1
|
Schubert K, Braly M, Zhang J, Muscolo ME, Lam HN, Hug K, Moore H, McCausland JW, Terciano D, Lowe T, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617751. [PMID: 39416138 PMCID: PMC11482874 DOI: 10.1101/2024.10.11.617751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a critical role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Y. pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Y ersinia virulence (pYV). Several layers of gene regulation enables a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37°C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is also required for robust expression of the Shigella flexneri virulence plasmid-encoded T3SS. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining normal PCN of model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I reinforces PCN and virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - Michele E Muscolo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Todd Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
2
|
Wertman RS, Yost W, Herrmann BI, Bourne CM, Sorobetea D, Go CK, Saller BS, Groß O, Scott P, Rongvaux A, Taabazuing CY, Brodsky IE. Distinct sequential death complexes regulate pyroptosis and IL-1β release in response to Yersinia blockade of immune signaling. SCIENCE ADVANCES 2024; 10:eadl3629. [PMID: 39058785 PMCID: PMC11277400 DOI: 10.1126/sciadv.adl3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Pathogen infection of host cells triggers an inflammatory cell death termed pyroptosis via activation of inflammatory caspases. However, blockade of immune signaling kinases by the Yersinia virulence factor YopJ triggers cell death involving both apoptotic caspase-8 and pyroptotic caspase-1. While caspase-1 is normally activated within inflammasomes, Yersinia-induced caspase-1 activation is independent of known inflammasome components. We report that caspase-8 is an essential initiator, while caspase-1 is an essential amplifier of its own activation through two feed-forward loops involving caspase-1 auto-processing and caspase-1-dependent activation of gasdermin D and NLPR3. Notably, while Yersinia-induced caspase-1 activation and cell death are inflammasome-independent, IL-1β release requires NLPR3 inflammasome activation. Mechanistically, caspase-8 is rapidly activated within multiple foci throughout the cell, followed by assembly of a canonical inflammasome speck, indicating that caspase-8 and canonical inflammasome complex assemblies are kinetically and spatially distinct. Our findings reveal that functionally interconnected but distinct death complexes mediate pyroptosis and IL-1β release in response to pathogen blockade of immune signaling.
Collapse
Affiliation(s)
- Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Winslow Yost
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Beatrice I. Herrmann
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Christopher M. Bourne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Sorobetea
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Christina K. Go
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Benedikt S. Saller
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79106, Germany
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg 79106, Germany
| | - Phillip Scott
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Anthony Rongvaux
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Wertman RS, Go CK, Saller BS, Groß O, Scott P, Brodsky IE. Sequentially activated death complexes regulate pyroptosis and IL-1β release in response to Yersinia blockade of immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557714. [PMID: 37745613 PMCID: PMC10515920 DOI: 10.1101/2023.09.14.557714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The Yersinia virulence factor YopJ potently inhibits immune signaling in macrophages by blocking activation of the signaling kinases TAK1 and IKK. In response, macrophages trigger a backup pathway of host defense that mediates cell death via the apoptotic enzyme caspase-8 and pyroptotic enzyme caspase-1. While caspase-1 is normally activated within multiprotein inflammasome complexes that contain the adaptor ASC and NLRs, which act as sensors of pathogen virulence, caspase-1 activation following Yersinia blockade of TAK1/IKK surprisingly requires caspase-8 and is independent of all known inflammasome components. Here, we report that caspase-1 activation by caspase-8 requires both caspase-8 catalytic and auto-processing activity. Intriguingly, while caspase-8 serves as an essential initiator of caspase-1 activation, caspase-1 amplifies its own activation through a feed-forward loop involving auto-processing, caspase-1-dependent cleavage of the pore-forming protein GSDMD, and subsequent activation of the canonical NLRP3 inflammasome. Notably, while caspase-1 activation and cell death are independent of inflammasomes during Yersinia infection, IL-1β release requires the canonical NLPR3 inflammasome. Critically, activation of caspase-8 and activation of the canonical inflammasome are kinetically and spatially separable events, as rapid capase-8 activation occurs within multiple foci throughout the cell, followed by delayed subsequent assembly of a single canonical inflammasome. Importantly, caspase-8 auto-processing normally serves to prevent RIPK3/MLKL-mediated necroptosis, and in caspase-8's absence, MLKL triggers NLPR3 inflammasome activation and IL-1β release. Altogether, our findings reveal that functionally interconnected but temporally and spatially distinct death complexes differentially mediate pyroptosis and IL-1β release to ensure robust host defense against pathogen blockade of TAK1 and IKK.
Collapse
Affiliation(s)
- Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| | - Christina K. Go
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| | - Benedikt S. Saller
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany 79106
- Faculty of Biology, University of Freiburg, Freiburg, Germany 79106
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany 79106
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany 79106
| | - Phillip Scott
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
4
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
6
|
Williamson ED, Oyston PCF. Protecting against plague: towards a next-generation vaccine. Clin Exp Immunol 2013; 172:1-8. [PMID: 23480179 PMCID: PMC3719925 DOI: 10.1111/cei.12044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 01/22/2023] Open
Abstract
The causative organism of plague is the bacterium Yersinia pestis. Advances in understanding the complex pathogenesis of plague infection have led to the identification of the F1- and V-antigens as key components of a next-generation vaccine for plague, which have the potential to be effective against all forms of the disease. Here we review the roles of F1- and V-antigens in the context of the range of virulence mechanisms deployed by Y. pestis, in order to develop a greater understanding of the protective immune responses required to protect against plague.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Salisbury, Wilts, UK.
| | | |
Collapse
|
7
|
Williamson ED, Oyston PCF. The natural history and incidence of Yersinia pestis and prospects for vaccination. J Med Microbiol 2012; 61:911-918. [PMID: 22442294 DOI: 10.1099/jmm.0.037960-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plague is an ancient, serious, infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses the natural history of the bacterium and its evolution into a flea-vectored bacterium able to transmit bubonic plague. It reviews the incidence of plague in the modern world and charts the history of vaccines which have been used to protect against the flea-vectored disease, which erupts as bubonic plague. Current approaches to vaccine development to protect against pneumonic, as well as bubonic, plague are also reviewed. The considerable challenges in achieving a vaccine which is licensed for human use and which will comprehensively protect against this serious human pathogen are assessed.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - P C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
8
|
The role of immune correlates and surrogate markers in the development of vaccines and immunotherapies for plague. Adv Prev Med 2011; 2012:365980. [PMID: 21991451 PMCID: PMC3182760 DOI: 10.1155/2012/365980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/08/2011] [Indexed: 01/28/2023] Open
Abstract
One of the difficulties in developing countermeasures to biothreat agents is the challenge inherent in demonstrating their efficacy in man. Since the first publication of the Animal Rule by the FDA, there has been increased discussion of potential correlates of protection in animal models and their use to establish surrogate markers of efficacy in man. The latter need to be relatively easy to measure in assays that are at least qualified, if not validated, in order to derive a quantitative assessment of the clinical benefit conferred. The demonstration of safety and clinical benefit is essential to achieve regulatory approval for countermeasures for which clinical efficacy cannot be tested directly, as is the case for example, for biodefence vaccines. Plague is an ancient, serious infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses potential immune correlates of protection for plague, from which it may be possible to derive surrogate markers of efficacy, in order to predict the clinical efficacy of candidate prophylaxes and therapies.
Collapse
|
9
|
Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant. Comp Funct Genomics 2010; 2009:914762. [PMID: 20145715 PMCID: PMC2817383 DOI: 10.1155/2009/914762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 09/28/2009] [Accepted: 10/18/2009] [Indexed: 01/03/2023] Open
Abstract
We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT) Y. pestis CO92 and its Braun lipoprotein (Δlpp) mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS-) associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague.
Collapse
|
10
|
Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. MICROBIOLOGY-SGM 2008; 154:1570-1583. [PMID: 18524912 DOI: 10.1099/mic.0.2008/016840-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several secretion systems have evolved that are widespread among Gram-negative bacteria. Recently, a new secretion system was recognized, which is named the type VI secretion system (T6SS). The T6SS components are encoded within clusters of genes initially identified as IAHP for IcmF-associated homologous proteins, since they were all found to contain a gene encoding an IcmF-like component. IcmF was previously reported as a component of the type IV secretion system (T4SS). However, with the exception of DotU, other T4SS components are not encoded within T6SS loci. Thus, the T6SS is probably a novel kind of complex multi-component secretion machine, which is often involved in interaction with eukaryotic hosts, be it a pathogenic or a symbiotic relationship. The expression of T6SS genes has been reported to be mostly induced in vivo. Interestingly, expression and assembly of T6SSs are tightly controlled at both the transcriptional and the post-translational level. This may allow a timely control of T6SS assembly and function. Two types of proteins, generically named Hcp and VgrG, are secreted via these systems, but it is not entirely clear whether they are truly secreted effector proteins or are actually components of the T6SS. The precise role and mode of action of the T6SS is still unknown. This review describes current knowledge about the T6SS and summarizes its hallmarks and its differences from other secretion systems.
Collapse
Affiliation(s)
- Alain Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France.,Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Abderrahman Hachani
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France.,Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| |
Collapse
|
11
|
Raab R, Swietnicki W. Yersinia pestis YopD 150–287 fragment is partially unfolded in the native state. Protein Expr Purif 2008; 58:53-60. [DOI: 10.1016/j.pep.2007.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/30/2007] [Accepted: 11/03/2007] [Indexed: 01/25/2023]
|
12
|
Wang S, Joshi S, Mboudjeka I, Liu F, Ling T, Goguen JD, Lu S. Relative immunogenicity and protection potential of candidate Yersinia Pestis antigens against lethal mucosal plague challenge in Balb/C mice. Vaccine 2008; 26:1664-74. [PMID: 18291562 PMCID: PMC2288748 DOI: 10.1016/j.vaccine.2008.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/03/2008] [Accepted: 01/11/2008] [Indexed: 01/06/2023]
Abstract
Yersinia Pestis outer proteins, plasminogen activator protease and Yop secretion protein F are necessary for the full virulence of Yesinia pestis and have been proposed as potential protective antigens for vaccines against plague. In the current study, we used DNA immunization as a tool to study the relative protective immunity of these proteins with a standardized intranasal challenge system in mice. While the natural full-length gene sequences for most of these Y. pestis proteins did not display a good level of protein expression in vitro when delivered by a DNA vaccine vector, the overall immunogenicity of these wild type gene DNA vaccines was low in eliciting antigen-specific antibody responses and gene sequence modifications improved both of these parameters. However, even modified YopD, YopO and YscF antigens were only able to partially protect immunized mice at various levels against lethal challenge with Y. pestis KIM 1001 strain while no protection was observed with either the YopB or Pla antigens. These results demonstrate that DNA immunization is effective in screening, optimizing and comparing optimal antigen designs and immunogenicity of candidate antigens for the development of a subunit-based plague vaccine.
Collapse
Affiliation(s)
- Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2397, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sonnevend A, Czirók E, Pál T. Yersinia Yop-specific IgA antibodies in Hungarian blood donors. Folia Microbiol (Praha) 2005; 50:269-72. [PMID: 16295667 DOI: 10.1007/bf02931576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sera of 112 healthy Hungarian blood donors were tested for the presence of Yersinia enterocolitica and Y. pseudotuberculosis-specific agglutinins by tube agglutination, and for that of yersinia outer membrane protein (Yop)-specific IgA antibodies by ELISA. The positive results of this latter assay were confirmed by immunoblot. Only one sample gave a positive agglutination reaction with Y. enterocolitica antigen (group 03) and four exhibited an equivocal reaction with Y. pseudotuberculosis antigens (groups II and IV). Contrary to the low incidence of agglutinins, 15.1% of the samples showed a positive Yop-specific IgA reaction, while further 5.3% samples fell into the equivocal range by ELISA (17 and 6 specimens, respectively). Eleven of these samples (9.8% of all specimens tested) were also positive by immunoblot for the presence of Yop-specific IgA antibodies. These data suggest a higher incidence of yersinia infections than the 1.0-1.4 per 10(5) population predicted on the basis of stool culture results.
Collapse
Affiliation(s)
- A Sonnevend
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Hungary
| | | | | |
Collapse
|
14
|
Hu X, Vujanac M, Stebbins CE. Computational analysis of tyrosine phosphatase inhibitor selectivity for the virulence factors YopH and SptP. J Mol Graph Model 2004; 23:175-87. [PMID: 15363459 DOI: 10.1016/j.jmgm.2004.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/20/2004] [Accepted: 05/26/2004] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens such as Yersinia and Salmonella represent an important medical concern, causing human diseases ranging from gastrointestinal disease to the plague. The development of novel treatments of these bacterial infections has gained high priority recently due to the emergence of antibiotic resistance in these pathogens and the threat of the use of microbial agents as biological weapons. YopH of Yersinia and SptP of Salmonella are virulence factors that belong to the family of protein tyrosine phosphatases (PTPs). A great challenge remains in the design of selective PTPs inhibitors due to their highly conserved active site. In this paper, we present a comparative docking study to probe the selective inhibition of YopH and SptP with PTP1B in order to better understand their binding interactions with the bacterial tyrosine phosphates. Characterized binding sites in PTP1B were compared with YopH and SptP. Molecular dynamics simulations were used to incorporate ligand-induced conformational changes in the binding sites. These results, together with those binding modes and binding affinities distinguished in individual PTPs, provide insight into the structure-based design of inhibitors for YopH and SptP.
Collapse
Affiliation(s)
- Xin Hu
- Laboratory of Structural Microbiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
15
|
Liang F, Huang Z, Lee SY, Liang J, Ivanov MI, Alonso A, Bliska JB, Lawrence DS, Mustelin T, Zhang ZY. Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. J Biol Chem 2003; 278:41734-41. [PMID: 12888560 DOI: 10.1074/jbc.m307152200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia are causative agents in human diseases ranging from gastrointestinal syndromes to Bubonic Plague. There is increasing risk of misuse of infectious agents, such as Yersinia pestis, as weapons of terror as well as instruments of warfare for mass destruction. YopH is an essential virulence factor whose protein-tyrosine phosphatase (PTP) activity is required for Yersinia pathogenicity. Consequently, there is considerable interest in developing potent and selective YopH inhibitors as novel anti-plague agents. We have screened a library of 720 structurally diverse commercially available carboxylic acids and identified 26 YopH inhibitors with IC50 values below 100 mum. The most potent and specific YopH inhibitor is aurintricarboxylic acid (ATA), which exhibits a Ki value of 5 nm for YopH and displays 6-120-fold selectivity in favor of YopH against a panel of mammalian PTPs. To determine whether ATA can block the activity of YopH in a cellular context, we have examined the effect of ATA on T-cell signaling in human Jurkat cells transfected with YopH. We show that YopH severely decreases the T-cell receptor-induced cellular tyrosine phosphorylation, ERK1/2 activity, and interleukin-2 transcriptional activity. We demonstrate that ATA can effectively block the inhibitory activity of YopH and restore normal T-cell function. These results provide a proof-of-concept for the hypothesis that small molecule inhibitors that selectively target YopH may be therapeutically useful. In addition, it is expected that potent and selective YopH inhibitors, such as ATA, should be useful reagents to delineate YopH's cellular targets in plague and other pathogenic conditions caused by Yersinia infection.
Collapse
Affiliation(s)
- Fubo Liang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Endothelial permeability depends on the integrity of intercellular junctions as well as actomyosin-based cell contractility. Rho GTPases have been implicated in signalling by many vasoactive substances including thrombin, tumour necrosis factor alpha (TNF-alpha), bradykinin, histamine, lysophosphatidic acid (LPA), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF). Two Rho family GTPases, Rho and Rac, have emerged as key regulators acting antagonistically to regulate endothelial barrier function: Rho increases actomyosin contractility, which facilitates breakdown of intercellular junctions, whereas Rac stabilizes endothelial junctions and counteracts the effects of Rho. In this review, we present evidence for the opposing effects of these two regulatory proteins and discuss links between them and other key signalling molecules such as cyclic AMP (cAMP), cyclic GMP (cGMP), phosphatidylinositide 3-kinases (PI3Ks), mitogen-activated protein kinases (MAPKs), and protein kinases C (PKCs). We also discuss strategies for targeting Rho GTPase signalling in therapies for diseases involving altered endothelial permeability.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine Branch, 91 Riding House Street, London W1W 7BS, UK.
| | | |
Collapse
|
17
|
Abstract
Animals have an immune system to fight off challenges from both viruses and bacteria. The first line of defence is innate immunity, which is composed of cells that engulf pathogens as well as cells that release potent signalling molecules to activate an inflammatory response and the adaptive immune system. Pathogenic bacteria have evolved a set of weapons, or effectors, to ensure survival in the host. Yersinia spp. use a type III secretion system to translocate these effector proteins, called Yops, into the host. This report outlines how Yops thwart the signalling machinery of the host immune system.
Collapse
Affiliation(s)
- Stephen J Juris
- University of Michigan, 1301 East Catherine, 4433 Medical Science I, Ann Arbor, MI 48109-0606, USA
| | | | | |
Collapse
|
18
|
Pederson KJ, Pal S, Vallis AJ, Frank DW, Barbieri JT. Intracellular localization and processing of Pseudomonas aeruginosa ExoS in eukaryotic cells. Mol Microbiol 2000; 37:287-99. [PMID: 10931325 DOI: 10.1046/j.1365-2958.2000.01990.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ExoS is a type III cytotoxin of Pseudomonas aeruginosa, which modulates two eukaryotic signalling pathways. The N-terminus (residues 1-234) is a GTPase activating protein (GAP) for RhoGTPases, while the C-terminus (residues 232-453) encodes an ADP-ribosyltransferase. Utilizing a series of N-terminal deletion peptides of ExoS and an epitope-tagged full-length ExoS, two independent domains have been identified within the N-terminus of ExoS that are involved in intracellular localization and expression of GAP activity. N-terminal peptides of ExoS localized to the perinuclear region of CHO cells, and a membrane localization domain was localized between residues 36 and 78 of ExoS. The capacity to elicit CHO cell rounding and express GAP activity resided within residues 90-234 of ExoS, which showed that membrane localization was not required to elicit actin reorganization. ExoS was present in CHO cells as a full-length form, which fractionated with membranes, and as an N-terminally processed fragment, which localized to the cytosol. Thus, ExoS localizes in eukaryotic cells to the perinuclear region and is processed to a soluble fragment, which possesses both the GAP and ADP-ribosyltransferase activities.
Collapse
Affiliation(s)
- K J Pederson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
19
|
Sebo P. A meeting of good friends: when the cell biology of prokaryotes and eukaryotes meet. Folia Microbiol (Praha) 1998; 43:235-8. [PMID: 9717249 DOI: 10.1007/bf02818607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Sebo
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|