1
|
Hernández‐Fernández F, Martínez‐Fernández I, Barbella‐Aponte R, Vilar IF, Ayo‐Martín O, García‐García J, Collado R, Andrés A, Hernández‐Guillamón M, Pena Pardo FJ, Barrena C, de la Fuente M, Serrano‐Heras G, Melero M, Setién EL, López L, Segura T. Iatrogenic cerebral amyloid angiopathy and Alzheimer's disease co-pathology. Ann Clin Transl Neurol 2025; 12:235-241. [PMID: 39729628 PMCID: PMC11752100 DOI: 10.1002/acn3.52278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024] Open
Abstract
Iatrogenic cerebral amyloid angiopathy, a disease caused by contact with neurosurgical material or human growth hormone contaminated by beta-amyloid peptide (Aβ), has a prion-like transmission mechanism. We present a series of three patients under 55 years of age who underwent cranial surgery. All of them developed multiple cerebral hemorrhages, transient focal neurological deficits, and/or cognitive impairment after 3-4 decades. MRI was compatible with CAA, and Aβ deposition was confirmed. The third patient, who had a ventriculoperitoneal valve, also showed Aβ deposition in the peritoneum and diagnostic biomarkers of Alzheimer's disease. Co-pathology with Alzheimer disease and its iatrogenic transmission should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosa Collado
- Radiology DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | - Alberto Andrés
- Neurology DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | | | | | - Cristina Barrena
- Neurosurgery DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | | | | | - María Melero
- Internal Medicine DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | | | - Luis López
- Neurology DepartmentVigo Universitary HospitalVigoSpain
| | - Tomás Segura
- Neurology DepartmentAlbacete Universitary HospitalAlbaceteSpain
- Facultad de Medicina de AlbaceteInstituto de Biomedicina, UCLMAlbaceteSpain
| |
Collapse
|
2
|
Isidro F. Brain aging and Alzheimer's disease, a perspective from non-human primates. Aging (Albany NY) 2024; 16:13145-13171. [PMID: 39475348 PMCID: PMC11552644 DOI: 10.18632/aging.206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Brain aging is compared between Cercopithecinae (macaques and baboons), non-human Hominidae (chimpanzees, orangutans, and gorillas), and their close relative, humans. β-amyloid deposition in the form of senile plaques (SPs) and cerebral β-amyloid angiopathy (CAA) is a frequent neuropathological change in non-human primate brain aging. SPs are usually diffuse, whereas SPs with dystrophic neurites are rare. Tau pathology, if present, appears later, and it is generally mild or moderate, with rare exceptions in rhesus macaques and chimpanzees. Behavior and cognitive impairment are usually mild or moderate in aged non-human primates. In contrast, human brain aging is characterized by early tau pathology manifested as neurofibrillary tangles (NFTs), composed of paired helical filaments (PHFs), progressing from the entorhinal cortex, hippocampus, temporal cortex, and limbic system to other brain regions. β-amyloid pathology appears decades later, involves the neocortex, and progresses to the paleocortex, diencephalon, brain stem, and cerebellum. SPs with dystrophic neurites containing PHFs and CAA are common. Cognitive impairment and dementia of Alzheimer's type occur in about 1-5% of humans aged 65 and about 25% aged 85. In addition, other proteinopathies, such as limbic-predominant TDP-43 encephalopathy, amygdala-predominant Lewy body disease, and argyrophilic grain disease, primarily affecting the archicortex, paleocortex, and amygdala, are common in aged humans but non-existent in non-human primates. These observations show that human brain aging differs from brain aging in non-human primates, and humans constitute the exception among primates in terms of severity and extent of brain aging damage.
Collapse
Affiliation(s)
- Ferrer Isidro
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Reial Acadèmia de Medicina de Catalunya, Barcelona, Spain
| |
Collapse
|
3
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
4
|
Banerjee G, Farmer SF, Hyare H, Jaunmuktane Z, Mead S, Ryan NS, Schott JM, Werring DJ, Rudge P, Collinge J. Iatrogenic Alzheimer's disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med 2024; 30:394-402. [PMID: 38287166 PMCID: PMC10878974 DOI: 10.1038/s41591-023-02729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Stroke Service, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
5
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
6
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Wakeman DR, Weed MR, Perez SE, Cline EN, Viola KL, Wilcox KC, Moddrelle DS, Nisbett EZ, Kurian AM, Bell AF, Pike R, Jacobson PB, Klein WL, Mufson EJ, Lawrence MS, Elsworth JD. Intrathecal amyloid-beta oligomer administration increases tau phosphorylation in the medial temporal lobe in the African green monkey: A nonhuman primate model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12800. [PMID: 35156715 PMCID: PMC10902791 DOI: 10.1111/nan.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
AIMS An obstacle to developing new treatment strategies for Alzheimer's disease (AD) has been the inadequate translation of findings in current AD transgenic rodent models to the prediction of clinical outcomes. By contrast, nonhuman primates (NHPs) share a close neurobiology with humans in virtually all aspects relevant to developing a translational AD model. The present investigation used African green monkeys (AGMs) to refine an inducible NHP model of AD based on the administration of amyloid-beta oligomers (AβOs), a key upstream initiator of AD pathology. METHODS AβOs or vehicle were repeatedly delivered over 4 weeks to age-matched young adult AGMs by intracerebroventricular (ICV) or intrathecal (IT) injections. Induction of AD-like pathology was assessed in subregions of the medial temporal lobe (MTL) by quantitative immunohistochemistry (IHC) using the AT8 antibody to detect hyperphosphorylated tau. Hippocampal volume was measured by magnetic resonance imaging (MRI) scans prior to, and after, intrathecal injections. RESULTS IT administration of AβOs in young adult AGMs revealed an elevation of tau phosphorylation in the MTL cortical memory circuit compared with controls. The largest increases were detected in the entorhinal cortex that persisted for at least 12 weeks after dosing. MRI scans showed a reduction in hippocampal volume following AβO injections. CONCLUSIONS Repeated IT delivery of AβOs in young adult AGMs led to an accelerated AD-like neuropathology in MTL, similar to human AD, supporting the value of this translational model to de-risk the clinical trial of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Sylvia E Perez
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika N Cline
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kyle C Wilcox
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - David S Moddrelle
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ernell Z Nisbett
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - Amanda F Bell
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ricaldo Pike
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - William L Klein
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Elliott J Mufson
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
8
|
Morales R, Bravo-Alegria J, Moreno-Gonzalez I, Duran-Aniotz C, Gamez N, Edwards Iii G, Soto C. Transmission of cerebral amyloid pathology by peripheral administration of misfolded Aβ aggregates. Mol Psychiatry 2021; 26:5690-5701. [PMID: 34002023 PMCID: PMC8595465 DOI: 10.1038/s41380-021-01150-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023]
Abstract
Previous reports showed that brain Aβ amyloidosis can be induced in animal models by exogenous administration of pre-formed aggregates. To date, only intra-peritoneal and intra-venous administrations are described as effective means to peripherally accelerate brain Aβ amyloidosis by seeding. Here, we show that cerebral accumulation of Aβ can be accelerated after exposing mouse models of Alzheimer's disease (AD) to Aβ seeds by different peripheral routes of administration, including intra-peritoneal and intra-muscular. Interestingly, animals receiving drops of brain homogenate laden with Aβ seeds in the eyes were efficiently induced. On the contrary, oral administration of large quantities of brain extracts from aged transgenic mice and AD patients did not have any effect in brain pathology. Importantly, pathological induction by peripheral administration of Aβ seeds generated a large proportion of aggregates in blood vessels, suggesting vascular transport. This information highlights the role of peripheral tissues and body fluids in AD-related pathological changes.
Collapse
Affiliation(s)
- Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| | - Javiera Bravo-Alegria
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga-Instituto de Investigacion Biomedica-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Claudia Duran-Aniotz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nazaret Gamez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga-Instituto de Investigacion Biomedica-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - George Edwards Iii
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile.
| |
Collapse
|
9
|
Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, Buée L, Cacace AM, Chételat G, Citron M, DeVos SL, Diaz K, Feldman HH, Frost B, Goate AM, Gold M, Hyman B, Johnson K, Karch CM, Kerwin DR, Koroshetz WJ, Litvan I, Morris HR, Mummery CJ, Mutamba J, Patterson MC, Quiroz YT, Rabinovici GD, Rommel A, Shulman MB, Toledo-Sherman LM, Weninger S, Wildsmith KR, Worley SL, Carrillo MC. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement 2021; 18:988-1007. [PMID: 34581500 DOI: 10.1002/alz.12452] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.
Collapse
Affiliation(s)
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Pat Brannelly
- Alzheimer's Disease Data Initiative, Kirkland, WI, USA
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Buée
- Univ Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, Lille, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Martin Citron
- Neuroscience TA, Braine l'Alleud, UCB Biopharma, Brussels, Belgium
| | - Sarah L DeVos
- Translational Sciences, Denali Therapeutics, San Francisco, California, USA
| | | | - Howard H Feldman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Gold
- AbbVie, Neurosciences Development, North Chicago, Illinois, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Johnson
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Diana R Kerwin
- Kerwin Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | - Marc C Patterson
- Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yakeel T Quiroz
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Amy Rommel
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, Texas, USA
| | - Melanie B Shulman
- Neurodegeneration Development Unit, Biogen, Boston, Massachusetts, USA
| | | | | | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech, South San Francisco, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | | |
Collapse
|
10
|
Abstract
Tauopathies consist of over 25 different neurodegenerative diseases that include argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick’s disease (PiD). Tauopathies are defined by brain accumulation of microtubule-associated protein tau in fibrillar aggregates, whose prevalence strongly correlates with dementia. Dominant mutations in tau cause neurodegenerative diseases, and most increase its aggregation propensity. Pathogenesis of tauopathies may involve pathological tau conformers that serve as templates to recruit native protein into growing assemblies and also move between brain cells to cause disease progression, similar to prions. Prions adopt pathological conformations, termed “strains,” that stably propagate in living systems, and create unique patterns of neuropathology. Data from multiple laboratories now suggest that tau acts as a prion. It propagates unique strains indefinitely in cultured cells, and when these are inoculated into mouse models, they create defined neuropathological patterns, which establish a direct link between conformation and disease. In humans, distinct fibril structures are associated with different diseases, but causality has not been established as in mice. Cryo-EM structures of tau fibrils isolated from tauopathy brains reveal distinct fibril cores across disease. Interestingly, the conformation of the tau monomer unit within different fibril subtypes from the same patient appears relatively preserved. This is consistent with data that the tau monomer samples an ensemble of conformations that act as distinct pathologic templates in the formation of restricted numbers of strains. The propensity of a tau monomer to adopt distinct conformations appears to be linked to defined local motifs that expose different patterns of amyloidogenic amino acid sequences. The prion hypothesis, which predicts that protein structure dictates resultant disease, has proved particularly useful to understand the diversity of human tauopathies. The challenge now is to develop methods to rapidly classify patients according to the structure of the underlying pathological protein assemblies to achieve more accurate diagnosis and effective therapy.
Collapse
|
11
|
Carlson GA, Prusiner SB. How an Infection of Sheep Revealed Prion Mechanisms in Alzheimer's Disease and Other Neurodegenerative Disorders. Int J Mol Sci 2021; 22:4861. [PMID: 34064393 PMCID: PMC8125442 DOI: 10.3390/ijms22094861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aβ peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.
Collapse
Affiliation(s)
- George A. Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Ulm BS, Borchelt DR, Moore BD. Remodeling Alzheimer-amyloidosis models by seeding. Mol Neurodegener 2021; 16:8. [PMID: 33588898 PMCID: PMC7885558 DOI: 10.1186/s13024-021-00429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is among the most prevalent neurodegenerative diseases, with brain pathology defined by extracellular amyloid beta deposits and intracellular tau aggregates. To aid in research efforts to improve understanding of this disease, transgenic murine models have been developed that replicate aspects of AD pathology. Familial AD is associated with mutations in the amyloid precursor protein and in the presenilins (associated with amyloidosis); transgenic amyloid models feature one or more of these mutant genes. Recent advances in seeding methods provide a means to alter the morphology of resultant amyloid deposits and the age that pathology develops. In this review, we discuss the variety of factors that influence the seeding of amyloid beta pathology, including the source of seed, the time interval after seeding, the nature of the transgenic host, and the preparation of the seeding inoculum.
Collapse
Affiliation(s)
- Brittany S Ulm
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
14
|
Abstract
Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for β-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aβ and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.
Collapse
|
15
|
Walsh DM, Selkoe DJ. Amyloid β-protein and beyond: the path forward in Alzheimer's disease. Curr Opin Neurobiol 2020; 61:116-124. [PMID: 32197217 DOI: 10.1016/j.conb.2020.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Basic research on the biological mechanism of Alzheimer's disease has focused for decades on the age-related aggregation of the amyloid β-protein and its apparent downstream effects on microglia, astrocytes and neurons, including the posttranslational modification of the tau protein that seems necessary for symptom expression. Here, we discuss the highly challenging process of developing disease-modifying therapies and highlight several key areas of current research that are progressing in exciting directions. We conclude that further deep molecular analyses of the disease, including the mechanisms of β-amyloidosis, will enable more effective clinical trials and ultimately achieve the progress that our patients so deserve.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Alzheimer's Disease and Dementia Research Unit, Biogen Inc., 115 Broadway, Cambridge, MA 02142, United States.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov AA. Aberrant interactions between amyloid-beta and alpha5 laminins as possible driver of neuronal disfunction in Alzheimer's disease. Biochimie 2020; 174:44-48. [PMID: 32311425 DOI: 10.1016/j.biochi.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/28/2022]
Abstract
It has been widely accepted that laminins are involved in pathogenesis of Alzheimer's disease (AD). Amyloid plaques in AD patients are associated with immunostaining using antibodies raised against laminin-111, and laminin-111 has been shown to prevent aggregation of amyloid peptides. Although numerous articles describe small peptides from laminin-111 that are capable to disaggregate amyloid buildups and reduce neurotoxicity in in vitro and in vivo models, there is no approved laminin-111-based therapeutic approaches for treatment of AD. Also, it has been shown that immunoreactivity to laminin-111 appears late in development of cerebral amyloidosis. Based on the published data, we hypothesize that aberrant interaction between amyloid-beta and α5-laminins such as laminin-511 prevents the necessary laminin signaling into neurons leading to neurodegeneration and contributing to the early development of AD. Laminin-511 is the key extracellular protein that protects neurons from anoikis, inhibits excitoxicity and provides signaling that stabilizes dendritic spines and synapses in the developed brain. Absence of the signaling from laminin-511 leads to behavioral defects in mice. Laminin-511 and hippocampal neurons are in direct contact and accumulation of amyloid-beta that has been shown to avidly bind laminin-511 may physically decouple the interaction between α5-laminins and the neuronal membrane receptors inhibiting the signaling. Under this hypothesis, protein domains and peptides from laminin α5 chain may have a therapeutic potential in treatment of AD and the appearance of laminin-111 in the amyloid plaques is simply a consequence of the disease.
Collapse
Affiliation(s)
- Sergey Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
17
|
Devanand DP, Andrews H, Kreisl WC, Razlighi Q, Gershon A, Stern Y, Mintz A, Wisniewski T, Acosta E, Pollina J, Katsikoumbas M, Bell KL, Pelton GH, Deliyannides D, Prasad KM, Huey ED. Antiviral therapy: Valacyclovir Treatment of Alzheimer's Disease (VALAD) Trial: protocol for a randomised, double-blind,placebo-controlled, treatment trial. BMJ Open 2020; 10:e032112. [PMID: 32034019 PMCID: PMC7045215 DOI: 10.1136/bmjopen-2019-032112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION After infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and can enter the brain via retrograde axonal transport. Recurrent reactivation of HSV1 may lead to neurodegeneration and Alzheimer's disease (AD) pathology. HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid beta-protein (Aβ) aggregation and HSV1 DNA is common in amyloid plaques. Anti-HSV drugs reduce Aβ and phosphorylated tau accumulation in cell-culture models. Cognitive impairment is greater in patients with HSV seropositive, and antiviral drugs show robust efficacy against peripheral HSV infection. Recent studies of electronic health records databases demonstrate that HSV infections increase dementia risk, and that antiviral medication treatment reduces this risk. The generic antiviral drug valacyclovir was superior to placebo in improving memory in a schizophrenia pilot trial but has not been tested in AD. METHODS AND ANALYSIS In patients with mild AD who test positive for HSV1 or HSV2 serum antibodies, valacyclovir, repurposed as an anti-AD drug, will be compared with placebo (lactose pills) in 130 patients (65 valacyclovir and 65 placebo) in a randomised, double-blind, 78-week phase II proof-of-concept trial. Patients on valacyclovir, dose-titrated from 2 g to a targeted oral dose of 4 g daily, compared with placebo, are hypothesised to show smaller cognitive and functional decline, and, using 18F-Florbetapir positron emission tomography (PET) and 18F-MK-6240 PET imaging, to show less amyloid and tau accumulation, respectively. In the lumbar puncture subsample, cerebrospinal fluid acyclovir will be assayed to assess central nervous system valacyclovir penetration. ETHICS AND DISSEMINATION The trial is being overseen by the New York State Psychiatric Institute Institutional Review Board (protocol 7537), the National Institute on Ageing, and the Data Safety Monitoring Board. Written informed consent is obtained for all subjects. Results will be disseminated via publication, clinicaltrials.gov, media and conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier (NCT03282916) Pre-results.
Collapse
Affiliation(s)
- D P Devanand
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Howard Andrews
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University Medical Center, New York, New York, USA
| | - William C Kreisl
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Qolamreza Razlighi
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Anne Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yaakov Stern
- Department of Psychiatry, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, New York University Medical Center, New York, New York, USA
| | - Edward Acosta
- Department of Pharmacology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Julianna Pollina
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Mariasofia Katsikoumbas
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Karen L Bell
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Gregory H Pelton
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Deborah Deliyannides
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - K M Prasad
- Departments of Psychiatry and Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Edward D Huey
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
18
|
|
19
|
Li TR, Wang XN, Sheng C, Li YX, Li FZT, Sun Y, Han Y. Extracellular vesicles as an emerging tool for the early detection of Alzheimer's disease. Mech Ageing Dev 2019; 184:111175. [PMID: 31678325 DOI: 10.1016/j.mad.2019.111175] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by a series of interacting pathophysiological cascades, including the aggregation of β-amyloid plaques and the formation of neurofibrillary tangles derived from hyperphosphorylated tau proteins. AD is the cause of approximately 70 % of dementia, an irreversible and untreatable syndrome at its late stage. Hence, more efforts should be devoted to identifying at-risk or preclinical AD populations for early intervention and the improved design of drug trials. The exosome, a nanoscale subtype of extracellular vesicle that serves as a cell-to-cell communication messenger, is an emerging liquid biopsy tool for various diseases including AD. Recently, it has been discovered that brain-derived exosomes can flow through the blood-brain barrier to the peripheral blood, containing important protein and nucleic acid biomarkers that are associated with the pathogenesis and progression of AD. Other reports showed a strong involvement of exosomes in synaptic function, insulin resistance, and neuroinflammation, among others. Here, we summarize those studies and assess the value of exosomes as an emerging tool for the early detection of AD in conjunction with the current clinical diagnosis paradigm.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiao-Ni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yu-Xia Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | | | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China; National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China.
| |
Collapse
|
20
|
Friesen M, Meyer-Luehmann M. Aβ Seeding as a Tool to Study Cerebral Amyloidosis and Associated Pathology. Front Mol Neurosci 2019; 12:233. [PMID: 31632238 PMCID: PMC6783493 DOI: 10.3389/fnmol.2019.00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Misfolded proteins can form aggregates and induce a self-perpetuating process leading to the amplification and spreading of pathological protein assemblies. These misfolded protein assemblies act as seeds of aggregation. In an in vivo exogenous seeding model, both the features of seeds and the position at which seeding originates are precisely defined. Ample evidence from studies on intracerebal injection of amyloid-beta (Aβ)-rich brain extracts suggests that Aβ aggregation can be initiated by prion-like seeding. In this mini-review article, we will summarize the past and current literature on Aβ seeding in mouse models of AD and discuss its implementation as a tool to study cerebral amyloidosis and associated pathology.
Collapse
Affiliation(s)
- Marina Friesen
- Department of Neurology/Neurodegeneration, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology/Neurodegeneration, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2481] [Impact Index Per Article: 413.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Derkinderen P. Could it be that neurodegenerative diseases are infectious? Rev Neurol (Paris) 2019; 175:427-430. [PMID: 31358351 DOI: 10.1016/j.neurol.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The cell-to-cell transmission of the major pathogenic proteins of Parkinson's disease and Alzheimer's disease is reminiscent of the prion protein, which is defined as a proteinaceous infectious particle that causes human and animal transmissible spongiform encephalopathies. The possibility has raised that the pathogenic proteins of Parkinson's and Alzheimer's disease are infectious, i.e. that they can transmit disease from human to human. In this review, we address this question by comparing the similarities and differences between Alzheimer's disease/Parkinson's disease pathological proteins and prions and by discussing the possible consequences for disease transmission risk.
Collapse
Affiliation(s)
- P Derkinderen
- Department of Neurology, CHU de Nantes, boulevard Jacques-Monod, 44093 Nantes, France.
| |
Collapse
|
23
|
Early Electrophysiological Disintegration of Hippocampal Neural Networks in a Novel Locus Coeruleus Tau-Seeding Mouse Model of Alzheimer's Disease. Neural Plast 2019; 2019:6981268. [PMID: 31285742 PMCID: PMC6594257 DOI: 10.1155/2019/6981268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by loss of synapses and disrupted functional connectivity (FC) across different brain regions. Early in AD progression, tau pathology is found in the locus coeruleus (LC) prior to amyloid-induced exacerbation of clinical symptoms. Here, a tau-seeding model in which preformed synthetic tau fibrils (K18) were unilaterally injected into the LC of P301L mice, equipped with multichannel electrodes for recording EEG in frontal cortical and CA1-CA3 hippocampal areas, was used to longitudinally quantify over 20 weeks of functional network dynamics in (1) power spectra; (2) FC using intra- and intersite phase-amplitude theta-gamma coupling (PAC); (3) coherence, partial coherence, and global coherent network efficiency (Eglob) estimates; and (4) the directionality of functional connectivity using extended partial direct coherence (PDC). A sustained leftward shift in the theta peak frequency was found early in the power spectra of hippocampal CA1 networks ipsilateral to the injection site. Strikingly, hippocampal CA1 coherence and Eglob measures were impaired in K18-treated animals. Estimation of instantaneous EEG amplitudes revealed deficiency in the propagation directionality of gamma oscillations in the CA1 circuit. Impaired PAC strength evidenced by decreased modulation of the theta frequency phase on gamma frequency amplitude further confirms impairments of the neural CA1 network. The present results demonstrate early dysfunctional hippocampal networks, despite no spreading tau pathology to the hippocampus and frontal cortex. The ability of the K18 seed in the brainstem LC to elicit such robust functional alterations in distant hippocampal structures in the absence of pathology challenges the classic view that tau pathology spread to an area is necessary to elicit functional impairments in that area.
Collapse
|
24
|
Hawkins KE, Duchen M. Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells. World J Stem Cells 2019; 11:236-253. [PMID: 31171953 PMCID: PMC6545525 DOI: 10.4252/wjsc.v11.i5.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. To date, only five pharmacological agents have been approved by the Food and Drug Administration for clinical use in AD, all of which target the symptoms of the disease rather than the cause. Increasing our understanding of the underlying pathophysiology of AD will facilitate the development of new therapeutic strategies. Over the years, the major hypotheses of AD etiology have focused on deposition of amyloid beta and mitochondrial dysfunction. In this review we highlight the potential of experimental model systems based on human induced pluripotent stem cells (iPSCs) to provide novel insights into the cellular pathophysiology underlying neurodegeneration in AD. Whilst Down syndrome and familial AD iPSC models faithfully reproduce features of AD such as accumulation of Aβ and tau, oxidative stress and mitochondrial dysfunction, sporadic AD is much more difficult to model in this way due to its complex etiology. Nevertheless, iPSC-based modelling of AD has provided invaluable insights into the underlying pathophysiology of the disease, and has a huge potential for use as a platform for drug discovery.
Collapse
Affiliation(s)
- Kate Elizabeth Hawkins
- Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Michael Duchen
- Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Kozin SA, Barykin EP, Mitkevich VA, Makarov AA. Anti-amyloid Therapy of Alzheimer's Disease: Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2018; 83:1057-1067. [PMID: 30472944 DOI: 10.1134/s0006297918090079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug development for the treatment of Alzheimer's disease (AD) has been for a long time focused on agents that were expected to support endogenous β-amyloid (Aβ) in a monomeric state and destroy soluble Aβ oligomers and insoluble Aβ aggregates. However, this strategy has failed over the last 20 years and was eventually abandoned. In this review, we propose a new approach to the anti-amyloid AD therapy based on the latest achievements in understanding molecular causes of cerebral amyloidosis in AD animal models.
Collapse
Affiliation(s)
- S A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - V A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Viruses, particularly herpes simplex virus (HSV), may be a cause of Alzheimer's disease (AD). The evidence supporting the viral hypothesis suggests that antiviral treatment trials, which have not been conducted, are warranted. RECENT FINDINGS HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid aggregation, and their DNA is common in amyloid plaques. HSV1 reactivation is associated with tau hyperphosphorylation and possibly tau propagation. Anti-HSV drugs reduce Aβ and p-tau accumulation in infected mouse brains. Clinically, after the initial oral infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and recurrent reactivation may produce neuronal damage and AD pathology. Clinical studies show cognitive impairment in HSV seropositive patients, and antiviral drugs show strong efficacy against HSV. An antiviral treatment trial in AD is clearly warranted. A phase II treatment trial with valacyclovir, an anti-HSV drug, recently began with evaluation of clinical and biomarker outcomes.
Collapse
|
27
|
Watts JC, Prusiner SB. β-Amyloid Prions and the Pathobiology of Alzheimer's Disease. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a023507. [PMID: 28193770 DOI: 10.1101/cshperspect.a023507] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in humans and will pose a considerable challenge to healthcare systems in the coming years. Aggregation of the β-amyloid (Aβ) peptide within the brain is thought to be an initiating event in AD pathogenesis. Many recent studies in transgenic mice have provided evidence that Aβ aggregates become self-propagating during disease, leading to a cascade of protein aggregation in the brain, which may underlie the progressive nature of AD. The ability to self-propagate and the existence of distinct "strains" reveals that Aβ aggregates exhibit many properties indistinguishable from those of prions composed of PrPSc proteins. Here, we review the evidence that Aβ can become a prion during disease and discuss how Aβ prions may be important for understanding the pathobiology of AD.
Collapse
Affiliation(s)
- Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Departments of Neurology and of Biochemistry and Biophysics, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
28
|
Jaunmuktane Z, Quaegebeur A, Taipa R, Viana-Baptista M, Barbosa R, Koriath C, Sciot R, Mead S, Brandner S. Evidence of amyloid-β cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol 2018; 135:671-679. [PMID: 29450646 PMCID: PMC5904220 DOI: 10.1007/s00401-018-1822-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022]
Abstract
Amyloid-β (Aβ) is a peptide deposited in the brain parenchyma in Alzheimer's disease and in cerebral blood vessels, causing cerebral amyloid angiopathy (CAA). Aβ pathology is transmissible experimentally in animals and through medical procedures in humans, such as contaminated growth hormone or dura mater transplantation in the context of iatrogenic prion disease. Here, we present four patients who underwent neurosurgical procedures during childhood or teenage years and presented with intracerebral haemorrhage approximately three decades later, caused by severe CAA. None of these patients carried pathogenic mutations associated with early Aβ pathology development. In addition, we identified in the literature four patients with a history of neurosurgical intervention and subsequent development of CAA. These findings raise the possibility that Aβ pathology may be transmissible, as prion disease is, through neurosurgical procedures.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Ricardo Taipa
- Portuguese Brain Bank, Neuropathology Unit, Department of Neuroscience, Centro Hospitalar Universitario do Porto, 4099-001, Porto, Portugal
| | - Miguel Viana-Baptista
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Raquel Barbosa
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Carolin Koriath
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Raf Sciot
- Department of Imaging and Pathology, University of Leuven, 3000, Louvain, Belgium
| | - Simon Mead
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Medical Research Council Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
29
|
Ruiz-Riquelme A, Lau HHC, Stuart E, Goczi AN, Wang Z, Schmitt-Ulms G, Watts JC. Prion-like propagation of β-amyloid aggregates in the absence of APP overexpression. Acta Neuropathol Commun 2018; 6:26. [PMID: 29615128 PMCID: PMC5883524 DOI: 10.1186/s40478-018-0529-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
The amyloid cascade hypothesis posits that the initiating event in Alzheimer's disease (AD) is the aggregation and deposition of the β-amyloid (Aβ) peptide, which is a proteolytic cleavage product of the amyloid precursor protein (APP). Mounting evidence suggests that the formation and spread of prion-like Aβ aggregates during AD may contribute to disease progression. Inoculation of transgenic mice that overexpress APP with pre-formed Aβ aggregates results in the prion-like induction of cerebral Aβ deposition. To determine whether Aβ deposition can also be induced when physiological APP levels are present in the brain, we inoculated AppNL-F mice, a knock-in model of AD that avoids potential artifacts associated with APP overexpression, with Aβ aggregates derived from the brains of AD patients or transgenic mice. In all cases, induced Aβ deposition was apparent in the corpus callosum, olfactory bulb, and meningeal blood vessels of inoculated mice at 130-150 days post-inoculation, whereas uninoculated and buffer-inoculated animals exhibited minimal or no Aβ deposits at these ages. Interestingly, despite being predominantly composed of protease-resistant Aβ42 aggregates, the induced parenchymal Aβ deposits were largely diffuse and were unreactive to an amyloid-binding dye. These results demonstrate that APP overexpression is not a prerequisite for the prion-like induction of cerebral Aβ deposition. Accordingly, spreading of Aβ deposition may contribute to disease progression in AD patients.
Collapse
|
30
|
Bastian FO. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease. J Alzheimers Dis 2018; 56:867-873. [PMID: 28059790 DOI: 10.3233/jad-160999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The question whether Alzheimer's disease is infectious as brought up in the recent editorial published in the Journal of Alzheimer's Disease is complicated by the controversy whether the causal agent is a microbe or a misfolded host protein (amyloid). The replicating amyloid (prion) theory, based upon data from studies of Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs), has been challenged since the prion can be separated from TSE infectivity, and spiroplasma, a wall-less bacterium, has been shown to be involved in the pathogenesis of CJD. Further support for a microbial cause for AD comes from occurrence of mixed CJD/AD cases involving up to 15% of AD brains submitted to brain banks. The association of CJD with AD suggests a common etiology rather than simply being a medical curiosity. A co-infection with the transmissible agent of CJD, which we propose to be a Spiroplasma sp., would explain the diversity of bacteria shown to be associated with cases of AD.
Collapse
Affiliation(s)
- Frank O Bastian
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.,Tulane Medical School, New Orleans, LA, USA.,Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
31
|
Bräuer S, Zimyanin V, Hermann A. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2018; 125:591-613. [PMID: 29417336 DOI: 10.1007/s00702-018-1851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
The hallmark of age-related neurodegenerative diseases is the appearance of cellular protein deposits and spreading of this pathology throughout the central nervous system. Growing evidence has shown the involvement and critical role of proteins with prion-like properties in the formation of these characteristic cellular aggregates. Prion-like domains of such proteins with their proposed function in the organization of membraneless organelles are prone for misfolding and promoting further aggregation. Spreading of these toxic aggregates between cells and across tissues can explain the progression of clinical phenotypes and pathology in a stereotypical manner, characteristic for almost every neurodegenerative disease. Here, we want to review the current evidence for the role of prion-like mechanisms in classical neurodegenerative diseases and ALS in particular. We will also discuss an intriguingly central role of the protein TDP-43 in the majority of cases of this devastating disease.
Collapse
Affiliation(s)
- S Bräuer
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Neurology, Städtisches Klinikum Dresden, 01129, Dresden, Germany
| | - V Zimyanin
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - A Hermann
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden and German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany.
| |
Collapse
|
32
|
Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K, Passamonti L, Vazquez Rodriguez P, Bevan-Jones WR, O'Brien JT, Rowe JB. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy. Brain 2018; 141:550-567. [PMID: 29293892 PMCID: PMC5837359 DOI: 10.1093/brain/awx347] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.
Collapse
Affiliation(s)
- Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Deniz Vatansever
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychology, University of York, York, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - W Richard Bevan-Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| |
Collapse
|
33
|
Abstract
Senile plaques and neurofibrillary tangles are the principal histopathologic hallmarks of Alzheimer disease. The essential constituents of these lesions are structurally abnormal variants of normally generated proteins: Aβ protein in plaques and tau protein in tangles. At the molecular level, both proteins in a pathogenic state share key properties with classic prions, i.e., they consist of alternatively folded, β-sheet-rich forms of the proteins that autopropagate by the seeded corruption and self-assembly of like proteins. Other similarities with prions include the ability to manifest as polymorphic and polyfunctional strains, resistance to chemical and enzymatic destruction, and the ability to spread within the brain and from the periphery to the brain. In Alzheimer disease, current evidence indicates that the pathogenic cascade follows from the endogenous, sequential corruption of Aβ and then tau. Therapeutic options include reducing the production or multimerization of the proteins, uncoupling the Aβ-tauopathy connection, or promoting the inactivation or removal of anomalous assemblies from the brain. Although aberrant Aβ appears to be the prime mover of Alzheimer disease pathogenesis, once set in motion by Aβ, the prion-like propagation of tauopathy may proceed independently of Aβ; if so, Aβ might be solely targeted as an early preventive measure, but optimal treatment of Alzheimer disease at later stages of the cascade could require intervention in both pathways.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|
34
|
Zhou J, Liu S, Ng KK, Wang J. Applications of Resting-State Functional Connectivity to Neurodegenerative Disease. Neuroimaging Clin N Am 2017; 27:663-683. [DOI: 10.1016/j.nic.2017.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Abstract
Brain networks have been of long-standing interest to neurodegeneration researchers, including but not limited to investigators focusing on conventional prion diseases, which are known to propagate along neural pathways. Tools for human network mapping, however, remained inadequate, limiting our understanding of human brain network architecture and preventing clinical research applications. Until recently, neuropathological studies were the only viable approach to mapping disease onset and progression in humans but required large autopsy cohorts and laborious methods for whole-brain sectioning and staining. Despite important advantages, postmortem studies cannot address in vivo, physiological, or longitudinal questions and have limited potential to explore early-stage disease except for the most common disorders. Emerging in vivo network-based neuroimaging strategies have begun to address these issues, providing data that complement the neuropathological tradition. Overall, findings to date highlight several fundamental principles of neurodegenerative disease anatomy and pathogenesis, as well as some enduring mysteries. These principles and mysteries provide a road map for future research.
Collapse
Affiliation(s)
- William W Seeley
- Memory and Aging Center, Departments of Neurology and Pathology, University of California, San Francisco, California 94143
| |
Collapse
|
36
|
Giles K, Woerman AL, Berry DB, Prusiner SB. Bioassays and Inactivation of Prions. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023499. [PMID: 28246183 DOI: 10.1101/cshperspect.a023499] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The experimental study of prions requires a model for their propagation. However, because prions lack nucleic acids, the simple techniques used to replicate bacteria and viruses are not applicable. For much of the history of prion research, time-consuming bioassays in animals were the only option for measuring infectivity. Although cell models and other in vitro tools for the propagation of prions have been developed, they all suffer limitations, and animal bioassays remain the gold standard for measuring infectivity. A wealth of recent data argues that both β-amyloid (Aβ) and tau proteins form prions that cause Alzheimer's disease, and α-synuclein forms prions that cause multiple system atrophy and Parkinson's disease. Cell and animal models that recapitulate some of the key features of cell-to-cell spreading and distinct strains of prions can now be measured.
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Amanda L Woerman
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - David B Berry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,Department of Neurology, University of California, San Francisco, San Francisco, California 94158.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
37
|
Ngolab J, Trinh I, Rockenstein E, Mante M, Florio J, Trejo M, Masliah D, Adame A, Masliah E, Rissman RA. Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol Commun 2017; 5:46. [PMID: 28599681 PMCID: PMC5466770 DOI: 10.1186/s40478-017-0445-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/20/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins implicated in neurodegenerative conditions such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB) have been identified in bodily fluids encased in extracellular vesicles called exosomes. Whether exosomes found in DLB patients can transmit pathology is not clear. In this study, exosomes were successfully harvested through ultracentrifugation from brain tissue from DLB and AD patients as well as non-diseased brain tissue. Exosomes extracted from brains diagnosed with either AD or DLB contained aggregate-prone proteins. Furthermore, injection of brain-derived exosomes from DLB patients into the brains of wild type mice induced α-synuclein (α-syn) aggregation. As assessed through immunofluorescent double labeling, α-syn aggregation was observed in MAP2+, Rab5+ neurons. Using a neuronal cell line, we also identified intracellular α-syn aggregation mediated by exosomes is dependent on recipient cell endocytosis. Together, these data suggest that exosomes from DLB patients are sufficient for seeding and propagating α-syn aggregation in vivo.
Collapse
Affiliation(s)
- Jennifer Ngolab
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Ivy Trinh
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Edward Rockenstein
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Michael Mante
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Jazmin Florio
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Margarita Trejo
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Deborah Masliah
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Anthony Adame
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Pathology, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, 92093, USA.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA.
| |
Collapse
|
38
|
Condello C, Stöehr J. Aβ propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiol Dis 2017; 109:191-200. [PMID: 28359847 DOI: 10.1016/j.nbd.2017.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/09/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022] Open
Abstract
The progressive nature of Alzheimer's disease (AD) is thought to occur, at least in part, by the self-replication and spreading of Aβ and Tau aggregates through a prion mechanism. Evidence now exists that structural variants of Aβ prions can propagate their distinct conformations through template-directed folding of naïve Aβ peptides. This notion implicates that the first self-propagating Aβ assembly to emerge in the brain dictates the conformation, anatomical spread and pace of subsequently formed deposits. It is hypothesized that a prion mechanism defines the molecular basis underlying the diverse clinicopathologic phenotypes observed across the spectrum of AD patients. Thus, distinct AD strains might require further sub-classification based on biochemical and structural characterization of aggregated Aβ. Here, we review the evidence for distinct, self-propagating Aβ strains, and discuss potential cellular mechanisms that might contribute to their manifestation. From this perspective, we also explore the implications of Aβ strains for current FDA-approved medical imaging probes and therapies for amyloid. Ultimately, the discovery of new molecular tools to differentiate Aβ strains and dissect the heterogeneity of AD may lead to the development of more informative diagnostics and strain-specific therapeutics.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Jan Stöehr
- Institute for Neurodegenerative Diseases, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States.
| |
Collapse
|
39
|
Walsh C, Drinkenburg W, Ahnaou A. Neurophysiological assessment of neural network plasticity and connectivity: Progress towards early functional biomarkers for disease interception therapies in Alzheimer’s disease. Neurosci Biobehav Rev 2017; 73:340-358. [DOI: 10.1016/j.neubiorev.2016.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
|
40
|
The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 2017; 483:1178-1186. [DOI: 10.1016/j.bbrc.2016.09.090] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/08/2016] [Accepted: 09/18/2016] [Indexed: 01/09/2023]
|
41
|
Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, Zhang L, Zhang H, Sun B, Zhang B. Plasma Exosomes Spread and Cluster Around β-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci 2017; 9:12. [PMID: 28203202 PMCID: PMC5285341 DOI: 10.3389/fnagi.2017.00012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Exosomes, a type of extracellular vesicle, have been shown to be involved in many disorders, including Alzheimer’s disease (AD). Exosomes may contribute to the spread of misfolded proteins such as amyloid-β (Aβ) and α-synuclein. However, the specific diffusion process of exosomes and their final destination in brain are still unclear. In the present study, we isolated exosomes from peripheral plasma and injected them into the hippocampus of an AD mouse model, and investigated exosome diffusion. We found that injected exosomes can spread from the dentate gyrus (DG) to other regions of hippocampus and to the cortex. Exosomes targeted microglia preferentially; this phenomenon is stable and is not affected by age. In AD mice, microglia take up lower levels of exosomes. More interestingly, plasma exosomes cluster around the Aβ plaques and are engulfed by activated microglia nearby. Our data indicate that exosomes can diffuse throughout the brain and may play a role in the dynamics of amyloid deposition in AD through microglia.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Yanfang Mao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Zhangyu Guo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Hongyu Pan
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Ling Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Heng Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Binggui Sun
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| |
Collapse
|
42
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
43
|
Jansen AHP, Batenburg KL, Pecho-Vrieseling E, Reits EA. Visualization of prion-like transfer in Huntington's disease models. Biochim Biophys Acta Mol Basis Dis 2016; 1863:793-800. [PMID: 28040507 DOI: 10.1016/j.bbadis.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
Most neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease are hallmarked by aggregate formation of disease-related proteins. In various of these diseases transfer of aggregation-prone proteins between neurons and between neurons and glial cells has been shown, thereby initiating aggregation in neighboring cells and so propagating the disease phenotype. Whereas this prion-like transfer is well studied in Alzheimer's and Parkinson's disease, only a few studies have addressed this potential mechanism in Huntington's disease. Here, we present an overview of in vitro and in vivo methodologies to study release, intercellular transfer and uptake of aggregation-prone protein fragments in Huntington's disease models.
Collapse
Affiliation(s)
- Anne H P Jansen
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - Kevin L Batenburg
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eline Pecho-Vrieseling
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Eric A Reits
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C, Clerici M, Cosby SL, Del Tredici K, Field H, Fulop T, Grassi C, Griffin WST, Haas J, Hudson AP, Kamer AR, Kell DB, Licastro F, Letenneur L, Lövheim H, Mancuso R, Miklossy J, Otth C, Palamara AT, Perry G, Preston C, Pretorius E, Strandberg T, Tabet N, Taylor-Robinson SD, Whittum-Hudson JA. Microbes and Alzheimer's Disease. J Alzheimers Dis 2016; 51:979-84. [PMID: 26967229 DOI: 10.3233/jad-160152] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ruth F Itzhaki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK
| | - Brian J Balin
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, USA
| | - Melvyn J Ball
- Department of Pathology (Neuropathology), Oregon Health and Science University, Portland, OR, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Maria J Bullido
- Centro de Biologia Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autonoma de Madrid, and Centro de Investigacion en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Mario Clerici
- University of Milano and IRCCS SM Nascente, Don C Gnocchi Foundation, Milan, Italy
| | - S Louise Cosby
- Centre for Infection and Immunity, Medical Biology Centre, Queen's University, Belfast, UK
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | | | - Tamas Fulop
- Department of Medicine, Division of Geriatrics, Université de Sherbrooke, Sherbrooke, PQ, Canada
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Universitá Cattolica, Rome; San Raffaele Pisana Scientific Institute for Research, Hospitalization, and Health Care, Rome, Italy
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA
| | - Jürgen Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK
| | - Alan P Hudson
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Angela R Kamer
- NYU College of Dentistry, Department of Periodontology and Implant Dentistry, New York, NY, USA
| | - Douglas B Kell
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Federico Licastro
- Department of Experimental, Diagnostic, and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | | | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | | | - Judith Miklossy
- Prevention Alzheimer International Foundation, International Alzheimer Research Center, Martigny-Croix, Switzerland
| | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Austral University of Chile, Valdivia, Chile
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome; San Raffaele Pisana Scientific Institute for Research, Hospitalization, and Health Care, Rome, Italy
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Etheresia Pretorius
- Applied Morphology Research Centre, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Timo Strandberg
- Helsinki University Hospital and University of Helsinki; University of Oulu, Centre of Life Course Health Research, Oulu, Finland
| | - Naji Tabet
- Division of Old Age Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | | | - Judith A Whittum-Hudson
- Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
45
|
Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016; 539:217-226. [PMID: 27830781 DOI: 10.1038/nature20415] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.
Collapse
Affiliation(s)
- John Collinge
- Medical Research Council Prion Unit, University College London Institute of Neurology, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
46
|
Eraña H, Venegas V, Moreno J, Castilla J. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins. Biochem Biophys Res Commun 2016; 483:1125-1136. [PMID: 27590581 DOI: 10.1016/j.bbrc.2016.08.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species. Its causative agent, disease-associated prion protein (PrPd), is a self-propagating β-sheet rich aberrant conformation of the cellular prion protein (PrPC) with neurotoxic and aggregation-prone properties, capable of inducing misfolding of PrPC molecules. PrPd is the major constituent of prions and, most importantly, is the first known example of a protein with infectious attributes. It has been suggested that similar molecular mechanisms could be shared by other proteins implicated in diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or systemic amyloidoses. Accordingly, several terms have been proposed to collectively group all these disorders. Through the stringent evaluation of those aspects that characterise TSE-causing prions, in particular propagation and spread, strain variability or transmissibility, we will discuss whether terms such as "prion", "prion-like", "prionoid" or "propagon" can be used when referring to the aetiological agents of the above other disorders. Moreover, it will also be discussed whether the term "infectious", which defines a prion essential trait, is currently misused when referring to the other misfolded proteins.
Collapse
Affiliation(s)
- Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Jorge Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Bizkaia, Spain.
| |
Collapse
|
47
|
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 2016; 17:251-60. [PMID: 26988744 DOI: 10.1038/nrn.2016.13] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion in the number of papers discussing the hypothesis of 'pathogenic spread' in neurodegenerative disease - the idea that abnormal forms of disease-associated proteins, such as tau or α-synuclein, physically move from neuron to neuron to induce disease progression. However, whether inter-neuronal spread of protein aggregates actually occurs in humans and, if so, whether it causes symptom onset remain uncertain. Even if pathogenic spread is proven in humans, it is unclear how much this would alter the specific therapeutic approaches that are in development. A critical appraisal of this increasingly popular hypothesis thus seems both important and timely.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Amyloid-β containing isoaspartate 7 as potential biomarker and drug target in Alzheimer's disease. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Abstract
Transmissible spongiform encephathalopathies or prion diseases are a group of neurological disorders characterized by neuronal loss, spongiform degeneration, and activation of astrocytes or microglia. These diseases affect humans and animals with an extremely high prevalence in some species such as deer and elk in North America. Although rare in humans, they result in a devastatingly swift neurological progression with dementia and ataxia. Patients usually die within a year of diagnosis. Prion diseases are familial, sporadic, iatrogenic, or transmissible. Human prion diseases include Kuru, sporadic, iatrogenic, and familial forms of Creutzfeldt–Jakob disease, variant Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker disease, and fatal familial insomnia. The causative agent is a misfolded version of the physiological prion protein called PrPSc in the brain. There are a number of therapeutic options currently under investigation. A number of small molecules have had some success in delaying disease progression in animal models and mixed results in clinical trials, including pentosan polysulfate, quinacrine, and amphotericin B. More promisingly, immunotherapy has reported success in vitro and in vivo in animal studies and clinical trials. The three main branches of immunotherapy research are focus on antibody vaccines, dendritic cell vaccines, and adoptive transfer of physiological prion protein-specific CD4+ T-lymphocytes. Vaccines utilizing antibodies generally target disease-specific epitopes that are only exposed in the misfolded PrPSc conformation. Vaccines utilizing antigen-loaded dendritic cell have the ability to bypass immune tolerance and prime CD4+ cells to initiate an immune response. Adoptive transfer of CD4+ T-cells is another promising target as this cell type can orchestrate the adaptive immune response. Although more research into mechanisms and safety is required, these immunotherapies offer novel therapeutic targets for prion diseases.
Collapse
Affiliation(s)
- Jennifer T Burchell
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| |
Collapse
|
50
|
Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol 2016; 12:346-57. [PMID: 27174238 DOI: 10.1038/nrneurol.2016.68] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To develop effective disease-modifying therapies for neurodegenerative diseases, reliable markers of diagnosis, disease activity and progression are a research priority. The fact that neurodegenerative pathology is primarily associated with distinct subsets of cells in discrete areas of the CNS makes the identification of relevant biomarker molecules a challenge. The trafficking of macromolecules from the CNS to the cerebrospinal fluid and blood, mediated by extracellular vesicles (EVs), presents a promising source of CNS-specific biomarkers. EVs are released by almost all cell types and carry a cargo of protein and nucleic acid that varies according to the cell of origin. EV output changes with cell status and reflects intracellular events, so surface marker expression can be used to identify the cell type from which EVs originate. EVs could, therefore, provide an enriched pool of information about core neuropathogenic, cell-specific processes. This Review examines the current knowledge of the biology and function of EVs, discusses the evidence for their involvement in the pathogenesis of neurodegenerative diseases, and considers their potential as biomarkers of disease.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sabrina M Heman-Ackah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK.,Department of Laboratory Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|