1
|
Richards LA, Magnone D, Sovann C, Kong C, Uhlemann S, Kuras O, van Dongen BE, Ballentine CJ, Polya DA. High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:540-553. [PMID: 28285858 DOI: 10.1016/j.scitotenv.2017.02.217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Arsenic contamination of groundwaters in South and Southeast Asia is a major threat to public health. In order to better understand the geochemical controls on the mobility of arsenic in a heavily arsenic-affected aquifer in northern Kandal Province, Cambodia, key changes in inorganic aqueous geochemistry have been monitored at high vertical and lateral resolution along dominant groundwater flow paths along two distinct transects. The two transects are characterized by differing geochemical, hydrological and lithological conditions. Arsenic concentrations in groundwater are highly heterogenous, and are broadly positively associated with iron and negatively associated with sulfate and dissolved oxygen. The observed correlations are generally consistent with arsenic mobilization by reductive-dissolution of iron (hydr)oxides. Key redox zones, as identified using groupings of the PHREEQC model equilibrium electron activity of major redox couples (notably ammonium/nitrite; ammonium/nitrate; nitrite/nitrate; dissolved oxygen/water) have been identified and vary with depth, site and season. Mineral saturation is also characterized. Seasonal changes in groundwater chemistry were observed in areas which were (i) sandy and of high permeability; (ii) in close proximity to rivers; and/or (iii) in close proximity to ponds. Such changes are attributed to monsoonal-driven surface-groundwater interactions and are consistent with the separate provenance of recharge sources as identified using stable isotope mixing models.
Collapse
Affiliation(s)
- Laura A Richards
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK.
| | - Daniel Magnone
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Chansopheaktra Sovann
- Department of Environmental Science, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Chivuth Kong
- Faculty of Agricultural Economics and Rural Development, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Sebastian Uhlemann
- British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK; ETH Zurich, Institute of Geophysics, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Oliver Kuras
- British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK
| | - Bart E van Dongen
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | | | - David A Polya
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Rasheed H, Kay P, Slack R, Gong YY, Carter A. Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:631-641. [PMID: 28131446 DOI: 10.1016/j.scitotenv.2017.01.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
Understanding arsenic speciation in water is important for managing the potential health risks associated with chronic arsenic exposure. Most arsenic monitoring studies to date have only measured total arsenic, with few looking at arsenic species. This study assessed 228 ground water sources in six unstudied villages in Pakistan for total, inorganic and organic arsenic species using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry. The concentration levels approached 3090μgL-1 (95% CI, 130.31, 253.06) for total arsenic with a median of 57.55μgL-1, 3430μgL-1 (median=52) for arsenate (As+5) and 100μgL-1 (median=0.37) for arsenite (As+3). Exceedance of the WHO provisional guideline value for arsenic in drinking water (10μgL-1) occurred in 89% of water sources. Arsenic was present mainly as arsenate (As+5). Average daily intake of total arsenic for 398 residents living in the sampled houses was found up to 236.51μgkg-1day-1. This exposure estimate has indicated that 63% of rural residents exceeded the World Health Organization's provisional tolerable daily intake (PTDI) of 2.1μgkg-1day-1 body weight. Average daily intake of As+5 was found to be 15.63μgkg-1day-1 (95% CI, 5.53, 25.73) for children ≤16 and 15.07μgkg-1day-1 (95% CI, 10.33, 18.02) for adults. A mean daily intake of 0.09μgkg-1day-1 was determined for As+3 for children and 0.26μgkg-1day-1 for adults. Organic arsenic species such as monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and Arsenobetaine (AsB) were found to be below their method detection limits (MDLs).
Collapse
Affiliation(s)
- Hifza Rasheed
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Paul Kay
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Rebecca Slack
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | |
Collapse
|
3
|
Majzlan J, Plášil J, Škoda R, Gescher J, Kögler F, Rusznyak A, Küsel K, Neu TR, Mangold S, Rothe J. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13685-13693. [PMID: 25365451 DOI: 10.1021/es5024916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Extremely arsenic-rich acid mine waters have developed by weathering of native arsenic in a sulfide-poor environment on the 10th level of the Svornost mine in Jáchymov (Czech Republic). Arsenic rapidly oxidizes to arsenolite (As2O3), and there are droplets of liquid on the arsenolite crust with high As concentration (80,000-130,000 mg·L(-1)), pH close to 0, and density of 1.65 g·cm(-1). According to the X-ray absorption spectroscopy on the frozen droplets, most of the arsenic is As(III) and iron is fully oxidized to Fe(III). The EXAFS spectra on the As K edge can be interpreted in terms of arsenic polymerization in the aqueous solution. The secondary mineral that precipitates in the droplets is kaatialaite [Fe(3+)(H2AsO4)3·5H2O]. Other unusual minerals associated with the arsenic lens are běhounekite [U(4+)(SO4)2·4H2O], štěpite [U(4+)(AsO3OH)2·4H2O], vysokýite [U(4+)[AsO2(OH)2]4·4H2O], and an unnamed phase (H3O)(+)2(UO2)2(AsO4)2·nH2O. The extremely low cell densities and low microbial biomass have led to insufficient amounts of DNA for downstream polymerase chain reaction amplification and clone library construction. We were able to isolate microorganisms on oligotrophic media with pH ∼ 1.5 supplemented with up to 30 mM As(III). These microorganisms were adapted to highly oligotrophic conditions which disabled long-term culturing under laboratory conditions. The extreme conditions make this environment unfavorable for intensive microbial colonization, but our first results show that certain microorganisms can adapt even to these harsh conditions.
Collapse
Affiliation(s)
- Juraj Majzlan
- Institute of Geosciences, Friedrich-Schiller-Universität , Burgweg 11, D-07749 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jia J, Zhang W, Wang J, Wang P, Zhu R. Selectively adsorptive extraction of phenylarsonic acids in chicken tissue by carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles followed ultra performance liquid chromatography coupled tandem mass spectrometry detection. PLoS One 2014; 9:e107147. [PMID: 25215503 PMCID: PMC4162596 DOI: 10.1371/journal.pone.0107147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles (CM-α-CD-Fe3O4) were synthesized for the selectively adsorptive extraction of five phenylarsonic acids including p-amino phenylarsonic acid, p-nitro phenylarsonic acid, p-hydroxy phenylarsonic acid, p-acylamino phenylarsonic acid and p-hydroxy-3-nitro phenylarsonic acid in chicken tissue. Using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), a highly sensitive analytical method was proposed for the determination of five phenylarsonic acids. It was shown that CM-α-CD-Fe3O4 could extract the five phenylarsonic acids in complex chicken tissue samples with high extraction efficiency. Under the optimal conditions, a high enrichment factor, ranging from 349 to 606 fold, was obtained. The limits of detection (LODs) (at a signal-to-noise ratio of 3) were in the range of 0.05–0.11 µg/kg for the five phenylarsonic acids. The proposed method was applied for the determination of five target phenylarsonic acids in chicken muscle and liver samples. Recoveries for the spiked samples with 0.2 µg/kg, 2.0 µg/kg and 20 µg/kg of each phenylarsonic acids were in the range of 77.2%–110.2%, with a relative standard deviation (RSD) of less than 12.5%.
Collapse
Affiliation(s)
- Jing Jia
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Wei Zhang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing, P.R. China
- Institute of Quality Standards and Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, P.R. China
| | - Jing Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing, P.R. China
- Institute of Quality Standards and Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, P.R. China
| | - Peilong Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing, P.R. China
- Institute of Quality Standards and Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, P.R. China
- * E-mail: (PW); (RZ)
| | - Ruohua Zhu
- Department of Chemistry, Capital Normal University, Beijing, China
- * E-mail: (PW); (RZ)
| |
Collapse
|
5
|
Bladder/lung cancer mortality in Blackfoot-disease (BFD)-endemic area villages with low (<150μg/L) well water arsenic levels – An exploration of the dose–response Poisson analysis. Regul Toxicol Pharmacol 2013; 65:147-56. [DOI: 10.1016/j.yrtph.2012.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 11/20/2022]
|
6
|
Bossy A, Grosbois C, Hendershot W, Beauchemin S, Crouzet C, Bril H. Contributions of natural arsenic sources to surface waters on a high grade arsenic-geochemical anomaly (French Massif Central). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:257-268. [PMID: 22750171 DOI: 10.1016/j.scitotenv.2012.05.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 06/01/2023]
Abstract
The subwatershed studied drains a non-exploited area of the St-Yrieix-la-Perche gold mining district (French Massif Central) and it is located on an arsenic (As) geochemical anomaly. In this context, it is important to know the geochemical processes involved in the transfer of As from solid environmental compartments to the aquatic system. The stream showed a temporal variation of dissolved As (As(d)) content from 69.4 μg.L(-1) in the low flow period to 7.5 μg.L(-1) in the high flow period. Upstream, ground- and wetland waters had As(d) concentrations up to 215 and 169 μg.L(-1), respectively. The main representative As sources were determined at the subwatershed scale with in-situ monitoring of major and trace element contents in different waters and single extraction experiments. The As sources to stream water could be regrouped into two components: (i) one As-rich group (mainly in the low flow period) with groundwater, gallery exploration outlet waters and wetland waters, and (ii) one As-poor group (mainly in the high flow period) with rainwaters and soil solutions. In the soil profile, As(d) showed a significant decrease from 52.4 μg.L(-1) in the 0-5 cm superficial soil horizon to 14.4 μg.L(-1) in the 135-165 cm deep soil horizon. This decrease may be related to pedogenic processes and suggests an evolution of As-bearing phase stability through the soil profile. Quantification of As(d) fluxes at the subwatershed scale showed that groundwater was the major input (>80%) of As(d) to surface water. Moreover, natural weathering of the As-rich solid phases showed an impact on the As release, mainly from superficial soil horizons with runoff contributing about 5% to As input in surface water.
Collapse
Affiliation(s)
- A Bossy
- Université de Limoges, GRESE EA 4330, F.S.T., 123 av. Albert Thomas, 87060 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Piquette A, Cannon C, Apblett AW. Remediation of arsenic and lead with nanocrystalline zinc sulfide. NANOTECHNOLOGY 2012; 23:294014. [PMID: 22744407 DOI: 10.1088/0957-4484/23/29/294014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.
Collapse
Affiliation(s)
- Alan Piquette
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
8
|
Anawar HM. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 2012; 88:30-42. [DOI: 10.1016/j.talanta.2011.11.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
9
|
Beene LC, Halluer J, Yoshinaga M, Hamdi M, Liu Z. Pentavalent arsenate transport by zebrafish phosphate transporter NaPi-IIb1. Zebrafish 2011; 8:125-31. [PMID: 21854209 PMCID: PMC3174731 DOI: 10.1089/zeb.2011.0701] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Arsenate is a pentavalent form of arsenic that shares similar chemical properties to phosphate. It has been shown to be taken up by phosphate transporters in both eukaryotic and prokaryotic microbes such as yeast and Escherichia coli. Recently, the arsenate uptake in vertebrate cells was reported to be facilitated by mammalian type II sodium/phosphate transporter with different affinities. As arsenate is the most common form of arsenic exposure in aquatic system, identifying the uptake pathway of arsenate into aquatic animals is a crucial step in the elucidation of the entire metabolic pathway of arsenic. In this study, the ability of a zebrafish phosphate transporter, NaPi-IIb1 (SLC34a2a), to transport arsenate was examined. Our results demonstrate that a type II phosphate transporter in zebrafish, NaPi-IIb1, can transport arsenate in vitro when expressed in Xenopus laevis oocytes. NaPi-IIb1 mediates a high-affinity arsenate transport, with a K(m) of 0.22 mM. The natural substrate of NaPi-IIb1, dibasic phosphate, inhibits arsenate transport. Arsenate transport via NaPi-IIb1 is coupled with Na(+) and exhibits sigmoidal kinetics with a Hill coefficient of 3.24 ± 0.19. Consistent with these in vitro studies, significant arsenate accumulation is observed in all examined zebrafish tissues where NaPi-IIb1 is expressed, particularly intestine, kidney, and eye, indicating that zebrafish NaPi-IIb1 is likely the transport protein that is responsible for arsenic accumulation in vivo.
Collapse
Affiliation(s)
- Lauren C. Beene
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Janell Halluer
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Mohammad Hamdi
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
10
|
Selim Reza AHM, Jean JS, Yang HJ, Lee MK, Hsu HF, Liu CC, Lee YC, Bundschuh J, Lin KH, Lee CY. A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2011; 33:235-258. [PMID: 20706862 DOI: 10.1007/s10653-010-9335-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/16/2010] [Indexed: 05/29/2023]
Abstract
Humic substances in groundwater and aquifer sediments from the arsenicosis and Blackfoot disease (BFD) affected areas in Bangladesh (Bengal delta plain) and Taiwan (Lanyang plain and Chianan plain) were characterized using fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that the mean concentration of As and relative intensity of fluorescent humic substances are higher in the Chianan plain groundwater than those in the Lanyang plain and Bengal delta plain groundwater. The mean As concentrations in Bengal delta plain, Chianan plain, and Lanyang plain are 50.65 μg/l (2.8-170.8 μg/l, n=20), 393 μg/l (9-704 μg/l, n=5), and 104.5 μg/l (2.51-543 μg/l, n = 6), respectively. Average concentrations and relative fluorescent intensity of humic substances in groundwater are 25.381 QSU (quinine standard unit) and 17.78 in the Bengal delta plain, 184.032 QSU and 128.41 in the Chianan plain, and 77.56 QSU and 53.43 in the Lanyang plain. Moreover, FT-IR analysis shows that the humic substances extracted from the Chianan plain groundwater contain phenolic, alkanes, aromatic ring and amine groups, which tend to form metal carbon bonds with As and other trace elements. By contrast, the spectra show that humic substances are largely absent from sediments and groundwater in the Bengal delta plain and Lanyang plain. The data suggest that the reductive dissolution of As-adsorbed Mn oxyhydroxides is the most probable mechanism for mobilization of As in the Bengal delta plain. However, in the Chianan plain and Lanyang plain, microbially mediated reductive dissolution of As-adsorbed amorphous/crystalline Fe oxyhydroxides in organic-rich sediments is the primary mechanism for releasing As to groundwater. High levels of As and humic substances possibly play a critical role in causing the unique BFD in the Chianan plain of SW Taiwan.
Collapse
Affiliation(s)
- A H M Selim Reza
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Afridi HI, Kazi TG, Kazi N, Kandhro GA, Baig JA, Jamali MK, Arain MB, Shah AQ, Shah F, Khan S, Kolachi NF. Association of environmental toxic elements in biological samples of myocardial infarction patients at different stages. Biol Trace Elem Res 2011; 141:26-40. [PMID: 20480400 DOI: 10.1007/s12011-010-8713-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 04/22/2010] [Indexed: 11/25/2022]
Abstract
The exposure of toxic elements may directly or indirectly associate with different pathogenesis of heart diseases. In the present study, the association of arsenic (As), cadmium (Cd), cobalt (Co), lead (Pb), and nickel (Ni) in biological samples (whole blood and urine) and mortality from myocardial infarction (MI) patients at first, second, and third heart attacks was carried out. Both biological samples of 130 MI patients (77 male and 53 female), with ages ranging from 45 to 60 years, and 61 healthy persons (33 male and 28 female) of the same age group were collected. The elements in biological samples were assessed by electrothermal atomic absorption spectrophotometer, prior to microwave-assisted acid digestion. The validity of methodology was checked by the biological certified reference materials. During this study, 78% of 32 patients aged above 50 years, registered after third MI attack, died. In these subjects, the levels of As, Cd, Co, Ni, and Pb in blood samples were higher in MI patients as compared with referents (p < 0.05), while increased by 11.7%, 12.2%, 5.55%, and 7.2%, respectively, in the blood samples of those patients who tolerated the third MI attack (p = 0.12). The high level of understudied toxic elements may play a role in the mortality of MI patients.
Collapse
Affiliation(s)
- Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rahaman S, Sinha AC, Mukhopadhyay D. Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci (China) 2011; 23:633-639. [PMID: 21793406 DOI: 10.1016/s1001-0742(10)60457-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The arsenic contamination in soil-water-plant systems is a major concern of where, the groundwater is being contaminated with arsenic (above 0.01 mg/L) in the Indian subcontinent. The study was conducted with organic matter to find out the reducing effect on arsenic load to rice (cv. Khitish). It was observed that intermittent ponding reduced arsenic uptake (23.33% in root, 13.84% in shoot and 19.84% in leaf) at panicle initiation stage, instead of continuous ponding. A decreasing trend of arsenic accumulation (root > straw > husk > whole grain > milled grain) was observed in different plant parts at harvest. Combined applications of lathyrus + vermicompost + poultry manure reduced arsenic transport in plant parts (root, straw, husk, whole grains and milled grain) which was significantly at par (p > 0.05) with chopped rice straw (5 tons/ha) + lathyrus green manuring (5 tons/ha) in comparison to control and corresponding soils. A significant negative correlation of arsenic with phosphorus (grain P with arsenic in different parts R2= 0.627-0.726 at p > 0.01) was observed. Similarly, soil arsenic had a negative correlation with soil available phosphorus (R2 = 0.822 at p > 0.001) followed by soil nitrogen (R2 = 0.762 at p > 0.01) and soil potassium (R2 = 0.626 at p > 0.01). Hence, effective management of contaminated irrigation water along with organic matter could reduce the arsenic build up to plants and soil.
Collapse
Affiliation(s)
- Sefaur Rahaman
- Department of Agronomy, Faculty of Agriculture, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar West Bengal-736165, India.
| | | | | |
Collapse
|
13
|
Snigdha Pal Chaudhury, Chakraborty D, Mukhopadhyay A, Guha D, Chatterjee J. Analyzing important ground water parameters in West Bengal with a fuzzy approach in the context of arsenic pollution. 2010 INTERNATIONAL CONFERENCE ON SYSTEMS IN MEDICINE AND BIOLOGY 2010. [DOI: 10.1109/icsmb.2010.5735386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
14
|
Wnek SM, Jensen TJ, Severson PL, Futscher BW, Gandolfi AJ. Monomethylarsonous acid produces irreversible events resulting in malignant transformation of a human bladder cell line following 12 weeks of low-level exposure. Toxicol Sci 2010; 116:44-57. [PMID: 20375083 DOI: 10.1093/toxsci/kfq106] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a known human bladder carcinogen; however, the mechanisms underlying arsenical-induced bladder carcinogenesis are not understood. Previous research has demonstrated that exposure of a nontumorigenic human urothelial cell line, UROtsa, to 50 nM monomethylarsonous acid (MMA(III)) for 52 weeks resulted in malignant transformation. To focus research on the early mechanistic events leading to MMA(III)-induced malignancy, the goal of this research was to resolve the critical period in which continuous MMA(III) exposure (50 nM) induces the irreversible malignant transformation of UROtsa cells. An increased growth rate of UROtsa cells results after 12 weeks of MMA(III) exposure. Anchorage-independent growth occurred after 12 weeks with a continued increase in colony formation when 12-week exposed cells were cultured for an additional 12 or 24 weeks without MMA(III) exposure. UROtsa cells as early as 12 weeks MMA(III) exposure were tumorigenic in severe combined immunodeficiency mice with tumorigenicity increasing when 12-week exposed cells were cultured for an additional 12 or 24 weeks in the absence of MMA(III) exposure. To assess potential underlying mechanisms associated with the early changes that occur during MMA(III)-induced malignancy, DNA methylation was assessed in known target gene promoter regions. Although DNA methylation remains relatively unchanged after 12 weeks of exposure, aberrant DNA methylation begins to emerge after an additional 12 weeks in culture and continues to increase through 24 weeks in culture without MMA(III) exposure, coincident with the progression of a tumorigenic phenotype. Overall, these data demonstrate that 50 nM MMA(III) is capable of causing irreversible malignant transformation in UROtsa cells after 12 weeks of exposure. Having resolved an earlier timeline in which MMA(III)-induced malignant transformation occurs in UROtsa cells will allow for mechanistic studies focused on the critical biological changes taking place within these cells prior to 12 weeks of exposure, providing further evidence about potential mechanisms of MMA(III)-induced carcinogenesis.
Collapse
Affiliation(s)
- Shawn M Wnek
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
15
|
CHEN MY, CHANG YZ, LU FJ, CHEN JL. Capillary Electrophoretic Determination of Selected Phenolic Compounds in Humic Substances of Well Waters and Fertilizers. ANAL SCI 2010; 26:561-7. [DOI: 10.2116/analsci.26.561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Yan-Zin CHANG
- Institute of Medical and Molecular Toxicology, Chung-Shan Medical University
| | - Fung-Jou LU
- Institute of Medicine, Chung-Shan Medical University
| | | |
Collapse
|
16
|
Lee JJ, Jang CS, Liu CW, Liang CP, Wang SW. Determining the probability of arsenic in groundwater using a parsimonious model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6662-6668. [PMID: 19764232 DOI: 10.1021/es900540s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Spatial distributions of groundwater quality are commonly heterogeneous, varying with depths and locations, which is important in assessing the health and ecological risks. Owing to time and cost constraints, it is not practical or economical to measure arsenic everywhere. A predictive model is necessary to estimate the distribution of a specific pollutant in groundwater. This study developed a logistic regression (LR) model to predict the residential well water quality in the Lanyang plain. Six hydrochemical parameters, pH, NO3- -N, NO2- -N, NH+ -N, Fe, and Mn, and a regional variable (binary type) were used to evaluate the probability of arsenic concentrations exceeding 10 microg/L in groundwater. The developed parsimonious LR model indicates that four parameters in the Lanyang plain aquifer, (pH, NH4+, Fe(aq), and a component to account for regional heterogeneity) can accurately predict probability of arsenic concentration > or =1 microg/Lin groundwater. These parameters provide an explanation for release of arsenic by reductive dissolution of As-rich FeOOH in NH4+ containing groundwater. A comparison of LR and indicator kriging (IK) show similar results in modeling the distributions of arsenic. LR can be applied to assess the probability of groundwater arsenic at sampled sites without arsenic concentration data apriori. However, arsenic sampling is still needed and required in arsenic-assessment stages in other areas, and the need for long-term monitoring and maintenance is not precluded.
Collapse
Affiliation(s)
- Jin-Jing Lee
- Environmental Professionals Training Institute, Environmental Protection Administration, Executive Yuan, Taoyuan, Taiwan 320, ROC
| | | | | | | | | |
Collapse
|
17
|
Halim MA, Saiful Islam M, Safiullah S, Safiqul Islam M, Mazharul Islam M. Analysis of Organic Matter, Iron and Manganese in Soil of Arsenic Affected Singair Area, Bangladesh. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/rjet.2009.31.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Lee JJ, Jang CS, Liang CP, Liu CW. Assessing carcinogenic risks associated with ingesting arsenic in farmed smeltfish (Ayu, Plecoglossus altirelis) in aseniasis-endemic area of Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 403:68-79. [PMID: 18584852 DOI: 10.1016/j.scitotenv.2008.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/29/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
This study spatially analyzed potential carcinogenic risks associated with ingesting arsenic (As) contents in aquacultural smeltfish (Plecoglossus altirelis) from the Lanyang Plain of northeastern Taiwan. Sequential indicator simulation (SIS) was adopted to reproduce As exposure distributions in groundwater based on their three-dimensional variability. A target cancer risk (TR) associated with ingesting As in aquacultural smeltfish was employed to evaluate the potential risk to human health. The probabilistic risk assessment determined by Monte Carlo simulation and SIS is used to propagate properly the uncertainty of parameters. Safe and hazardous aquacultural regions were mapped to elucidate the safety of groundwater use. The TRs determined from the risks at the 95th percentiles exceed one millionth, indicating that ingesting smeltfish that are farmed in the highly As-affected regions represents a potential cancer threat to human health. The 95th percentile of TRs is considered in formulating a strategy for the aquacultural use of groundwater in the preliminary stage.
Collapse
Affiliation(s)
- Jin-Jing Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
| | | | | | | |
Collapse
|
19
|
Liao CM, Shen HH, Lin TL, Chen SC, Chen CL, Hsu LI, Chen CJ. Arsenic cancer risk posed to human health from tilapia consumption in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 70:27-37. [PMID: 18068227 DOI: 10.1016/j.ecoenv.2007.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/04/2007] [Accepted: 10/20/2007] [Indexed: 05/25/2023]
Abstract
Ingested inorganic arsenic is strongly associated with a wide spectrum of adverse health outcomes. We propose a bioaccumulation and the Weibull model-based epidemiological framework to accurately estimate the reference arsenic intake guideline for tilapia consumption and tilapia-cultured water arsenic concentration based on bioaccumulations of tilapia and gender/age/cancer-specific epidemiological data from the arseniasis-endemic area in Taiwan. Our results show a positive relationship between arsenic exposure and age/gender- and cancer-specific cumulative incidence ratio using Weibull dose-response model. Based on male bladder cancer with an excess lifetime cancer risk of 10(-4), we estimate the reference tilapia inorganic arsenic guideline value to be 0.084 microg g(-1) dry wt based on the suggested daily consumption rate of 120 gd(-1). Our findings show that consumption of tilapia in a blackfoot disease (BFD)-endemic area poses no significant cancer risk (excess cancer risks ranging from 3.4 x 10(-5) to 9.3 x 10(-5)), implying that people in BFD-endemic areas are not readily associated with higher fatalities for bladder cancer exposed from tilapia consumption. We are confident that our model can be easily adapted for other aquaculture species, and encourage risk managers to use the model to evaluate the potential population-level long-term low-dose cancer risks. We conclude that, by integrating the bioaccumulation concept and epidemiological investigation of humans exposed to arsenic, we can provide a scientific basis for risk analysis to enhance risk management strategies.
Collapse
Affiliation(s)
- Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jensen TJ, Novak P, Eblin KE, Gandolfi AJ, Futscher BW. Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis 2008; 29:1500-8. [PMID: 18448484 DOI: 10.1093/carcin/bgn102] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Humans are exposed to arsenicals through many routes with the most common being in drinking water. Exposure to arsenic has been associated with an increase in the incidence of cancer of the skin, lung and bladder. Although the relationship between exposure and carcinogenesis is well documented, the mechanisms by which arsenic participates in tumorigenesis are not fully elucidated. We evaluated the potential epigenetic component of arsenical action by assessing the histone acetylation state of 13 000 human gene promoters in a cell line model of arsenical-mediated malignant transformation. We show changes in histone H3 acetylation occur during arsenical-induced malignant transformation that are linked to the expression state of the associated gene. DNA hypermethylation was detected in hypoacetylated promoters in the select cases analyzed. These epigenetic changes occurred frequently in the same promoters whether the selection was performed with arsenite [As(III)] or with monomethylarsonous acid, suggesting that these promoters were targeted in a non-random fashion, and probably occur in regions important in arsenical-induced malignant transformation. Taken together, these data suggest that arsenicals may participate in tumorigenesis by altering the epigenetic terrain of select genes.
Collapse
Affiliation(s)
- Taylor J Jensen
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
21
|
Xu Z, Jing C, Li F, Meng X. Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2349-2354. [PMID: 18504964 DOI: 10.1021/es0719677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photodegradation mechanisms of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) with nanocrystalline titanium dioxide under UV irradiation were investigated. In the presence of UV irradiation and 0.02 g/L TiO2, 93% MMA (initial concentration is 10 mg-As/L) was transformed into inorganic arsenate, [As(V)], after 72 h of a batch reaction. The mineralization of DMA to As(V) occurred in two steps with MMA as an intermediate product. The photodegradation rate of MMA and DMA could be described using first-order kinetics, where the apparent rate constant is 0.033/h and 0.013/h for MMA and DMA, respectively. Radical scavengers, including superoxide dimutase (SOD), sodium bicarbonate, tert-butanol, and sodium azide, were used to study the photodegradation mechanisms of MMA and DMA. The results showed that hydroxyl radicals (HO*) was the primary reactive oxygen species for the photodegradation of MMA and DMA. The methyl groups in MMA and DMAweretransformed into organic carbon, including formic acid and possibly methanol, also through photochemical reactions. The results showed that nanocrystalline TiO2 can be used for the photocatalytical degradation of MMA and DMA and subsequent removal of the converted As(V), since the high adsorption capacity of the material for inorganic arsenic species has been demonstrated in previous studies.
Collapse
Affiliation(s)
- Zhonghou Xu
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | | | |
Collapse
|
22
|
Zhang J, Zhu YG, Zeng DL, Cheng WD, Qian Q, Duan GL. Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). THE NEW PHYTOLOGIST 2008; 177:350-356. [PMID: 17995916 DOI: 10.1111/j.1469-8137.2007.02267.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The quantitative trait loci (QTLs) associated with arsenic (As) accumulation in rice were mapped using a doubled haploid population established by anther culture of F1 plants from a cross between a Japonica cultivar CJ06 and an Indica cultivar TN1 (Oryza sativa). Four QTLs for arsenic (As) concentrations were detected in the map. At the seedling stage, one QTL was mapped on chromosome 2 for As concentrations in shoots with 24.4% phenotypic variance and one QTL for As concentrations in roots was detected on chromosome 3. At maturity, two QTLs for As concentrations in grains were found on chromosomes 6 and 8, with 26.3 and 35.2% phenotypic variance, respectively. No common loci were detected among these three traits. Interestingly, the QTL on chromosome 8 was found to be colocated for As concentrations in grain at maturity and shoot phosphorus (P) concentrations at seedling stage. These results provide an insight into the genetic basis of As uptake and accumulation in rice, and will be useful in identifying genes associated with As accumulation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Soil Environmental Sciences, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- Department of Soil Environmental Sciences, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Da-Li Zeng
- China National Rice Research Institute, Hangzhou 310006, China
| | - Wang-Da Cheng
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Qian Qian
- China National Rice Research Institute, Hangzhou 310006, China
| | - Gui-Lan Duan
- Department of Soil Environmental Sciences, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
23
|
Lee JJ, Jang CS, Wang SW, Liu CW. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 384:151-62. [PMID: 17628636 DOI: 10.1016/j.scitotenv.2007.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 05/30/2007] [Accepted: 06/08/2007] [Indexed: 05/16/2023]
Abstract
This study analyzed the potential health risk associated with the ingestion of arsenic-affected groundwater in the arseniasis-endemic Lanyang plain of northeastern Taiwan. Indicator kriging was used to estimate arsenic concentrations in groundwater. Target cancer risk (TR) and dose response functions were adopted to evaluate the potential health risk based on the estimated arsenic concentration distributions. The estimated arsenic concentrations in groundwater reveal that arsenic concentrations (>50 microg/L) in well water are high in six townships - JiaoSi, YiLan, JhungWei, WuJie, DonShan and LouDon. Highest arsenic concentrations (70.32 microg/L) are in the YiLan and the JhungWei townships. The estimated TR values at the arsenic-affected townships are ten times more than an acceptable standard (10(-6)). The largest TR values are 145.5 and 91.2 times higher than an acceptable standard for males and females, respectively. The estimated annual mortalities by arsenic-induced internal cancers occur in the YiLan township (ten cases), LouDon (five cases), WuJie (three cases), JhungWei (two cases) and DonShan (one case). The highest number of mortalities per year in the study area is 24. Residents of the six townships with high arsenic-affected groundwater should use tap water as drinking water and use groundwater only for other purpose. The well water in other townships in the Lanyang plain has no adverse effects on human health.
Collapse
Affiliation(s)
- Jin-Jing Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan ROC
| | | | | | | |
Collapse
|
24
|
Ning Z, Lobdell DT, Kwok RK, Liu Z, Zhang S, Ma C, Riediker M, Mumford JL. Residential exposure to drinking water arsenic in Inner Mongolia, China. Toxicol Appl Pharmacol 2007; 222:351-6. [PMID: 17448512 DOI: 10.1016/j.taap.2007.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 11/29/2022]
Abstract
In the Ba Men region of Inner Mongolia, China, a high prevalence of chronic arsenism has been reported in earlier studies. A survey of the arsenic contamination among wells from groundwater was conducted to better understand the occurrence of arsenic (As) in drinking water. A total of 14,866 wells (30% of all wells in the region) were analyzed for their arsenic-content. Methods used to detect arsenic were Spectrophotometric methods with DCC-Ag (detection limit, 0.5 microg of As/L); Spot method (detection limit, 10 microg of As/L); and air assisted Colorimetry method (detection limit, 20 microg of As/L). Arsenic-concentrations ranged from below limit of detection to 1200 microg of As/L. Elevated concentrations were related to well depth (10 to 29 m), the date the well was built (peaks from 1980-1990), and geographic location (near mountain range). Over 25,900 individuals utilized wells with drinking water arsenic concentrations above 20 microg of As/L (14,500 above 50 microg of As/L-the current China national standard in drinking water and 2198 above 300 microg of As/L). The presented database of arsenic in wells of the Ba Men region provides a useful tool for planning future water explorations when combined with geological information as well as support for designing upcoming epidemiological studies on the effects of arsenic in drinking water for this region.
Collapse
Affiliation(s)
- Zhixiong Ning
- Ba Men Anti-Epidemic Station, Lin He, Inner Mongolia, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo W, Zhu YG, Liu WJ, Liang YC, Geng CN, Wang SG. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 148:251-7. [PMID: 17175078 DOI: 10.1016/j.envpol.2006.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 10/15/2006] [Accepted: 10/19/2006] [Indexed: 05/13/2023]
Abstract
Solution culture experiments were conducted to investigate the effects of silicon (Si) on arsenate (As(V)) uptake by rice. The addition of Si to the pretreatment or uptake solution significantly decreased shoot and root As concentrations (P<0.001 and P<0.05). The presence of Si in the pretreatment or uptake solution also significantly decreased shoot P concentrations (P<0.001). The data demonstrated that both internal and external Si inhibited the uptake of As and P. Results of As uptake kinetics showed that the mechanism of the effect of Si on arsenate uptake is not caused by direct competition for active sites of transporters with As. The effect of Si on As uptake was not entirely mediated through the effect of Si on P uptake. Although the addition of Si to pretreatment solutions still significantly decreased shoot and root As concentrations, the extent of reduction became smaller when rice roots were coated with iron plaque.
Collapse
Affiliation(s)
- W Guo
- Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Soil Environmental Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
26
|
Zhang JS, Stanforth RS, Pehkonen SO. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (α-FeOOH). J Colloid Interface Sci 2007; 306:16-21. [PMID: 17056055 DOI: 10.1016/j.jcis.2006.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 11/25/2022]
Abstract
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.
Collapse
Affiliation(s)
- J S Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
| | | | | |
Collapse
|
27
|
Effect of two different rice dehusking procedures on total arsenic concentration in rice. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0571-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Lamm SH, Engel A, Feinleib M. Arsenic exposure and diabetes mellitus risk. J Occup Environ Med 2007; 48:1001-3; author reply 1003-4. [PMID: 17033498 DOI: 10.1097/01.jom.0000237359.75757.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta area. CHEMICAL PAPERS 2007. [DOI: 10.2478/s11696-007-0018-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe profile distribution of arsenic(III) and arsenic(V) species in soil and groundwater was investigated in the samples collected in 2005 from a hand-drilled well, in the Bozanta area, Baia Mare region, Romania. The total content of arsenic in the soil was in the range of 525–672 mg kg−1 exceeding 21–27 times the action trigger level for sensitive soil. 0.9–11.3 % of the total content was soluble in water, 83.0–92.6 % in 10 mol dm−3 HCl and 2.6–13.3 % was the residual fraction. Arsenic(V) was the dominant arsenic species in the soil in the range of 405–580 mg kg−1. The distribution and mobility of arsenic species was governed by soil pH and contents of Al, Fe, and Mn. The mobility of arsenic(V) decreased with depth, while that of arsenic(III) was high at the surface and in the proximity of groundwater. The total concentration of arsenic in groundwater was (43.40 ± 1.70) µg dm−3, which exceeded the maximum contaminant level of 10 µg dm−3.
Collapse
|
30
|
Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. JOURNAL OF HAZARDOUS MATERIALS 2006; 137:464-79. [PMID: 16616812 DOI: 10.1016/j.jhazmat.2006.02.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 02/13/2006] [Accepted: 02/16/2006] [Indexed: 05/08/2023]
Abstract
Arsenic contamination in water has posed severe health problems around the world. In spite of the availability of some conventional techniques for arsenic removal from contaminated water, development of new laboratory based techniques along with enhancement and cost reduction of conventional techniques are essential for the benefit of common people. This paper provides an overview of the arsenic issue in water such as modes of contamination of ground water as well as surface water by arsenic, its metabolism and health impacts, factors influencing arsenic poisoning, fundamentals of arsenic poisoning mechanism and world scenario of arsenic poisoning. It discusses and compares the conventional laboratory based techniques, like precipitation with alum, iron, Fe/Mn, lime softening, reverse osmosis, electro dialysis, ion exchanges, adsorption on activated alumina/carbon, etc., for arsenic removal from contaminated water. It also discusses the best available techniques and mentions the cost comparison among these techniques too. Recent developments in the research on the laboratory based arsenic removal techniques, like improvement of conventional techniques and advances in removal technology along with its scopes and limitations have also been reviewed.
Collapse
Affiliation(s)
- P Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttranchal, India
| | | | | |
Collapse
|
31
|
Wang S, Mulligan CN. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 366:701-21. [PMID: 16203025 DOI: 10.1016/j.scitotenv.2005.09.005] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 05/04/2023]
Abstract
Recently there has been increasing anxieties concerning arsenic related problems. Occurrence of arsenic contamination has been reported worldwide. In Canada, the main natural arsenic sources are weathering and erosion of arsenic-containing rocks and soil, while tailings from historic and recent gold mine operations and wood preservative facilities are the principal anthropogenic sources. Across Canada, the 24-h average concentration of arsenic in the atmosphere is generally less than 0.3 microg/m3. Arsenic concentrations in natural uncontaminated soil and sediments range from 4 to 150 mg/kg. In uncontaminated surface and ground waters, the arsenic concentration ranges from 0.001 to 0.005 mg/L. As a result of anthropogenic inputs, elevated arsenic levels, above ten to thousand times the Interim Maximum Acceptable Concentration (IMAC), have been reported in air, soil and sediment, surface water and groundwater, and biota in several regions. Most arsenic is of toxic inorganic forms. It is critical to recognize that such contamination imposes serious harmful effects on various aquatic and terrestrial organisms and human health ultimately. Serious incidences of acute and chronic arsenic poisonings have been revealed. Through examination of the available literature, screening and selecting existing data, this paper provides an analysis of the currently available information on recognized problem areas, and an overview of current knowledge of the principal hydrogeochemical processes of arsenic transportation and transformation. However, a more detailed understanding of local sources of arsenic and mechanisms of arsenic release is required. More extensive studies will be required for building practical guidance on avoiding and reducing arsenic contamination. Bioremediation and hyperaccumulation are emerging innovative technologies for the remediation of arsenic contaminated sites. Natural attenuation may be utilized as a potential in situ remedial option. Further investigations are needed to evaluate its applicability.
Collapse
Affiliation(s)
- Suiling Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Boulevard W., EV 006-187, Montreal, QC, Canada H3G 1M8
| | | |
Collapse
|
32
|
Aşçı B, Alpdoğan G, Sungur S. Preconcentration of Some Trace Metal Ions from Drinking and Tap Water Samples by Sorption on Amberlite XAD‐4 after Complexation with Di‐2‐Pyridyl Ketone Thiosemicarbazone. ANAL LETT 2006. [DOI: 10.1080/00032710600614263] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E. Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 2005; 162:1037-49. [PMID: 16269585 DOI: 10.1093/aje/kwi330] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arsenic exposure is a likely cause of blackfoot disease and a potential risk factor for atherosclerosis. The authors performed a systematic review of the epidemiologic evidence on the association between arsenic and cardiovascular outcomes. The search period was January 1966 through April 2005. Thirteen studies conducted in general populations (eight in high-arsenic areas in Taiwan, five in other countries) and 16 studies conducted in occupational populations were identified. Exposure was assessed ecologically in most studies. In Taiwan, relative risks comparing the highest arsenic exposure category with the lowest ranged from 1.59 to 4.90 for coronary disease, from 1.19 to 2.69 for stroke, and from 1.66 to 4.28 for peripheral arterial disease. In other general populations, relative risks ranged from 0.84 to 1.54 for coronary disease, from 0.69 to 1.53 for stroke, and from 0.61 to 1.58 for peripheral arterial disease. In occupational populations, relative risks ranged from 0.40 to 2.14 for coronary disease mortality and from 0.30 to 1.33 for stroke mortality. Methodologic limitations, however, limited interpretation of the moderate-to-strong associations between high arsenic exposure and cardiovascular outcomes in Taiwan. In other populations or in occupational settings, the evidence was inconclusive. Because of the high prevalence of arsenic exposure, carefully performed studies of arsenic and cardiovascular outcomes should be a research priority.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2223, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Terlecka E. Arsenic speciation analysis in water samples: a review of the hyphenated techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2005; 107:259-84. [PMID: 16418917 DOI: 10.1007/s10661-005-3109-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 08/31/2004] [Indexed: 05/06/2023]
Abstract
Interests in the determination of different arsenic species in natural waters is caused by the fact that toxic effects of arsenic are connected with its chemical forms and oxidation states. In determinations of water samples inorganic arsenate (As(III), As(V)), methylated metabolities (MMAA, DMAA) and other organic forms such as AsB, AsC, arsenosugars or arsenic containing lipids have the most importance. This article provides information about occurrence of the dominant arsenic forms in various water environments. The main factors controlling arsenic speciation in water are described. The quantification of species is difficult because the concentrations of different forms in water samples are relatively low compared to the detection limits of the available analytical techniques. Several hyphenated methods used in arsenic speciation analysis are described. Specific advantages and disadvantages of methods can define their application for a particular sample analysis. Insufficient selectivity and sensitivity of arsenic speciation methods cause searching for a new or modifications already existing techniques. Some aspects of improvement and modifications of the methods are highlighted.
Collapse
Affiliation(s)
- Ewa Terlecka
- Institute of Meteorology and Water Management, ul. Parkowa 30, Wroclaw, Poland.
| |
Collapse
|
35
|
Nakajima T, Xu YH, Mori Y, Kishita M, Takanashi H, Maeda S, Ohki A. Combined use of photocatalyst and adsorbent for the removal of inorganic arsenic(III) and organoarsenic compounds from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2005; 120:75-80. [PMID: 15811667 DOI: 10.1016/j.jhazmat.2004.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2003] [Revised: 07/21/2004] [Accepted: 11/14/2004] [Indexed: 05/24/2023]
Abstract
A novel method for the removal of inorganic arsenic(III) (As(III)), monomethylarsonate (MMA), and dimethylarsinate (DMA) from aqueous media, was proposed and investigated. This method involves the combined use of TiO2-photocatalyst and an adsorbent, which has a high ability of As(V) adsorption, under photo-irradiation. When an aqueous solution of As(III) was stirred and irradiated by sunlight or xenon lamp in the presence of TiO2 suspension, the oxidation of As(III) into As(V) was effectively attained. By use of the same photocatalytic reaction, MMA and DMA were also degraded into As(V), while the total organic carbon (TOC) in the aqueous phase was decreased. When an aqueous solution of As(III) was stirred with a mixed suspension of TiO2 and an adsorbent for As(V) (activated alumina) under sunlight irradiation, the arsenic removal reached 89% after 24 h. By use of the same photocatalyst-adsorbent system, 98% of MMA and 97% of DMA were removed. The mechanism of the removal of arsenic species by the photocatalyst-adsorbent system was discussed.
Collapse
Affiliation(s)
- Tsunenori Nakajima
- Department of Bioengineering, Faculty of Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Hu Y, Li JH, Zhu YG, Huang YZ, Hu HQ, Christie P. Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2005; 27:169-76. [PMID: 16003584 DOI: 10.1007/s10653-005-0132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 11/05/2004] [Indexed: 05/03/2023]
Abstract
A pot experiment was carried out in a greenhouse to investigate the sequestration of As in iron plaques on root surface of three rice (Oryza sativa L.) cultivars. Phosphate (P) fertilization increased both plant biomass and tissue P concentrations significantly, indicating that the soils used in this study was highly P-deficient. Results from this study confirmed that low P supply improved the formation of iron plaque on rice roots. As a consequence, arsenic (As) concentrations in DCB-extracts with no P addition were significantly higher than those with P fertilization. Arsenic was highly sequestrated in iron plaque; arsenic concentration in iron was up to nearly 120 mg kg(-1), while arsenic concentrations in roots were just several mg kg(-1). Both arsenic and phosphate concentrations in iron plaque were highly positively correlated with the amounts of iron plaque (DCB-extractable Fe). Contrary to normal understanding that increasing P supply could reduced As accumulation in plants, results from the present study showed that P fertilization did not inhibit the As uptake by plants (As accumulation in aboveground), which was probably due to the fact that iron plaque formation was improved under low P conditions, thus leading to more As sequestration in the iron plaque. Thus results obtained in this study indicated that the iron plaque may inhibit the transfer of As from roots to shoots, and thus alter the P-As interaction in plant As uptake processes.
Collapse
Affiliation(s)
- Y Hu
- Research center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | |
Collapse
|
37
|
Nakajima T, Kawabata T, Kawabata H, Takanashi H, Ohki A, Maeda S. Degradation of phenylarsonic acid and its derivatives into arsenate by hydrothermal treatment and photocatalytic reaction. Appl Organomet Chem 2005. [DOI: 10.1002/aoc.720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
. MI, . SI, . MJ, . MI. Effects of Irrigation Water Arsenic in the Rice-rice Cropping System. ACTA ACUST UNITED AC 2004. [DOI: 10.3923/jbs.2004.542.546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Huang YK, Lin KH, Chen HW, Chang CC, Liu CW, Yang MH, Hsueh YM. Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food Chem Toxicol 2003; 41:1491-500. [PMID: 12963001 DOI: 10.1016/s0278-6915(03)00165-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A study was conducted to measure the arsenic species in farmed mouthbreeder (Oreochromis mossambicus) and culture ponds in water in blackfoot disease (BFD) hyperendemic areas in Taiwan. The relationships between arsenic species of aquaculture ponds and farmed fish were also explored. Biota samples were extracted with methanol/water (1/1, v/v) using a Soxhlet extraction apparatus. The concentrations of arsenite As (III), arsenate As (V), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) of extracts were measured by high-performance liquid chromatography (HPLC) linked to a hydride generator and atomic absorption spectrometry (HG-AAS). Moreover, arsenobetaine (AB) was analyzed by HPLC linked to ultra violet (UV) and HG-AAS. Concentrations of arsenic species were determined in 68 mouthbreeder (O. mossambicus) samples and 21 culture ponds from Putai and Yichu Townships of Chiayi County and Hsuehchia and Peimen Townships of Tainan County. The mean arsenic levels of culture ponds in Putai, Yichu, Hsuehchia, and Peimen were 75.8, 15.1, 14.4, and 221.0 microg/l, respectively. The water of culture ponds was dominated by As (V). The inorganic arsenic percentage of fish (7.4%) was higher than that reported by other seafood surveys. Except for the MMA and As (III) levels, As (V), DMA, AB, and total arsenic levels in fish significantly increased with inorganic and total arsenic concentrations of the pond water. Inorganic arsenic species are more toxic than methyl arsenic species. Therefore the effect of inorganic arsenic species might result in a greater number of adverse health effects to the general public. It is of importance to evaluate the inorganic arsenic levels of farmed seafood in arsenic-contaminated areas.
Collapse
Affiliation(s)
- Yung-Kay Huang
- Graduate Institute of Medicine Science, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Pizarro I, Gómez M, Palacios MA, Cámara C. Evaluation of stability of arsenic species in rice. Anal Bioanal Chem 2003; 376:102-9. [PMID: 12734624 DOI: 10.1007/s00216-003-1870-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 02/17/2003] [Accepted: 02/18/2003] [Indexed: 10/20/2022]
Abstract
Although most edible vegetables do not accumulate As at a high rate, rice, carrots and certain others are exceptions. In addition to nutritional or toxicological considerations, the relatively high level and variety of As species present in rice make it a very suitable matrix for a candidate reference material representative of terrestrial biological samples.An analytical procedure was developed for As speciation in rice based on the use of a 1:1 methanol-water mixture for species extraction, an anion Hamilton PRPX-100 column (at pH 6, and phosphate mobile phase 10 mM), and a cation Hamilton PRP-X200 column (at pH 2.8 in pyridine formiate 4 mM) for species separation and final determination by HPLC-ICP-MS. The detection limits for dry flour rice expressed as As were 2 and 3 ng g(-1) for As(III) and AsB on the cation column and 3, 6 and 5 ng g(-1) for As(V), MMA and DMA, respectively, on the anion column. The methodology developed was applied to check the stability of As species in the water-methanol extract and also under different processing steps and storage time and temperature conditions. It was demonstrated that the As species in the water-methanol extracts stored at +4 degrees C remained stable for at least one month. Once the rice grains are ground, the MMA and As(V) species are not stable under any storage conditions probably due to microbiological activity. When ground rice is gamma-irradiated species remain stable although the AsB does not appear.
Collapse
Affiliation(s)
- Isabel Pizarro
- Analytical Chemistry Department, Chemistry Faculty, Complutense University, Avda Complutense s/n, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
41
|
Thirunavukkarasu O, Viraraghavan T, Subramanian K, Tanjore S. Organic arsenic removal from drinking water. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1462-0758(02)00029-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Abedin MJ, Feldmann J, Meharg AA. Uptake kinetics of arsenic species in rice plants. PLANT PHYSIOLOGY 2002; 128:1120-8. [PMID: 11891266 PMCID: PMC152223 DOI: 10.1104/pp.010733] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.
Collapse
Affiliation(s)
- Mohammed Joinal Abedin
- Department of Plant and Soil Science, University of Aberdeen, St. Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | | | | |
Collapse
|
43
|
Speciation of arsenic in tube-well water samples collected from West Bengal, India, by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Appl Organomet Chem 2002. [DOI: 10.1002/aoc.279] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Healy SM, Zakharyan RA, Aposhian HV. Enzymatic methylation of arsenic compounds: IV. In vitro and in vivo deficiency of the methylation of arsenite and monomethylarsonic acid in the guinea pig. Mutat Res 1997; 386:229-39. [PMID: 9219561 DOI: 10.1016/s1383-5742(97)00014-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using an in vitro assay which measures the transfer of a radiolabeled methyl moiety of S-[methyl-3H]adenosylmethionine ([3H]SAM) to arsenite or monomethylarsonate (MMA) to yield [methyl-3H]MMA or [methyl-3H]dimethylarsinate (DMA) respectively, guinea pig liver cytosol was found to be deficient in the enzyme activities which methylate these substrates. Moreover, when guinea pigs were given a single intraperitoneal dose of [73As]arsenate (400 micrograms/kg body weight, 25 microCi/kg body weight), very little or no methylated arsenic species were detected in the urine after cation exchange chromatography. The urine collected 0-12 h after arsenate injection contained 98% inorganic arsenic and less than 1% DMA. No MMA was detected in the 0-12 h urine. Urine collected 12-24 h after injection contained approximately 93% inorganic arsenic, 2% MMA and 3% DMA in five of the six animals studied. However, in the 12-24 h urine of one guinea pig, 17% of the radioactivity was DMA, 80% was inorganic arsenic and 3% was MMA. The guinea pig, like the marmoset and tamarin monkeys and unlike most other animals studied thus far, appears to be deficient as far as the enzyme activities that methylate inorganic arsenite. The results of these experiments suggest that there may be a genetic polymorphism associated with the enzymes that methylate inorganic arsenite.
Collapse
Affiliation(s)
- S M Healy
- Department of Pharmacology and Toxicology, University of Arizona, Tucson 85721-0106, USA
| | | | | |
Collapse
|
45
|
Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 1997; 37:397-419. [PMID: 9131259 DOI: 10.1146/annurev.pharmtox.37.1.397] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arsenic metabolism has typically been studied by administering arsenate or arsenite into animals and humans and then studying the metabolites excreted in the urine. Although such studies have yielded information about the beginning and the end of the metabolic pathways for the metabolism of inorganic arsenic compounds, any statements as to the molecular mechanisms of these reactions have had to be highly speculative. Now that the rabbit and the rhesus monkey liver enzymes that transfer methyl groups from S-adenosylmethionine to arsenite and monomethlyarsonic acid have been purified and the reactions characterized, meaningful investigations of species diversity and polymorphism of these enzymes have become possible. New World animals studied thus far appear to be deficient in or totally lacking these enzymes. Old World animals, with the exception of the chimpanzee, have ample amounts of arsenite and monomethylarsonic acid methyltransferases. A hypothesis that the lack of arsenite methyltransferases may have had an evolutionary advantage for certain species is proposed.
Collapse
Affiliation(s)
- H V Aposhian
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| |
Collapse
|