1
|
Nippert AR, Chiang PP, Newman EA. Whisker-evoked neurovascular coupling is preserved during hypoglycemia in mouse cortical arterioles and capillaries. J Cereb Blood Flow Metab 2024; 44:155-168. [PMID: 37728791 PMCID: PMC10993878 DOI: 10.1177/0271678x231201241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Hypoglycemia is a serious complication of insulin treatment of diabetes that can lead to coma and death. Neurovascular coupling, which mediates increased local blood flow in response to neuronal activity, increases glucose availability to active neurons. This mechanism could be essential for neuronal health during hypoglycemia, when total glucose supplies are low. Previous studies suggest, however, that neurovascular coupling (a transient blood flow increase in response to an increase in neuronal activity) may be reduced during hypoglycemia. Such a reduction in blood flow increase would exacerbate the effects of hypoglycemia, depriving active neurons of glucose. We have reexamined the effects of hypoglycemia on neurovascular coupling by simultaneously monitoring neuronal and vascular responses to whisker stimulation in the awake mouse somatosensory cortex. We find that neurovascular coupling at both penetrating arterioles and at 2nd order capillaries did not change significantly during insulin-induced hypoglycemia compared to euglycemia. In addition, we show that the basal diameter of both arterioles and capillaries increases during hypoglycemia (10.3 and 9.7% increases, respectively). Our results demonstrate that both neurovascular coupling and basal increases in vessel diameter are active mechanisms which help to maintain an adequate supply of glucose to the brain during hypoglycemia.
Collapse
Affiliation(s)
| | | | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Nippert AR, Chiang PP, Del Franco AP, Newman EA. Astrocyte regulation of cerebral blood flow during hypoglycemia. J Cereb Blood Flow Metab 2022; 42:1534-1546. [PMID: 35296178 PMCID: PMC9274859 DOI: 10.1177/0271678x221089091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
Hypoglycemia triggers increases in cerebral blood flow (CBF), augmenting glucose supply to the brain. We have tested whether astrocytes, which can regulate vessel tone, contribute to this CBF increase. We hypothesized that hypoglycemia-induced adenosine signaling acts to increase astrocyte Ca2+ activity, which then causes the release of prostaglandins (PGs) and epoxyeicosatrienoic acids (EETs), leading to the dilation of brain arterioles and blood flow increases. We used an awake mouse model to investigate the effects of insulin-induced hypoglycemia on arterioles and astrocytes in the somatosensory cortex. During insulin-induced hypoglycemia, penetrating arterioles dilated and astrocyte Ca2+ signaling increased when blood glucose dropped below a threshold of ∼50 mg/dL. Application of the A2A adenosine receptor antagonist ZM-241385 eliminated hypoglycemia-evoked astrocyte Ca2+ increases and reduced arteriole dilations by 44% (p < 0.05). SC-560 and miconazole, which block the production of the astrocyte vasodilators PGs and EETs respectively, reduced arteriole dilations in response to hypoglycemia by 89% (p < 0.001) and 76% (p < 0.001). Hypoglycemia-induced arteriole dilations were decreased by 65% (p < 0.001) in IP3R2 knockout mice, which have reduced astrocyte Ca2+ signaling compared to wild-type. These results support the hypothesis that astrocytes contribute to hypoglycemia-induced increases in CBF by releasing vasodilators in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Amy R Nippert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
van Meijel LA, van Asten JJA, Grandjean J, Heerschap A, Tack CJ, van der Graaf M, Wiegers EC, de Galan BE. Effect of lactate administration on cerebral blood flow during hypoglycemia in people with type 1 diabetes. BMJ Open Diabetes Res Care 2022; 10:10/2/e002401. [PMID: 35321886 PMCID: PMC8943734 DOI: 10.1136/bmjdrc-2021-002401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Impaired awareness of hypoglycemia, clinically reflected by the inability to timely detect hypoglycemia, affects approximately 25% of the people with type 1 diabetes. Both altered brain lactate handling and increased cerebral blood flow (CBF) during hypoglycemia appear to be involved in the pathogenesis of impaired awareness of hypoglycemia. Here we examine the effect of lactate on CBF during hypoglycemia. RESEARCH DESIGN AND METHODS Nine people with type 1 diabetes and normal awareness of hypoglycemia underwent two hyperinsulinemic euglycemic-hypoglycemic (3.0 mmol/L) glucose clamps in a 3T MR system, once with sodium lactate infusion and once with sodium chloride infusion. Global and regional changes in CBF were determined using pseudocontinuous arterial spin labeling. RESULTS Lactate (3.3±0.6 vs 0.9±0.2 mmol/L during lactate infusion vs placebo infusion, respectively) suppressed the counter-regulatory hormone responses to hypoglycemia. Global CBF increased considerably in response to intravenous lactate infusion but did not further increase during hypoglycemia. Lactate also blunted the hypoglycemia-induced regional redistribution of CBF towards the thalamus. CONCLUSIONS Elevated lactate levels enhance global CBF and blunt the thalamic CBF response during hypoglycemia in patients with type 1 diabetes, mimicking observations of impaired awareness of hypoglycemia. These findings suggest that alteration of CBF associated with lactate may play a role in some aspects of the development of impaired awareness of hypoglycemia. TRIAL REGISTRATION NUMBER NCT03730909.
Collapse
Affiliation(s)
- Lian A van Meijel
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Internal Medicine, Maxima Medical Centre, Veldhoven, The Netherlands
| | - Jack J A van Asten
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
| | - Cornelis J Tack
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Evita C Wiegers
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
- High Field MR Research Group, Department of Radiology, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Powers WJ, An H, Diringer MN. Cerebral Blood Flow and Metabolism. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Wiegers EC, Becker KM, Rooijackers HM, von Samson-Himmelstjerna FC, Tack CJ, Heerschap A, de Galan BE, van der Graaf M. Cerebral blood flow response to hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of hypoglycemia. J Cereb Blood Flow Metab 2017; 37:1994-2001. [PMID: 27389175 PMCID: PMC5464695 DOI: 10.1177/0271678x16658914] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls ( n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic-hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia.
Collapse
Affiliation(s)
- Evita C Wiegers
- 1 Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kirsten M Becker
- 1 Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanne M Rooijackers
- 2 Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Federico C von Samson-Himmelstjerna
- 3 Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany.,4 Faculty of Physics and Electronics, University of Bremen, Bremen, Germany
| | - Cees J Tack
- 2 Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- 1 Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- 2 Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- 1 Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,5 Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Rooijackers HMM, Wiegers EC, Tack CJ, van der Graaf M, de Galan BE. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 2016; 73:705-22. [PMID: 26521082 PMCID: PMC4735263 DOI: 10.1007/s00018-015-2079-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Collapse
Affiliation(s)
- Hanne M M Rooijackers
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Cerebral Blood Flow and Metabolism. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Vandal M, Bourassa P, Calon F. Can insulin signaling pathways be targeted to transport Aβ out of the brain? Front Aging Neurosci 2015; 7:114. [PMID: 26136681 PMCID: PMC4468380 DOI: 10.3389/fnagi.2015.00114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
Abstract
Although the causal role of Amyloid-β (Aβ) in Alzheimer’s disease (AD) is unclear, it is still reasonable to expect that lowering concentrations of Aβ in the brain may decrease the risk of developing the neurocognitive symptoms of the disease. Brain capillary endothelial cells forming the blood-brain barrier (BBB) express transporters regulating the efflux of Aβ out of the cerebral tissue. Age-related BBB dysfunctions, that have been identified in AD patients, might impair Aβ clearance from the brain. Thus, targeting BBB outward transport systems has been suggested as a way to stimulate the clearance of Aβ from the brain. Recent data indicate that the increase in soluble brain Aβ and behavioral impairments in 3×Tg-AD mice generated by months of intake of a high-fat diet can be acutely reversed by the administration of a single dose of insulin. A concomitant increase in plasma Aβ suggests that clearance from the brain through the BBB is a likely mechanism for this rapid effect of insulin. Here, we review how BBB insulin response pathways could be stimulated to decrease brain Aβ concentrations and improve cognitive performance, at least on the short term.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| |
Collapse
|
9
|
van Golen LW, IJzerman RG, Huisman MC, Hensbergen JF, Hoogma RP, Drent ML, Lammertsma AA, Diamant M. Cerebral blood flow and glucose metabolism in appetite-related brain regions in type 1 diabetic patients after treatment with insulin detemir and NPH insulin: a randomized controlled crossover trial. Diabetes Care 2013; 36:4050-6. [PMID: 24130356 PMCID: PMC3836102 DOI: 10.2337/dc13-0093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test the hypothesis that insulin detemir, which is associated with less weight gain than other basal insulin formulations, exerts its weight-modulating effects by acting on brain regions involved in appetite regulation, as represented by altered cerebral blood flow (CBF) or cerebral glucose metabolism (CMRglu). RESEARCH DESIGN AND METHODS Twenty-eight male type 1 diabetic patients (age 36.9 ± 9.7 years, BMI 24.9 ± 2.7 kg/m(2), A1C 7.5 ± 0.6%) successfully completed a randomized crossover study, consisting of two periods of 12-week treatment with either insulin detemir or NPH insulin, both in combination with prandial insulin aspart. After each treatment period, patients underwent positron emission tomography scans to measure regional CBF and CMRglu. RESULTS After 12 weeks, A1C, daily insulin doses, fasting insulin, and blood glucose levels were similar between treatments. Insulin detemir resulted in body weight loss, whereas NPH insulin induced weight gain (between-treatment difference 1.3 kg; P = 0.02). After treatment with insulin detemir relative to NPH insulin, CBF was higher in brain regions involved in appetite regulation, whereas no significant difference in CMRglu was observed. CONCLUSIONS Treatment with insulin detemir versus NPH insulin resulted in weight loss, paralleled by increased CBF in appetite-related brain regions in the resting state, in men with well-controlled type 1 diabetes. These findings lend support to the hypothesis that a differential effect on the brain may contribute to the consistently observed weight-sparing effect of insulin detemir.
Collapse
|
10
|
van Golen LW, Kuijer JP, Huisman MC, IJzerman RG, Barkhof F, Diamant M, Lammertsma AA. Quantification of cerebral blood flow in healthy volunteers and type 1 diabetic patients: Comparison of MRI arterial spin labeling and [15O]H2O positron emission tomography (PET). J Magn Reson Imaging 2013; 40:1300-9. [DOI: 10.1002/jmri.24484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 09/28/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Larissa W. van Golen
- Diabetes Center/ Department of Internal Medicine; VU University Medical Center; Amsterdam The Netherlands
| | - Joost P.A. Kuijer
- Department of Physics and Medical Technology, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Marc C. Huisman
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Richard G. IJzerman
- Diabetes Center/ Department of Internal Medicine; VU University Medical Center; Amsterdam The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Michaela Diamant
- Diabetes Center/ Department of Internal Medicine; VU University Medical Center; Amsterdam The Netherlands
| | - Adriaan A. Lammertsma
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
11
|
Ozsoy E, Doganay S, Dogan M, Alkan A, Firat PG. Evaluation of metabolite changes in visual cortex in diabetic retinopathy by MR-spectroscopy. J Diabetes Complications 2012; 26:241-5. [PMID: 22512974 DOI: 10.1016/j.jdiacomp.2012.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022]
Abstract
PURPOSE To evaluate metabolite changes in the visual cortex of diabetic patients with nonproliferative or proliferative diabetic retinopathy by Magnetic Resonance Spectroscopy (MRS). MATERIALS AND METHODS 15 normal subjects (group 1), 15 patients with diabetes who did not have diabetic retinopathy (group 2), 15 patients with nonproliferative diabetic retinopathy (NPDR) (group 3), and 15 patients with proliferative diabetic retinopathy (PDR) (group 4) were included in the study. Furthermore, diabetic patients were divided into two groups according to HbA1c levels (Group A: 20 patients, HbA1c <8%; Group B: 20 patients, HbA1c >8%). In all cases' left visual cortex, amounts of N-acetyl-aspartate (NAA), choline (Cho), and creatine (Cr) were measured by MRS. NAA/Cr, Cho/Cr, and NAA/Cho ratios were calculated. Furthermore, all cases' complete blood count (CBC) and biochemical parameters were evaluated. RESULTS There was no statistically significant difference for NAA/Cr, Cho/Cr, and NAA/Cho ratios between groups 1, 2, 3, and 4 (P>0.05). However there was a statistically significant difference for NAA/Cr and NAA/Cho ratios between groups A and B (P<0.05). There was no statistically significant difference for Cho/Cr ratio between groups A and B (P>0.05). CONCLUSION Although NAA/Cr and NAA/Cho ratios decrease in the visual cortex while diabetic retinopathy progresses, these decreases are not statistically significant. While HbA1c levels increase, the NAA concentration decreases in the visual cortex which indicates neuronal loss. The metabolite changes in the visual cortex are associated with acute events rather than chronic.
Collapse
|
12
|
|
13
|
Bie-Olsen LG, Kjaer TW, Pedersen-Bjergaard U, Lonsdale MN, Holst JJ, Law I, Thorsteinsson B. Changes of cognition and regional cerebral activity during acute hypoglycemia in normal subjects: A H215O positron emission tomographic study. J Neurosci Res 2009; 87:1922-8. [DOI: 10.1002/jnr.22002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Sahin I, Alkan A, Keskin L, Cikim A, Karakas HM, Firat AK, Sigirci A. Evaluation of in vivo cerebral metabolism on proton magnetic resonance spectroscopy in patients with impaired glucose tolerance and type 2 diabetes mellitus. J Diabetes Complications 2008; 22:254-60. [PMID: 18413166 DOI: 10.1016/j.jdiacomp.2007.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 02/25/2007] [Accepted: 03/26/2007] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate possible metabolic alterations in cerebral tissues on magnetic resonance spectroscopy (MRS) in patients with impaired glucose tolerance (IGT) and with type 2 diabetes mellitus (T2-DM). Twenty-five patients with T2-DM, 13 patients with IGT, and 14 healthy volunteers were included. Single-voxel spectroscopy (TR: 2000 ms, TE: 31 ms) was performed in all subjects. Voxels were placed in the frontal cortex, thalamus, and parietal white matter. N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, and myo-inositol (MI)/Cr ratios were calculated. Frontal cortical Cho/Cr ratios were increased in patients with IGT compared to control subjects. Parietal white matter Cho/Cr ratios were significantly higher in patients with IGT when compared to patients with T2-DM. In the diabetic group, frontal cortical MI/Cr ratios were increased, and parietal white matter Cho/Cr ratios were decreased when compared to the control group. Frontal cortical NAA/Cr and Cho/Cr ratios and parietal white matter Cho/Cr ratios were decreased in diabetic patients with poor glycemic control (A1C>10%). A1C levels were inversely correlated with frontal cortical NAA/Cr and Cho/Cr ratios and with parietal white matter Cho/Cr ratios. T2-DM and IGT may cause subtle cerebral metabolic changes, and these changes may be shown with MRS. Increased Cho/Cr ratios may suggest dynamic change in membrane turnover in patients with IGT. Diabetic patients with poor glycemic control may be associated with neuronal dysfunction/damage in brain in accordance with A1C levels and, in some, extend with insulin resistance.
Collapse
Affiliation(s)
- Ibrahim Sahin
- Department of Endocrinology and Metabolism, School of Medicine, Inonu University, TR-44069 Malatya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wessels AM, Scheltens P, Barkhof F, Heine RJ. Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes. Eur J Pharmacol 2008; 585:88-96. [PMID: 18396273 DOI: 10.1016/j.ejphar.2007.11.080] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/12/2007] [Accepted: 11/14/2007] [Indexed: 12/31/2022]
Abstract
Individuals with type 1 diabetes show mild performance deficits in a range of neuropsychological tests compared to healthy controls, but the mechanisms underlying this cognitive deterioration are still poorly understood. Basically, two diabetes-related mechanisms can be postulated: recurrent severe hypoglycaemia and/or chronic hyperglycaemia. Intensive insulin therapy in type 1 diabetes, resulting in a durable improvement of glycaemic control, has been shown to lower the risk of long-term microvascular and macrovascular complications. The down side of striving for strict glycaemic control is the considerably elevated risk of severe hypoglycaemia, sometimes leading to seizure or coma. While retrospective studies in adult patients with type 1 diabetes have suggested an association between a history of recurrent severe hypoglycaemia and a modest or even severe degree of cognitive impairment, large prospective studies have failed to confirm this association. Only fairly recently, better appreciation of the possible deleterious effects of chronic hyperglycaemia on brain function and structure is emerging. In addition, it can be hypothesized that hyperglycaemia associated microvascular changes in the brain are responsible for the cognitive decline in patients with type 1 diabetes. This review presents various pathophysiological considerations concerning the cognitive decline in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Alette M Wessels
- Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Mori F, Nishie M, Houzen H, Yamaguchi J, Wakabayashi K. Hypoglycemic encephalopathy with extensive lesions in the cerebral white matter. Neuropathology 2006; 26:147-52. [PMID: 16708547 DOI: 10.1111/j.1440-1789.2006.00656.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report an autopsy case of hypoglycemic encephalopathy with prolonged coma. Laboratory data obtained when the patient lapsed into a coma showed that she had a low level of serum glucose (27 mg/dL). Although the level of glucose returned to within the normal range rapidly after glucose infusion, the patient remained in a coma for 22 months. It was presumed that the state of hypoglycemia persisted for about 4 h. There was no evidence of hypotension or hypoxia. Magnetic resonance imaging was performed 3 h after glucose administration; diffusion-weighted images revealed hyperintensity in the cerebral white matter and in the boundary zone between the middle and posterior cerebral arteries. Post-mortem examination revealed superficial laminar necrosis throughout the cerebral cortex. Neuronal necrosis was also found in the hippocampus and dentate gyrus, although the CA3 region appeared normal. In addition to these lesions, which are consistent with hypoglycemia-induced brain damage, the cerebral white matter exhibited severe loss of myelin and axons with reactive astrocytosis and macrophage infiltration. Old infarcts were also present in the bilateral occipital lobes. Since the cerebral blood flow is reported to be decreased during severe hypoglycemia, the present findings suggest that white matter lesions and boundary-zone infarctions may develop primarily in uncomplicated hypoglycemia.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | |
Collapse
|
17
|
Wessels AM, Rombouts SARB, Simsek S, Kuijer JPA, Kostense PJ, Barkhof F, Scheltens P, Snoek FJ, Heine RJ. Microvascular disease in type 1 diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes 2006; 55:334-40. [PMID: 16443765 DOI: 10.2337/diabetes.55.02.06.db05-0680] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Individuals with type 1 diabetes have mild performance deficits on a range of neuropsychological tests compared with nondiabetic control subjects. The mechanisms underlying this cognitive deterioration are still poorly understood, but chronic hyperglycemia is now emerging as a potential determinant, possibly through microvascular changes in the brain. In 24 type 1 diabetic patients, we tested at euglycemia and at acute hypoglycemia whether the presence of proliferative diabetic retinopathy, as a marker of microvascular disease, adversely affects the ability of the brain to respond to standardized hypoglycemia, using functional magnetic resonance imaging with a cognitive task. Patients with retinopathy, compared with patients without, showed less deactivation (hence, an increased response) in the anterior cingulate and the orbital frontal gyrus during hypoglycemia compared with euglycemia (P < 0.05). Task performance and reaction time were not significantly different for either group. We conclude that microvascular damage in the brain of patients with retinopathy caused this increased brain response to compensate for functional loss.
Collapse
Affiliation(s)
- Alette M Wessels
- Department of Medical Psychology, Vrije University (VU) Medical Center, Amsterdam, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The experience of hypoglycemia is probably the most feared and hated consequence of life with type 1 diabetes among pediatric patients and their parents. Although transient detrimental effects are clearly disturbing and may have severe results, there is surprisingly little evidence of long-term CNS damage, even after multiple hypoglycemic episodes, except in rare instances. Despite the latter evidence, we advocate that every treatment regimen be designed to prevent hypoglycemia without inducing unacceptable hyperglycemia and increasing the risk of micro- and macrovascular complications.
Collapse
Affiliation(s)
- Christopher Ryan
- Department of Psychiatry, University of Pittsburgh, Western Pennsylvania Psychiatric Institute and Clinic, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
19
|
|
20
|
Sarac K, Akinci A, Alkan A, Aslan M, Baysal T, Ozcan C. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus. Neuroradiology 2005; 47:562-5. [PMID: 15973536 DOI: 10.1007/s00234-005-1387-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 02/04/2005] [Indexed: 11/29/2022]
Abstract
The metabolite changes in the brains of children with poorly controlled type 1 diabetes mellitus (DM) were investigated by proton magnetic resonance spectroscopy (MRS). A total of 30 subjects and 14 age-matched healthy volunteers underwent single-voxel MRS (TE: 136). The duration of disease, medication, presence of hypoglycaemia episodes and the level of haemoglobin A1C (HbA1C) in the patients were noted. Voxels were placed in the pons, left basal ganglion (LBG) and left posterior parietal white matter (PPWM). N-acetylaspartate (NAA)/creatinine (Cr) and choline (Cho)/Cr ratios were calculated. The average HbA1c level was 11.9 +/- 3.4 (8.2-19.4). The average number of keto-acidosis episodes was 1.9 +/- 2.2 (0-9) and the average number of daily insulin injections was 2.8 +/- 0.97 (2-4). MRS revealed lower NAA/Cr and Cho/Cr ratios in the pons and lower NAA/Cr ratio in the PPWM of patients with DM than in control subjects. No significant correlation was observed between the number of hypoglycaemia episodes and metabolite ratios. Metabolic abnormalities have been observed by MRS in the brain of poorly controlled type 1 DM children. These metabolic changes, in particular in the pons region, include a decrease in NAA, indicating neuronal loss or functional impairment, and likely explanations for a decrease in Cho may be dynamic changes in membrane lipids and/or decreased membrane turnover.
Collapse
Affiliation(s)
- K Sarac
- Department of Radiology, Inonu University School of Medicine, Turgut Ozal Tip Merkezi, Malatya, Turkey.
| | | | | | | | | | | |
Collapse
|
21
|
Zazulia AR, Markham J, Powers WJ. Cerebral Blood Flow and Metabolism in Human Cerebrovascular Disease. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50047-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
de Galan BE, Tack CJ, Lenders JW, Pasman JW, Elving LD, Russel FG, Lutterman JA, Smits P. Theophylline improves hypoglycemia unawareness in type 1 diabetes. Diabetes 2002; 51:790-6. [PMID: 11872681 DOI: 10.2337/diabetes.51.3.790] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iatrogenic hypoglycemias and the subsequent occurrence of hypoglycemia unawareness are well-known complications of intensive insulin therapy in type 1 diabetic patients that limit glycemic management. From a pharmacological point of view, the adenosine-receptor antagonist theophylline might be beneficial in the management of hypoglycemia unawareness. Theophylline stimulates the release of catecholamines and reduces cerebral blood flow, thereby facilitating stronger metabolic responses to and a prompter perception of decreasing glucose levels. To test the effect of theophylline on responses to hypoglycemia, we performed paired hyperinsulinemic-hypoglycemic clamp studies in 15 diabetic patients with hypoglycemia unawareness and 15 matched healthy control subjects. In random order, we concurrently infused either theophylline or placebo. Measurements included counterregulatory hormones, symptoms, hemodynamic parameters, and sweat detection using a dew-point electrode. Additionally, middle cerebral artery velocities (V(MCA)) using transcranial Doppler were monitored as an estimate of cerebral blood flow. When compared with placebo, theophylline significantly enhanced responses of plasma epinephrine, norepinephrine, and cortisol levels in both diabetic patients and control subjects. Because of the theophylline, sweat production started at approximately 0.3 mmol/l higher glucose levels in both groups (P < 0.01), and symptom scores in diabetic patients approached those in control subjects. Theophylline decreased V(MCA) in both groups (P < 0.001), but significantly greater in diabetic patients (P < 0.01), and prevented the hypoglycemia-induced increase of V(MCA) that occurred during the placebo studies. We conclude that theophylline improves counterregulatory responses to and perception of hypoglycemia in diabetic patients with impaired awareness of hypoglycemia.
Collapse
Affiliation(s)
- Bastiaan E de Galan
- Department of Medicine, University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kennan RP, Jacob RJ, Sherwin RS, Gore JC. Effects of hypoglycemia on functional magnetic resonance imaging response to median nerve stimulation in the rat brain. J Cereb Blood Flow Metab 2000; 20:1352-9. [PMID: 10994857 DOI: 10.1097/00004647-200009000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The authors studied the effects of a standardized mild-moderate hypoglycemic stimulus (glucose clamp) on brain functional magnetic resonance imaging (fMRI) responses to median nerve stimulation in anesthetized rats. In the baseline period (plasma glucose 6.6 +/- 0.3 mmol/L), the MR signal changes induced by median nerve activation were determined within a fixed region of the somatosensory cortex from preinfusion activation maps. Subsequently, insulin and a variable glucose infusion were administered to decrease plasma glucose. The goal was to produce a stable hypoglycemic plateau (2.8 +/- 0.2 mmol/L) for 30 minutes. Thereafter, plasma glucose was restored to euglycemic levels (6.0 +/- 0.3 mmol/L). In the early phase of insulin infusion (15 to 30 minutes), before hypoglycemia was reached (4.7 +/- 0.3 mmol/L), the activation signal was unchanged. However, once the hypoglycemic plateau was achieved, the activation signal was significantly decreased to 57 +/- 6% of the preinfusion value. Control regions in the brain that were not activated showed no significant changes in MR signal intensity. Upon return to euglycemia, the activation signal change increased to within 10% of the original level. No significant activation changes were noted during euglycemic hyperinsulinemic clamp experiments. The authors concluded that fMRI can detect alterations in cerebral function because of insulin-induced hypoglycemia. The signal changes observed in fMRI activation experiments were sensitive to blood glucose levels and might reflect increases in brain metabolism that are limited by substrate deprivation during hypoglycemia.
Collapse
Affiliation(s)
- R P Kennan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven Connecticut 06510, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Hypoglycemia is the most common acute complication in insulin-treated type 1 diabetic patients. Most surveys have demonstrated that the tighter the glycemic control, and the younger the patient, the greater the frequency of both mild and severe hypoglycemia. However, people in poor metabolic control, with high glycosylated hemoglobin levels, are not protected from experiencing severe hypoglycemia. Focusing on the pediatric population, we review new or controversial issues surrounding the prevalence of hypoglycemia, its causes, its consequences and preventive strategies, and discuss possible mechanisms underlying the variability of responses to hypoglycemia.
Collapse
Affiliation(s)
- D J Becker
- Department of Pediatrics, Division of Pediatric Endocrinology, Metabolism, and Diabetes Mellitus, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
25
|
Sabri O, Hellwig D, Schreckenberger M, Schneider R, Kaiser HJ, Wagenknecht G, Mull M, Buell U. Influence of diabetes mellitus on regional cerebral glucose metabolism and regional cerebral blood flow. Nucl Med Commun 2000; 21:19-29. [PMID: 10717898 DOI: 10.1097/00006231-200001000-00005] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown both increased and decreased regional cerebral glucose metabolism-blood flow (rMRGlu-rCBF) values in diabetes. We sought to elucidate the influence of diabetes on rMRGlu-rCBF in 57 patients with pure cerebral microangiopathy. Sixteen of 57 patients had diabetes requiring therapy (11 NIDDM, 5 IDDM). Using a special head-holder for exact repositioning, rMRGlu (PET) and rCBF (SPET) were imaged and measured in slices, followed by MRI. White matter and cortex were defined within regions of interest taken topographically from MRI (overlay). Diabetic and non-diabetic microangiopathy patients were compared to 19 age-matched controls. The diabetic patients showed significantly lower rMRGlu-rCBF values in all regions than controls, whereas non-diabetic patients did not. There were no significant NIDDM-IDDM differences. rMRGlu-rCBF did not depend on venous blood glucose levels at the time of the PET examination. However, analysis of variance with the factors diabetes, atrophy and morphological severity of microangiopathy showed that lowered rMRGlu-rCBF in the diabetic group was due to concomitant atrophy only (P < 0.005), while neither diabetes nor microangiopathy had any influence on rMRGlu-rCBF (all P > 0.2). These results were confirmed by multivariate factor analysis. It can thus be concluded that a supposed decrease in rMRGlu-rCBF in diabetes mellitus is in fact only an artefact produced by the concomitant atrophy. All previous studies failed to correct for atrophy, and a critical reappraisal is required.
Collapse
Affiliation(s)
- O Sabri
- Department of Nuclear Medicine, Aachen University of Technology, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ryan CM, Becker DJ. Hypoglycemia in children with type 1 diabetes mellitus. Risk factors, cognitive function, and management. Endocrinol Metab Clin North Am 1999; 28:883-900. [PMID: 10609125 DOI: 10.1016/s0889-8529(05)70107-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article examines the relationship between hypoglycemia and brain function in children with type 1 diabetes. Hypoglycemic episodes occurring in the first 5 years of life may permanently disrupt cognitive function in a subset of children with diabetes, and a single acute episode of hypoglycemia may produce a transient reduction in mental efficiency, alter the electroencephalogram, and increase regional cerebral blood flow. Because iatrogenic development of hypoglycemic unawareness and autonomic failure are the most likely mediators of moderately severe hypoglycemia, medical management efforts should be directed at the prevention of frequently recurring, mild hypoglycemia.
Collapse
Affiliation(s)
- C M Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania, USA.
| | | |
Collapse
|
27
|
Elman I, Sokoloff L, Adler CM, Weisenfeld N, Breier A. The effects of pharmacological doses of 2-deoxyglucose on cerebral blood flow in healthy volunteers. Brain Res 1999; 815:243-9. [PMID: 9878763 DOI: 10.1016/s0006-8993(98)01137-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of glucose deprivation on cerebral blood flow (CBF) have been extensively investigated during insulin-induced hypoglycemia in laboratory animals. Pharmacological doses of glucose analog, 2-deoxyglucose (2DG), is an alternative glucoprivic agent that in contrast to insulin, directly inhibits glycolysis and glucose utilization. Both glucoprivic conditions markedly increase CBF in laboratory animals. How 2DG affects CBF in humans is still undetermined. In the present study we have employed H215O positron emission tomography (PET) to examine the effects of pharmacological doses of 2DG (40 mg/kg) on regional and global cerebral blood flow in 10 brain areas in 13 healthy volunteers. 2DG administration significantly raised regional CBF (rCBF) in the cingulate gyrus, sensorimotor cortex, superior temporal cortex, occipital cortex, basal ganglia, limbic system and hypothalamus. 2DG produced a trend towards elevated CBF in whole brain and frontal cortex, while no changes were observed in the corpus callosum and thalamus. In addition, 2DG significantly decreased body temperature and mean arterial pressure (MAP). Maximal percent changes in hypothalamic rCBF were significantly correlated with maximal changes in body temperature but not with MAP. These results indicate that cerebral glucoprivation produced by pharmacological doses of 2DG is accompanied by widespread activation of cortical and subcortical blood flow and that the blood flow changes in the hypothalamus may be related to 2DG-induced hypothermia.
Collapse
Affiliation(s)
- I Elman
- Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
28
|
Eckert B, Ryding E, Agardh CD. Sustained elevation of cerebral blood flow after hypoglycaemia in normal man. Diabetes Res Clin Pract 1998; 40:91-100. [PMID: 9681274 DOI: 10.1016/s0168-8227(98)00031-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During hypoglycaemia, counter-regulatory hormones are released, cognitive function is impaired and cerebral blood flow is increased. In the immediate period after normalisation of blood glucose only counter-regulatory hormones seem to be normalised. The aim of this study was to follow the changes in cerebral blood flow during a prolonged recovery period following moderate hypoglycaemia in normal man. In 15 healthy men, hypoglycaemia was induced by an intravenous infusion of insulin (2.5 mU/kg per min) to a blood glucose of 2.2 +/- 0.3 mmol/l (mean +/- S.D.) and was kept at this level for 66 +/- 11 min. The cerebral blood flow was measured by a single photon emission computed tomography camera (SPECT) recording the clearance of intravenously administered xenon-133. Measurements were performed before, at the beginning and at the end of the hypoglycaemic period, as well as 23 +/- 5, 51 +/- 7 and 97 +/- 7 min after normalisation of the blood glucose. The basal cerebral blood flow was 50.2 +/- 5.2 ml/100 g per min, increased to 55.6 +/- 4.9 ml/100 g per min (P < 0.001) during hypoglycaemia, and remained at this level at all measurements after normalisation of blood glucose. There was no relation between the rate of fall in blood glucose or level of hypoglycaemia and increment in cerebral blood flow or the actual blood flow during hypoglycaemia. The values of plasma adrenaline, serum ACTH, serum cortisol and symptom scores increased significantly during hypoglycaemia. The adrenaline level was back to the basal level at the first measurement after normalisation of blood glucose, while the ACTH level was normalised at the subsequent measurement and the cortisol level at the last measurement. In conclusion, the results show that despite normalisation of counter-regulatory hormones and hypoglycaemic symptoms, the cerebral blood flow remains elevated for at least 97 +/- 7 min following 66 +/- 11 min of moderate hypoglycaemia, indicating that additional factors which are not coupled to the cerebral metabolism influence this vasculatory response.
Collapse
Affiliation(s)
- B Eckert
- Department of Internal Medicine, University Hospital, Lund, Sweden
| | | | | |
Collapse
|
29
|
de la Torre JC. Hemodynamic consequences of deformed microvessels in the brain in Alzheimer's disease. Ann N Y Acad Sci 1997; 826:75-91. [PMID: 9329682 DOI: 10.1111/j.1749-6632.1997.tb48462.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cause of sporadic Alzheimer's disease (AD) remains a mystery. Mounting clinical and experimental data, however, suggest that a cerebral hemodynamic role may affect neuronoglial metabolism. Light and electron microscopy have consistently revealed that the microvasculature in AD brains contains structurally deformed capillaries which create a distorted intraluminal conduit for blood flow. The cerebral capillary distortions can create "disturbed" rather than "laminar" blood flow. Chronically disturbed capillary blood flow will impair normal delivery of essential nutrients to brain neurons as well as impede catabolic outflow of CNS waste products. This condition will negatively affect cerebral metabolism, primarily because of impaired glucose delivery to neurons. Impaired glucose delivery to AD brain results in a patho-chemical cascade that will impair the Na+, K(+)-ATPase ion pump and affect the syntheses of ATP, acetylcholine, and other neurotransmitters. The outcome of this metabolic dysfunction can promote neurofibrillary tangle and senile plaque formation in AD brain.
Collapse
Affiliation(s)
- J C de la Torre
- University of New Mexico, Division of Neurosurgery, Albuquerque 87131, USA.
| |
Collapse
|
30
|
Abstract
Diabetes is a major risk factor for cardiovascular disease. Coronary revascularization utilizing cardiopulmonary bypass (CPB) is frequently required for the diabetic patient. Nondiabetic individuals can autoregulate cerebral blood flow (CBF) through metabolic and perfusion pressure mechanisms during CPB. However, it has been reported that diabetic patients have impaired CBF autoregulation during CPB. It is possible, therefore, that impaired CBF autoregulation may contribute to postoperative neuropsychologic dysfunction. The mechanisms for this defect may reside in impaired endothelial-dependent responses in the diabetic that are related to morphological and functional changes linking the vascular endothelium and the vascular smooth muscle. The morphological changes occurring in the diabetic include microangiopathy and macroangiopathy which are characterized by endothelial cell (EC) hyperplasia and basement membrane thickening. Also, significant functional changes in local control of vascular tone, such as an imbalance in the synthesis and secretion of vasoactive factors by the EC and abnormal reactivity of the vascular smooth muscle, are seen in the diabetic when compared to the nondiabetic. More specifically, vascular responses to both calcium-dependent pathways of vasoconstriction and nitric oxide pathways of vasorelaxation have been shown to significantly differ between the diabetic and nondiabetic. The emphasis of this discussion is to examine the molecular mechanisms by which diabetes alters vascular function, with emphasis placed on regulation of cerebral artery blood flow during CPB.
Collapse
Affiliation(s)
- F Pallas
- University Heart Center, University of Arizona, Tucson, USA
| | | |
Collapse
|
31
|
MacLeod KM, Gold AE, Ebmeier KP, Hepburn DA, Deary IJ, Goodwin GM, Frier BM. The effects of acute hypoglycemia on relative cerebral blood flow distribution in patients with type I (insulin-dependent) diabetes and impaired hypoglycemia awareness. Metabolism 1996; 45:974-80. [PMID: 8769355 DOI: 10.1016/s0026-0495(96)90266-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the hypothesis that in diabetic patients with impaired hypoglycemia awareness the relative regional distribution of cerebral blood flow (rCBF) would be abnormal in a specific area, namely the frontal lobes, rCBF was examined in 20 type I diabetic patients, of whom 10 had a normal awareness of hypoglycemia and 10 had a history of impaired hypoglycemia awareness. rCBF was determined sequentially using single photon emission computed tomography (SPECT) during (1) normoglycemia (arterialized blood glucose 4.5 mmol. L-1) and (2) hypoglycemia (blood glucose 2.5 mmol.L-1) induced by a hyperinsulinemic glucose clamp technique. Distribution of the isotope, 99mTc-Exametazime, was detected using a single-slice multi-detector head scanner. A split-dose technique was used, with 250 MBq being injected during steady-state normoglycemia and 250 MBq during subsequent hypoglycemia. rCBF was estimated in 30 regions of interest, derived from a standard neuroanatomical atlas on two parallel slices at 40 and 60 mm above the orbitomeatal line (OML). No between-group differences in the pattern of overall rCBF or changes in regional tracer uptake were demonstrated. In comparison to the rCBF during normoglycemia, both patient groups exhibited significant changes in the pattern of rCBF during hypoglycemia, with increments of rCBF to both superior frontal cortices and the right thalamus and reduced rCBF to the right posterior cingulate cortex and the right putamen. This pattern of relative redistribution of rCBF during hypoglycemia was preserved in patients who had impaired hypoglycemia awareness.
Collapse
Affiliation(s)
- K M MacLeod
- Department of Diabetes, Royal Infirmary, Edinburgh, Scotland
| | | | | | | | | | | | | |
Collapse
|
32
|
Keymeulen B, de Metz K, Cluydts R, Bossuyt A, Somers G. Technetium-99m hexamethylpropylene amine oxime single-photon emission tomography of regional cerebral blood flow in insulin-dependent diabetes. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1996; 23:163-8. [PMID: 8925851 DOI: 10.1007/bf01731840] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The study was performed to investigate subclinical abnormalities in regional cerebral blood flow (rCBF) in patients with insulin-dependent diabetes mellitus (IDDM) and to correlate them with patients characteristics. After intravenous injection of technetium-99m hexamethylpropylene amine oxime (HMPAO), tracer uptake of the prefrontal, frontal and parieto-occipital zones was measured with a triple-head single-photon emission tomography (SPET) camera system in 35 IDDM patients outside an episode of hypoglycaemia. Tracer uptake values in 16 age- and sex-matched healthy volunteers served as reference values. Compared with healthy subjects, increased tracer uptake of both prefrontal regions and the left frontal region could be shown in diabetes. Tracer uptake was negatively correlated with the duration of diabetes in all investigated regions. In diabetic patients with a disease duration of more than 5 years (n=26), stepwise regression analysis revealed a significant positive correlation between their HbA1c levels and tracer uptake. Long-term diabetic patients with reduced (pre)frontal tracer uptake (n=8) had lower HbA1c levels than those without (8.4%+/-0.2% vs 9.3%+/-0.3%, P<0.05) and tended to have more frequently a history of hypoglycaemic coma (6/8 vs 6/18, P=0.06). It can be concluded that duration of diabetes contributes to subclinical changes in basal rCBF in IDDM as detected with HMPAO SPET of the brain. The positive correlation between the presence of regional hypoperfusion and lower HbA1c levels in long-term diabetic patients may be interpreted in the light of a presumed higher incidence of hypoglycaemia as metabolic control improves.
Collapse
Affiliation(s)
- B Keymeulen
- Department of Internal Medicine, Academic Hospital VUB, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
33
|
Abstract
Hypoglycaemia may cause transient cognitive impairment and neurological deficits that are frequently unilateral. The effect of mild hypoglycaemia (serum glucose level 3.4 +/- 0.1 mmol/l; mean +/- SEM) on regional cerebral blood flow and cerebrovascular resistance was studied in eight right-handed children with insulin-dependent diabetes mellitus (age 14.9 +/- 0.7 years; diabetes duration 7.4 +/- 1.1 years; six males) using the intravenous xenon-133 clearance method. Global mean cerebral grey and white matter blood flow, adjusted to mean pCO2 of cohort, showed a trend towards an increase from 54.7 +/- 3.5 ml.100 g-1.min-1 at baseline euglycaemia to 58.0 +/- 4.1 ml.100 g-1.min-1 during hypoglycaemia (p = 0.075). Statistically significant changes were seen in global mean cerebral grey matter blood flow, as indexed by initial slope, which increased from 88.0 +/- 6.5 min-1 before hypoglycaemia to 96.3 +/- 7.2 min-1 during hypoglycaemia (p < 0.05). Cerebral grey matter blood flow was significantly higher in the right hemisphere compared to the left during hypoglycaemia (p < 0.01) but not at baseline euglycaemia. Measurements of global cerebrovascular resistance showed a borderline decrease from 1.64 +/- 0.11 to 1.54 +/- 0.11 mm Hg.ml-1.100 g-1.min-1 (p < 0.09). In conclusion, mild hypoglycaemia is associated with increases in cerebral blood flow which are greater in grey matter flow indices and in the right hemisphere. We speculate that asymmetrical cerebral blood flow changes may explain the frequent laterality of neurological deficits during severe hypoglycaemia.
Collapse
Affiliation(s)
- I T Jarjour
- Department of Medicine (Neurology), Allegheny General Hospital, Medical College of Pennsylvania, Pittsburgh, USA
| | | | | |
Collapse
|
34
|
Eckert B, Ryding E, Agardh CD. The cerebral vascular response to a rapid decrease in blood glucose to values above normal in poorly controlled type 1 (insulin-dependent) diabetes mellitus. Diabetes Res Clin Pract 1995; 27:221-7. [PMID: 7555605 DOI: 10.1016/0168-8227(95)01052-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of rapid lowering of blood glucose on cerebral blood flow (CBF) was studied in 10 Type 1 (insulin-dependent) diabetic patients (age 23.5 +/- 3.8 years; mean +/- S.D.) with longstanding, poor metabolic control (HbAlc 11.2 +/- 1.0%; normal value 4.0-5.3%) using an intravenous xenon 133 single photon emission computed tomography technique. After a fall in blood glucose, during 81 +/- 11 min (mean +/- S.E.M.), from 18.2 +/- 1.4 mmol/l to 9.2 +/- 0.9 mmol/l CBF was unchanged, but increased from its initial value of 48.8 +/- 2.9 ml/100 g per min to 57.1 +/- 2.4 ml/100 g per min (P < 0.001) when the blood glucose level was restored. The CBF was higher in the right compared to the left hemisphere at all measurements (1.8 +/- 0.5 ml/100 g per min, P < 0.01; 1.9 +/- 0.5 ml/100 g per min, P < 0.05; 2.1 +/- 0.7 ml/100 g per min, P < 0.05, respectively). The change in CBF was inversely correlated with time for fall of blood glucose, but there was no correlation with absolute levels of blood glucose. The respiratory end-tidal PCO2 decreased during the low blood glucose level, but there was no correlation between the PCO2 and CBF. The cerebral volume was unchanged during the study. The results indicate that in patients with chronic hyperglycemia a rapid fall in blood glucose may cause a rise in CBF of the same magnitude as previously shown during absolute hypoglycemia in patients with well controlled diabetes mellitus and in normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Eckert
- Department of Internal Medicine, University Hospital, Lund, Sweden
| | | | | |
Collapse
|
35
|
MacLeod KM, Hepburn DA, Deary IJ, Goodwin GM, Dougall N, Ebmeier KP, Frier BM. Regional cerebral blood flow in IDDM patients: effects of diabetes and of recurrent severe hypoglycaemia. Diabetologia 1994; 37:257-63. [PMID: 8174839 DOI: 10.1007/bf00398052] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic hyperglycaemia and recurrent severe hypoglycaemia have both been implicated as causing cerebral damage in patients with diabetes. Although cognitive dysfunction and intellectual impairment have been demonstrated in patients with recurrent severe hypoglycaemia, structural correlates have not been described, and it is not known whether specific functional changes occur in the brains of affected patients. Regional cerebral blood flow was estimated by SPECT with 99mTechnetium Exametazime in 20 patients with IDDM. Ten patients had never experienced severe hypoglycaemia and 10 had a history of recurrent severe hypoglycaemia. Patient results were compared with 20 age- and sex-matched healthy volunteers. We observed differences between the two patient groups and the control group. Tracer uptake was greater in diabetic patients in the superior pre-frontal cortex. This effect was particularly pronounced in the group who had a history of previous severe hypoglycaemia. Patients with a history of recurrent hypoglycaemia also had a relative reduction in tracer uptake to the calcarine cortex. This suggests an alteration in the pattern of baseline regional cerebral blood flow in diabetic patients with frontal excess and relative posterior reduction in cerebral blood flow.
Collapse
Affiliation(s)
- K M MacLeod
- Department of Diabetes, Royal Infirmary, Edinburgh, Scotland
| | | | | | | | | | | | | |
Collapse
|