymova
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Sergey Yurjevich Taskaev
- Budker Institute of Nuclear PhysicsSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 11Novosibirsk630090Russia
- Laboratory of Boron Neutron Capture TherapyNovosibirsk State UniversityPirogova str. 1Novosibirsk630090Russia
| | - Vladimir Alexandrovich Richter
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Elena Vladimirovna Kuligina
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| |
Collapse
|
24
|
Jing S, Guo H, Qi Y, Yang G, Huang Y. A portable fast neutron irradiation system for tumor therapy. Appl Radiat Isot 2020; 160:109138. [PMID: 32351230 DOI: 10.1016/j.apradiso.2020.109138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 06/06/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
A portable neutron tube was introduced as a small-sized (weight≤14.4 kg, power consumption ≤50W and cost≤ $100,000) neutron accelerator and applied for irradiation therapy on cancer. The effect of growth-inhibiting in vitro by neutrons irradiation on HeLa cells (human cervical cancer cells) was evaluated by colony formation assays, and cell apoptosis was evaluated by Flow Cytometry. A polyethylene protection device as the neutron moderator was designed and connected to the neutron tube to shield normal tissue and organs of the test animals from scatter radiation. Hematology and blood biochemistry were investigated to evaluate the protective effect of polyethylene. U14 (mice cervical cancer cell) tumor-bearing mice were further investigated to determine the tumor suppression effect of neutron irradiation. We found that cells showed a dose-dependent relationship after fast neutrons irradiation at different dose (1.11 Gy, 2.23 Gy, 3.34 Gy and 4.45Gy). Furthermore, in vivo experiments showed that the anti-tumor effect on U14 tumor-bearing mice greatly depended on the neutron irradiation dose. A high dose of fast neutron irradiation (26.73 Gy) could have tumor growth rate only 12.31% compared to 56.07% with control group. All the blood cell counts and blood biochemistry parameters were in the standard value ranges. Immunohistochemistry examinations clearly indicated the apoptosis cells in tumor tissues by the TUNEL assay. This work provides useful evidences on cancer irradiation therapy using fast neutron in pre-clinical study. And the neutron therapy system device has great potential to be a more convenient tool in clinical application with significantly lower power consumption, irradiation toxicity and cost.
Collapse
Affiliation(s)
- Shiwei Jing
- Northeast Normal University, Changchun, 130024, PR China
| | - Huanhuan Guo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; Yanbian University Medical College, Yanji, 133002, PR China.
| | - Guifu Yang
- Northeast Normal University, Changchun, 130024, PR China.
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| |
Collapse
|
25
|
Barth RF, Grecula JC. Boron neutron capture therapy at the crossroads - Where do we go from here? Appl Radiat Isot 2019; 160:109029. [PMID: 32351210 DOI: 10.1016/j.apradiso.2019.109029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
As elegant as is the concept upon which Boron Neutron Capture Therapy (BNCT) is based, unfortunately it has not gained widespread acceptance by the physicians who are treating cancer patients on a daily basis. The question is why? Very simply put, the clinical results obtained in treating patients with high grade gliomas and recurrent tumors of the head and neck region have not been convincing enough to produce more interest in BNCT as a cancer treatment modality. There are a variety of reasons for this, one of the most important of which has been its dependency on nuclear reactors as neutron sources. With the advent of accelerator based neutron sources (ABNS), this hopefully will be addressed. If the results obtained from ongoing and soon to be initiated clinical trials can at least demonstrate equivalency to those obtained with nuclear reactors, this should address the first problem. The second problem relates to boron delivery agents, and despite the considerable efforts of chemists and biologists over the past 50 years, there are only two drugs that currently are being used clinically, sodium borocaptate (BSH) and boronophenylalanine (BPA). It is widely recognized that these two drugs are less than ideal. Perhaps new and more effective boron delivery agents will finally appear on the scene, but barring that, we will address the question of what can be done now to make BNCT a more effective cancer treatment modality.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - John C Grecula
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
Wang S, Blaha C, Santos R, Huynh T, Hayes TR, Beckford-Vera DR, Blecha JE, Hong AS, Fogarty M, Hope TA, Raleigh DR, Wilson DM, Evans MJ, VanBrocklin HF, Ozawa T, Flavell RR. Synthesis and Initial Biological Evaluation of Boron-Containing Prostate-Specific Membrane Antigen Ligands for Treatment of Prostate Cancer Using Boron Neutron Capture Therapy. Mol Pharm 2019; 16:3831-3841. [PMID: 31381351 DOI: 10.1021/acs.molpharmaceut.9b00464] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 μg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.
Collapse
Affiliation(s)
- Sinan Wang
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Charles Blaha
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California , United States
| | - Raquel Santos
- Department of Neurological Surgery , University of California , San Francisco , California , United States
| | - Tony Huynh
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Thomas R Hayes
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Denis R Beckford-Vera
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Andrew S Hong
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Miko Fogarty
- Department of Neurological Surgery , University of California , San Francisco , California , United States
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - David R Raleigh
- Department of Neurological Surgery , University of California , San Francisco , California , United States.,Departments of Radiation Oncology , University of California , San Francisco , California , United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States
| | - Tomoko Ozawa
- Department of Neurological Surgery , University of California , San Francisco , California , United States
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California , United States.,Department of Pharmaceutical Chemistry , University of California , San Francisco , California , United States
| |
Collapse
|
27
|
Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother 2018; 23:462-473. [PMID: 30263016 PMCID: PMC6158036 DOI: 10.1016/j.rpor.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Neutron capture therapy (NCT) is a targeted radiotherapy for cancer treatment. In this method, neutrons with a spectra/specific energy (depending on the type of agent used for NCT) are captured with an agent that has a high cross-section with these neutrons. There are some agents that have been proposed in NCT including 10B, 157Gd and 33S. Among these agents, only 10B is used in clinical trials. Application of 157Gd is limited to in-vivo and in-vitro research. In addition, 33S has been applied in the field of Monte Carlo simulation. In BNCT, the only two delivery agents which are presently applied in clinical trials are BPA and BSH, but other delivery systems are being developed for more effective treatment in NCT. Neutron sources used in NCT are fission reactors, accelerators, and 252Cf. Among these, fission reactors have the most application in NCT. So far, BNCT has been applied to treat various cancers including glioblastoma multiforme, malignant glioma, malignant meningioma, liver, head and neck, lung, colon, melanoma, thyroid, hepatic, gastrointestinal cancer, and extra-mammary Paget's disease. This paper aims to review physical, dosimetric and clinical aspects as well as delivery systems in NCT for various agents.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Salman Zakariaee
- Department of Medical Physics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Courtney Knaup
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| |
Collapse
|
28
|
Moghaddasi L, Bezak E. Development of an integrated Monte Carlo model for glioblastoma multiforme treated with boron neutron capture therapy. Sci Rep 2017; 7:7069. [PMID: 28765533 PMCID: PMC5539248 DOI: 10.1038/s41598-017-07302-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/27/2017] [Indexed: 12/04/2022] Open
Abstract
Glioblastomas (GBM) are notorious for their high fatality rate. Boron Neutron Capture Therapy (BNCT) being a biochemically targeted type of radiotherapy is a potent modality for GBM. In the current work, a BNCT treatment modelling framework for GBM was developed. Optimal Clinical Target Volume (CTV) margins for GBM-BNCT and the BNCT efficacy have been investigated. The model integrated a cell-based dosimetry model, an in-house-developed epithermal neutron beam model and previously-developed Microscopic Extension Probability (MEP) model. The system was defined as a cubic ICRP-brain phantom divided into 20 μm side voxels. The corresponding 10B concentrations in GBM and normal brain cells were applied. The in-silico model was irradiated with the epithermal neutron beam using 2 and 2.5 cm CTV margins. Results from the cell-based dosimetry and the MEP models were combined to calculate GBM cell survival fractions (SF) post BNCT and compared to x-ray radiotherapy (XRT) SFs. Compared to XRT, the SF within the beam decreased by five orders of magnitudes and the total SF was reduced three times following BNCT. CTV extension by 0.5 cm reduced the SF by additional (53.8 ± 0.3)%. In conclusion, BNCT results in a more efficient cell kill. The extension of the CTV margin, however, may not increase the treatment outcome significantly.
Collapse
Affiliation(s)
- Leyla Moghaddasi
- School of Physical Sciences, University of Adelaide, Adelaide, Australia. .,Department of Medical Physics, Adelaide Radiotherapy Centre, Adelaide, Australia.
| | - Eva Bezak
- School of Physical Sciences, University of Adelaide, Adelaide, Australia.,School of Health Sciences, University of South Australia, Adelaide, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
29
|
Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Transl Oncol 2017; 10:686-692. [PMID: 28683435 PMCID: PMC5498409 DOI: 10.1016/j.tranon.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH2)15–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9)-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.
Collapse
|
30
|
Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S. Boron Neutron Capture Therapy - A Literature Review. J Clin Diagn Res 2016; 10:ZE01-ZE04. [PMID: 28209015 DOI: 10.7860/jcdr/2016/19890.9024] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/24/2016] [Indexed: 11/24/2022]
Abstract
Boron Neutron Capture Therapy (BNCT) is a radiation science which is emerging as a hopeful tool in treating cancer, by selectively concentrating boron compounds in tumour cells and then subjecting the tumour cells to epithermal neutron beam radiation. BNCT bestows upon the nuclear reaction that occurs when Boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield α particles (Helium-4) and recoiling lithium-7 nuclei. A large number of 10 Boron (10B) atoms have to be localized on or within neoplastic cells for BNCT to be effective, and an adequate number of thermal neutrons have to be absorbed by the 10B atoms to maintain a lethal 10B (n, α) lithium-7 reaction. The most exclusive property of BNCT is that it can deposit an immense dose gradient between the tumour cells and normal cells. BNCT integrates the fundamental focusing perception of chemotherapy and the gross anatomical localization proposition of traditional radiotherapy.
Collapse
Affiliation(s)
- Kavitaa Nedunchezhian
- Postgraduate Student, Department of Oral Medicine and Radiology, Sree Balaji Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Nalini Aswath
- Professor and Head, Department of Oral Medicine and Radiology, Sree Balaji Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Manigandan Thiruppathy
- Professor, Department of Oral Medicine and Radiology, Sree Balaji Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Sarumathi Thirugnanamurthy
- Associate Professor, Department of Oral Medicine and Radiology, Sree Balaji Dental College and Hospital , Chennai, Tamil Nadu, India
| |
Collapse
|
31
|
From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy. Appl Radiat Isot 2015; 106:22-8. [DOI: 10.1016/j.apradiso.2015.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/06/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022]
|
32
|
Fujimoto N, Tanaka H, Sakurai Y, Takata T, Kondo N, Narabayashi M, Nakagawa Y, Watanabe T, Kinashi Y, Masunaga S, Maruhashi A, Ono K, Suzuki M. Improvement of depth dose distribution using multiple-field irradiation in boron neutron capture therapy. Appl Radiat Isot 2015; 106:134-8. [PMID: 26282566 DOI: 10.1016/j.apradiso.2015.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/10/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
It is important that improvements are made to depth dose distribution in boron neutron capture therapy, because the neutrons do not reach the innermost regions of the human body. Here, we evaluated the dose distribution obtained using multiple-field irradiation in simulation. From a dose volume histogram analysis, it was found that the mean and minimum tumor doses were increased using two-field irradiation, because of improved dose distribution for deeper-sited tumors.
Collapse
Affiliation(s)
- N Fujimoto
- Kyoto University Research Reactor Institute, Japan
| | - H Tanaka
- Kyoto University Research Reactor Institute, Japan.
| | - Y Sakurai
- Kyoto University Research Reactor Institute, Japan
| | - T Takata
- Kyoto University Research Reactor Institute, Japan
| | - N Kondo
- Kyoto University Research Reactor Institute, Japan
| | | | - Y Nakagawa
- Kyoto University Research Reactor Institute, Japan
| | - T Watanabe
- Kyoto University Research Reactor Institute, Japan
| | - Y Kinashi
- Kyoto University Research Reactor Institute, Japan
| | - S Masunaga
- Kyoto University Research Reactor Institute, Japan
| | - A Maruhashi
- Kyoto University Research Reactor Institute, Japan
| | - K Ono
- Kyoto University Research Reactor Institute, Japan
| | - M Suzuki
- Kyoto University Research Reactor Institute, Japan
| |
Collapse
|
33
|
Wittig A, Moss RL, Sauerwein WA. Glioblastoma, brain metastases and soft tissue sarcoma of extremities: Candidate tumors for BNCT. Appl Radiat Isot 2014; 88:46-9. [DOI: 10.1016/j.apradiso.2013.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
|
34
|
Moss RL. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl Radiat Isot 2013; 88:2-11. [PMID: 24355301 DOI: 10.1016/j.apradiso.2013.11.109] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 11/05/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
The first BNCT trials took place in the USA in the early 1960's, yet BNCT is still far from mainstream medicine. Nonetheless, in recent years, reported results in the treatment of head and neck cancer and recurrent glioma, coupled with the progress in developing linear accelerators specifically for BNCT applications, have given some optimism to the future of BNCT. This article provides a brief reminder on the ups and downs of the history of BNCT and supports the view that controlled and prospective clinical trials with a modern design will make BNCT an evidence-based treatment modality within the coming decade.
Collapse
Affiliation(s)
- Raymond L Moss
- Institute for Energy and Transport, Joint Research Centre, European Commission, Westerduinweg 3, 1755 LE, Petten, The Netherlands.
| |
Collapse
|
35
|
Sander A, Wosniok W, Gabel D. Case numbers for a randomized clinical trial of boron neutron capture therapy for Glioblastoma multiforme. Appl Radiat Isot 2013; 88:16-9. [PMID: 24373823 DOI: 10.1016/j.apradiso.2013.11.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 10/24/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022]
Abstract
Boron neutron capture therapy (BNCT) with Na2B12H11SH (BSH) or p-dihydroxyborylphenylalanine (BPA), and with a combination of both, was compared to radiotherapy with temozolomide, and the number of patients required to show statistically significant differences between the treatments was calculated. Whereas arms using BPA require excessive number of patients in each arm, a two-armed clinical trial with BSH and radiotherapy plus temozolomide is feasible.
Collapse
Affiliation(s)
- Anja Sander
- Kompetenzzentrum Klinische Studien KKS, Bremen, Germany; Cooperative Center Medicine, University of Bremen, Bremen, Germany
| | - Werner Wosniok
- Kompetenzzentrum Klinische Studien KKS, Bremen, Germany; Cooperative Center Medicine, University of Bremen, Bremen, Germany
| | - Detlef Gabel
- Department of Chemistry, University of Bremen, Bremen, Germany; Cooperative Center Medicine, University of Bremen, Bremen, Germany; School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| |
Collapse
|
36
|
Enger SA, Giusti V, Fortin MA, Lundqvist H, af Rosenschöld PM. Dosimetry for gadolinium neutron capture therapy (GdNCT). RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Capoulat ME, Minsky DM, Kreiner AJ. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT). Phys Med 2013; 30:133-46. [PMID: 23880544 DOI: 10.1016/j.ejmp.2013.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/10/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5-6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.
Collapse
Affiliation(s)
- M E Capoulat
- Gerencia de Investigación y Aplicaciones, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, M. de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina; CONICET. Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina.
| | - D M Minsky
- Gerencia de Investigación y Aplicaciones, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, M. de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina; CONICET. Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| | - A J Kreiner
- Gerencia de Investigación y Aplicaciones, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, M. de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina; CONICET. Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| |
Collapse
|
38
|
Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr 2012; 3:8. [PMID: 23121736 PMCID: PMC3531250 DOI: 10.1186/2041-9414-3-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles.
Collapse
Affiliation(s)
- Elina Staaf
- Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 106 91, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Hwang SW, Tao H, Kim DH, Cheng H, Song JK, Rill E, Brenckle MA, Panilaitis B, Won SM, Kim YS, Song YM, Yu KJ, Ameen A, Li R, Su Y, Yang M, Kaplan DL, Zakin MR, Slepian MJ, Huang Y, Omenetto FG, Rogers JA. A physically transient form of silicon electronics. Science 2012; 337:1640-4. [PMID: 23019646 DOI: 10.1126/science.1226325] [Citation(s) in RCA: 539] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.
Collapse
Affiliation(s)
- Suk-Won Hwang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Transferrin-conjugated boron nitride nanotubes: Protein grafting, characterization, and interaction with human endothelial cells. Int J Pharm 2012; 436:444-53. [DOI: 10.1016/j.ijpharm.2012.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 01/21/2023]
|
41
|
Barth RF, Vicente MGH, Harling OK, Kiger WS, Riley KJ, Binns PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol 2012; 7:146. [PMID: 22929110 PMCID: PMC3583064 DOI: 10.1186/1748-717x-7-146] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/23/2012] [Indexed: 11/25/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Basic requirements and parameter optimization for boron neutron capture therapy of extracorporeal irradiated and auto-transplanted organs. Appl Radiat Isot 2012; 70:1709-17. [DOI: 10.1016/j.apradiso.2012.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/27/2012] [Accepted: 05/07/2012] [Indexed: 11/27/2022]
|
43
|
Sun T, Zhou Y, Xie X, Chen G, Li B, Wei Y, Chen J, Huang Q, Du Z. Selective uptake of boronophenylalanine by glioma stem/progenitor cells. Appl Radiat Isot 2012; 70:1512-8. [PMID: 22728842 DOI: 10.1016/j.apradiso.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/22/2022]
Abstract
The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mason AJ, Giusti V, Green S, Munck af Rosenschöld P, Beynon TD, Hopewell JW. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Int J Radiat Biol 2011; 87:1162-72. [PMID: 21923301 DOI: 10.3109/09553002.2011.624154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any interactions between the effects of biological damage induced by high- and low-linear energy transfer (LET) dose components, in this 'mixed field' irradiation, was also examined MATERIALS AND METHODS Clonogenic survival in Chinese Hamster-derived V79 cells was used to assess biological effectiveness in this study. Cells were irradiated in suspension at 4 °C at depths of 20, 35, 50 and 65 mm in a water phantom. This prevented the repair of sublethal damage, predominantly that produced by both incident and induced γ-rays in the field, over the variable periods of exposure required to irradiate cells with the same total absorbed dose. Cell survival, as a function of the absorbed radiation dose and depth in the phantom, was compared with Monte Carlo N-Particle (MCNP) calculations of the proportional absorbed dose distribution as a function of neutron energy for the two sources. RESULTS In terms of the dose-related reduction in clonogenic cell survival, the epithermal neutron source at Studsvik was more biologically effective than the Birmingham source at all depths considered in the phantom. Although the contribution from the high-LET dose component was greater for the Studsvik source at 20 mm depth in the phantom, at greater depths the dose contribution from the high-LET dose component at Studsvik overlap with those for the Birmingham source. However, the most striking difference is in the fast neutron component to the dose of the two sources, neutron energies>1 MeV were only associated with the Studsvik source. The relative biological effectiveness (RBE) of both sources declined slightly with depth in the phantom, as the total high-LET dose component declined. The maximum source RBE for Studsvik was 2.70±0.50 at 20 mm; reduced to 2.10±0.35 at depths of 50 and 65 mm. The corresponding values for Birmingham were 1.68±0.25 and 1.31±0.19, all values relate only to the surviving fraction of V79 cells at 37%, since RBE values are only applicable to the selected endpoint. Based on a dose reduction factor (DRF) of 1.0 for the total low-LET component to the absorbed dose, the RBE values for the high-LET dose component (fast neutrons and induced protons from the nitrogen capture reaction) was 14.5 and 7.05 for the Studsvik and Birmingham neutron sources, respectively. This is well outside the range of RBE historically reported values for V79 cells for the same level of cell survival for fast neutrons. The calculation of RBE values, based on the proportional absorbed dose distribution as a function of neutron energy, from historical data, and using a RBE of 1.8 for the dose from the nitrogen capture reaction, suggests RBE values for the total high-LET dose component of 3.1-2.8 and 2.5-2.0 for Studsvik and Birmingham, respectively, values again declining with depth in the phantom. CONCLUSIONS The overall biological effectiveness of the mixed field irradiation from an epithermal neutron sources depends on the composition and quality of the different dose components. The experimentally derived RBE values for the total high-LET dose components in these 'mixed field' irradiations are well in excess of historical data for fast neutrons. The difference between the historically expected and the observed RBE values is attributed to the interactions between the damage produced by high- and low-LET radiation.
Collapse
Affiliation(s)
- Anna J Mason
- Medical Physics, Nottingham University Hospitals NHS Trust (City Hospital Campus), Nottingham, UK
| | | | | | | | | | | |
Collapse
|
45
|
Rahmani F, Shahriari M. Beam shaping assembly optimization of Linac based BNCT and in-phantom depth dose distribution analysis of brain tumors for verification of a beam model. ANN NUCL ENERGY 2011. [DOI: 10.1016/j.anucene.2010.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Ferrari C, Bakeine J, Ballarini F, Boninella A, Bortolussi S, Bruschi P, Cansolino L, Clerici AM, Coppola A, Di Liberto R, Dionigi P, Protti N, Stella S, Zonta A, Zonta C, Altieri S. In vitro and in vivo studies of boron neutron capture therapy: boron uptake/washout and cell death. Radiat Res 2010; 175:452-62. [PMID: 21133762 DOI: 10.1667/rr2156.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.
Collapse
Affiliation(s)
- C Ferrari
- University of Pavia, Department of Surgery, Experimental Surgery Laboratory, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sköld K, H-Stenstam B, Diaz AZ, Giusti V, Pellettieri L, Hopewell JW. Boron Neutron Capture Therapy for glioblastoma multiforme: advantage of prolonged infusion of BPA-f. Acta Neurol Scand 2010; 122:58-62. [PMID: 19951268 DOI: 10.1111/j.1600-0404.2009.01267.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess possible improved efficacy of Boron Neutron Capture Therapy (BNCT) for glioblastoma multiforme (GBM) using prolonged infusion and a correspondingly higher dose of l-boronophenylalanine, as the fructose complex (BPA-f). MATERIALS AND METHODS The benefit of prolonged infusion was analyzed by comparing the results from a Phase II study using 6 h infusion of BPA-f with those obtained from a Phase I/II study using 2 h of infusion. Median survival time (MST) from diagnosis, patient baseline characteristics, salvage treatment and severe adverse events were considered in the comparison. RESULTS MST increased significantly, from 12.8 (95% confidence interval or CI: 10.3-14.0) months with 2 h infusion to 17.7 (95% CI: 13.6-19.9) months with 6 h of infusion. The fraction of patients with WHO grade 3-4 adverse events was similar in the two studies at 13% and 14%, respectively. CONCLUSION Prolonged infusion was found to be beneficial for the efficacy of BNCT and it is suggested that 6 h infusion of BPA-f should be used in future trials of BNCT for GBM. BNCT, which is a single-day treatment with mild side effects, should be assessed in a controlled trial, as an alternative to 30 daily fractions of conventional fractionated photon therapy over a period of 6 weeks.
Collapse
|
48
|
Persson BRR, Koch CB, Grafström G, Ceberg C, Rosenschöld PM, Nittby H, Widegren B, Salford LG. Radiation Immunomodulatory Gene Tumor Therapy of Rats with Intracerebral Glioma Tumors. Radiat Res 2010; 173:433-40. [DOI: 10.1667/rr1733.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Abstract
Advances in computer software technology have led to enormous progress that has enabled increasing levels of complexity to be incorporated into radiotherapy treatment planning systems. Because of these changes, the delivery of radiotherapy evolved from therapy designed primarily on plain 2-dimensional X-ray images and hand calculations to therapy based on 3-dimensional images incorporating increasingly complex computer algorithms in the planning process. In addition, challenges in treatment planning and radiation delivery, such as problems with setup error and organ movement, have begun to be systematically addressed, ushering in an era of so-called 4-dimensional radiotherapy. This review article discusses how these advances have changed the way in which many common neoplasms of the central nervous system are being treated at present.
Collapse
|
50
|
Yamamoto T, Nakai K, Kageji T, Kumada H, Endo K, Matsuda M, Shibata Y, Matsumura A. Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother Oncol 2009; 91:80-4. [DOI: 10.1016/j.radonc.2009.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 01/28/2009] [Accepted: 02/15/2009] [Indexed: 11/25/2022]
|