1
|
Yau AWN, Chu SYC, Yap WH, Wong CL, Chia AYY, Tang YQ. Phage display screening in breast cancer: From peptide discovery to clinical applications. Life Sci 2024; 357:123077. [PMID: 39332485 DOI: 10.1016/j.lfs.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ashlyn Wen Ning Yau
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Sylvester Yee Chun Chu
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Chuan Loo Wong
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Koskela SA, Figueiredo CR. From antimicrobial to anticancer: the pioneering works of Prof. Luiz Rodolpho Travassos on bioactive peptides. Braz J Microbiol 2023; 54:2561-2570. [PMID: 37725261 PMCID: PMC10689714 DOI: 10.1007/s42770-023-01118-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Prof. Luiz Rodolpho Travassos, a distinguished Brazilian scientist, was instrumental in fostering an interdisciplinary research approach that seamlessly combined microbiology and oncology. This work has opened new pathways into the understanding of tumorigenesis and aided in the development of innovative therapeutic tools. One significant area of his work has been the exploration of bioactive peptides, many of which were first identified for their antimicrobial properties. These peptides demonstrate promise as potential cancer therapeutics due to their selectivity, cost-effectiveness, ease of synthesis, low antigenicity, and excellent tissue penetration. Prof. Travassos' pioneering work uncovered on the potential of peptides derived from microbiological sources, such as those obtained using phage display techniques. More importantly, in international cooperation, peptides derived from complementarity-determining regions (CDRs) that showed antimicrobial activity against Candida albicans further showed to be promising tools with cytotoxic properties against cancer cells. Similarly, peptides derived from natural sources, such as the gomesin peptide, not only had shown antimicrobial properties but could treat cutaneous melanoma in experimental models. These therapeutic tools allowed Prof. Travassos and his group to navigate the intricate landscape of factors and pathways that drive cancer development, including persistent proliferative signaling, evasion of tumor suppressor genes, inhibition of programmed cell death, and cellular immortality. This review examines the mechanisms of action of these peptides, aligning them with the universally recognized hallmarks of cancer, and evaluates their potential as drug candidates. It highlights the crucial need for more selective, microbiology-inspired anti-cancer strategies that spare healthy cells, a challenge that current therapies often struggle to address. By offering a comprehensive assessment of Prof. Travassos' innovative contributions and a detailed discussion on the increasing importance of microbiology-derived peptides, this review presents an informed and robust perspective on the possible future direction of cancer therapy.
Collapse
Affiliation(s)
- Saara A Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Shave S, Mann S, Koszela J, Kerr A, Auer M. PuLSE: Quality control and quantification of peptide sequences explored by phage display libraries. PLoS One 2018; 13:e0193332. [PMID: 29474422 PMCID: PMC5825087 DOI: 10.1371/journal.pone.0193332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
The design of highly diverse phage display libraries is based on assumption that DNA bases are incorporated at similar rates within the randomized sequence. As library complexity increases and expected copy numbers of unique sequences decrease, the exploration of library space becomes sparser and the presence of truly random sequences becomes critical. We present the program PuLSE (Phage Library Sequence Evaluation) as a tool for assessing randomness and therefore diversity of phage display libraries. PuLSE runs on a collection of sequence reads in the fastq file format and generates tables profiling the library in terms of unique DNA sequence counts and positions, translated peptide sequences, and normalized 'expected' occurrences from base to residue codon frequencies. The output allows at-a-glance quantitative quality control of a phage library in terms of sequence coverage both at the DNA base and translated protein residue level, which has been missing from toolsets and literature. The open source program PuLSE is available in two formats, a C++ source code package for compilation and integration into existing bioinformatics pipelines and precompiled binaries for ease of use.
Collapse
Affiliation(s)
- Steven Shave
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, United Kingdom
| | - Stefan Mann
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, United Kingdom
| | - Joanna Koszela
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, United Kingdom
| | - Alastair Kerr
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, United Kingdom
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
4
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
5
|
Pasello M, Zamboni S, Mallano A, Flego M, Picci P, Cianfriglia M, Scotlandi K. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1. J Biotechnol 2016; 224:1-11. [PMID: 26945728 DOI: 10.1016/j.jbiotec.2016.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy; PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
| | - Silvia Zamboni
- PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy; Section of Pharmacogenetics, Drug Resistance and Experimental Therapeutics, Department of Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessandra Mallano
- Section of Pharmacogenetics, Drug Resistance and Experimental Therapeutics, Department of Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michela Flego
- Section of Pharmacogenetics, Drug Resistance and Experimental Therapeutics, Department of Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Piero Picci
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy; PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - Maurizio Cianfriglia
- Section of Pharmacogenetics, Drug Resistance and Experimental Therapeutics, Department of Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy; PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
| |
Collapse
|
6
|
Finlay WJJ, Almagro JC. Natural and man-made V-gene repertoires for antibody discovery. Front Immunol 2012; 3:342. [PMID: 23162556 PMCID: PMC3498902 DOI: 10.3389/fimmu.2012.00342] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/27/2012] [Indexed: 01/15/2023] Open
Abstract
Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process.
Collapse
|
7
|
Abstract
Aptamers that target a specific cell subpopulation within composite mixtures represent invaluable tools in biomedical research and in the development of cell-specific therapeutics. Here we describe a detailed protocol for a modular and generally applicable scheme to select aptamers that target the subpopulations of cells in which you are interested. A fluorescence-activated cell-sorting device is used to simultaneously differentiate and separate those subpopulations of cells having bound and unbound aptamers. There are fewer false positives when using this approach in comparison with other cell-selection approaches in which unspecific binding of nucleic acids to cells with reduced membrane integrity or their unselective uptake by dead cells occurs more often. The protocol provides a state-of-the-art approach for identifying aptamers that selectively target virtually any cell type under investigation. As an example, we provide the step-by-step protocol targeting CD19(+) Burkitt's lymphoma cells, starting from the pre-SELEX (systematic evolution of ligands by exponential amplification) measurements to establish suitable SELEX conditions and ending at completion of the SELEX procedure, which reveals the enriched single-stranded DNA library.
Collapse
|
8
|
Moser AC, Hage DS. Capillary electrophoresis-based immunoassays: principles and quantitative applications. Electrophoresis 2008; 29:3279-95. [PMID: 18646279 DOI: 10.1002/elps.200700871] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of CE as a tool to conduct immunoassays has been an area of increasing interest over the last decade. This approach combines the efficiency, small sample requirements, and relatively high speed of CE with the selectivity of antibodies as binding agents. This review examines the various assay formats and detection modes that have been reported for these assays, along with some representative applications. Most CE immunoassays in the past have employed homogeneous methods in which the sample and reagents are allowed to react in solution. These homogeneous methods have been conducted as both competitive binding immunoassays and as noncompetitive binding immunoassays. Fluorescent labels are most commonly used for detection in these assays, but enzyme labels have also been utilized for such work. Some additional work has been performed in CE immunoassays with heterogeneous methods in which either antibodies or an analog of the analyte is immobilized to a solid support. These heterogeneous methods can be used for the selective isolation of analytes prior to their separation by CE or to remove a given species from a sample/reagent mixture prior to analysis by CE. These CE immunoassays can be used with a variety of detection modes, such as fluorescence, UV/Vis absorbance, chemiluminescence, electrochemical measurements, MS, and surface plasmon resonance.
Collapse
Affiliation(s)
- Annette C Moser
- Chemistry Department, University of Nebraska, Kearney, NE, USA
| | | |
Collapse
|
9
|
Chiarabelli C, Vrijbloed JW, Thomas RM, Luisi PL. Investigation of de novo totally random biosequences, Part I: A general method for in vitro selection of folded domains from a random polypeptide library displayed on phage. Chem Biodivers 2007; 3:827-39. [PMID: 17193316 DOI: 10.1002/cbdv.200690087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper reports the initial phase of a research aimed at investigating the folding frequency within a large library of polypeptides generated with a totally random sequence by phage-display technique. Resistance to proteolytic digestion has been used as a first, rudimentary folding criterion. The present paper describes, in particular, the development of a phage-display vector which has a selectable N-terminal affinity tag so that, after controlled proteolysis, the tag is cleaved from the phage. This enables the positive selection of phages that carry proteolytically resistant proteins. To test this system, avian pancreatic polypeptide (APP), one of the smallest proteins with a known structure, was chosen as a model, and its gene was inserted in a plasmid that was then used for phage display. A sequence of three amino acids, corresponding to a substrate for thrombin, was introduced at different locations within the APP sequence without significantly modifying the tertiary structure, as determined by circular dichroism (CD) analysis. These sequences were then used to show that the target tripeptide sequence was protected against proteolysis by the overall folding of the chain. Thus, these results show that the method permits the discrimination between folded and unfolded protein domains displayed on phage. The application of this protocol to a large library of totally random polypeptide chains is discussed as a preliminary to successive work, dealing with the production of totally random polypeptide sequences.
Collapse
|
10
|
Torrance L, Ziegler A, Pittman H, Paterson M, Toth R, Eggleston I. Oriented immobilisation of engineered single-chain antibodies to develop biosensors for virus detection. J Virol Methods 2006; 134:164-70. [PMID: 16427706 DOI: 10.1016/j.jviromet.2005.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 11/20/2022]
Abstract
Single chain variable fragment (scFv) molecules were selected from a synthetic phage display library then cloned into a generic vector for expression of the scFv fused to the light chain constant domain of human immunoglobulin with a C-terminal cysteine residue (scFvC(L)cys). A heterobifunctional maleimide linker was synthesised and a strategy for functionalization of gold with the scFvC(L)cys fusion proteins elaborated. Successful covalent attachment of functional scFvC(L)cys was demonstrated using a surface plasmon resonance-based sensor. The results showed that the immobilised scFvC(L)cys molecules were functional and specific binding curves (with response relative to the concentration of virus antigen) were obtained over more than 25 cycles of binding and dissociation. ScFv molecules lacking the C-terminal cysteine performed poorly in similar experiments. The work demonstrates the feasibility of using simple scFv selection and cloning procedures combined with oriented immobilisation of scFvC(L)cys fusion proteins for robust antigen sensing surfaces in immunosensor or other biotechnological applications.
Collapse
Affiliation(s)
- L Torrance
- Plant-pathogen interactions programme, Scottish Crop Research Institute, Invergowrie Dundee DD2 5DA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Phage display is a molecular diversity technology that allows the presentation of large peptide and protein libraries on the surface of filamentous phage. Phage display libraries permit the selection of peptides and proteins, including antibodies, with high affinity and specificity for almost any target. A crucial advantage of this technology is the direct link that exists between the experimental phenotype and its encapsulated genotype, which allows the evolution of the selected binders into optimized molecules. Phage display facilitates engineering of antibodies with regard to their size, valency, affinity, and effector functions. The selection of antibodies and peptides from libraries displayed on the surface of filamentous phage has proven significant for routine isolation of peptides and antibodies for diagnostic and therapeutic applications. This review serves as an introduction to phage display, antibody engineering, the development of phage-displayed peptides and antibody fragments into viable diagnostic reagents, and recent trends in display technology.
Collapse
Affiliation(s)
- Hassan M E Azzazy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, 21201, USA.
| | | |
Collapse
|
12
|
Abstract
Since the discovery of liposomes or lipid vesicles derived from self-forming enclosed lipid bilayers upon hydration, liposome drug delivery systems have played a significant role in formulation of potent drugs to improve therapeutics. Currently, most of these liposome formulations are designed to reduce toxicity and to some extent increase accumulation at the target site(s) in a number of clinical applications. The current pharmaceutical preparations of liposome-based therapeutics stem from our understanding of lipid-drug interactions and liposome disposition mechanisms including the inhibition of rapid clearance of liposomes by controlling size, charge, and surface hydration. The insight gained from clinical use of liposome drug delivery systems can now be integrated to design liposomes targeted to tissues and cells with or without expression of target recognition molecules on liposome membranes. Enhanced safety and heightened efficacy have been achieved for a wide range of drug classes, including antitumor agents, antivirals, antifungals, antimicrobials, vaccines, and gene therapeutics. Additional refinements of biomembrane sensors and liposome delivery systems that are effective in the presence of other membrane-bound proteins in vivo may permit selective delivery of therapeutic compounds to selected intracellular target areas.
Collapse
Affiliation(s)
- T Lian
- Department of Pharmaceutics, University of Washington, Box 357610 H272, Health Sciences Building, Seattle, Washington 98195, USA
| | | |
Collapse
|
13
|
Hafner FT, Kautz RA, Iverson BL, Tim RC, Karger BL. Noncompetitive immunoassay of small analytes at the femtomolar level by affinity probe capillary electrophoresis: direct analysis of digoxin using a uniform-labeled scFv immunoreagent. Anal Chem 2000; 72:5779-86. [PMID: 11128936 DOI: 10.1021/ac000853+] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general method for noncompetitive immunoassay of small analytes using affinity probe capillary electrophoresis (APCE) is demonstrated using digoxin as a model analyte. A uniform immunoreagent was prepared from a single-chain antibody (scFv) gene specific for digoxin. Site-directed mutagenesis introduced a unique cysteine residue for uniform labeling with a thiol-reactive fluorochrome. After expression in E. coli, the scFv was purified by immobilized metal affinity chromatography (IMAC) using an added C-terminal 6-histidine sequence. The protein was renatured and labeled while immobilized on the IMAC resin. After 0.02-microm filtration to remove microaggregates, the resulting reagent was highly uniform and stable at -12 degrees C for at least 1 year. Three formats of APCE using the scFv reagent were explored. A "mix-and-inject" assay optimized for low detection limits demonstrated analysis of 10 pM digoxin in aqueous standard solutions in 10 min. A rapid mix-and-inject format in a short capillary allowed detection of 1 nM digoxin in 1 min. Digoxin samples in serum and urine were injected directly after 10-fold dilution. In combination with solid-phase extraction, 400 fM digoxin was detected in 1 mL of serum. Including solid-phase extraction, reproducibility was within 2.5%, and the linear range was 3 orders of magnitude. The strategy adopted in this paper should be of general use in the low-level analysis of small analytes.
Collapse
Affiliation(s)
- F T Hafner
- Barnett Institute and Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Neri D, Natali PG, Petrul H, Soldani P, Nicotra MR, Vola R, Rivella A, Creighton AM, Neri P, Mariani M. Recombinant anti-human melanoma antibodies are versatile molecules. J Invest Dermatol 1996; 107:164-70. [PMID: 8757757 DOI: 10.1111/1523-1747.ep12329566] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The low cost, high versatility, and reliable production of bacterially produced recombinant antibody fragments speeds up the development of tumor-targeting agents. High-quality recombinant anti-melanoma antibodies are much sought after in the scientific community. We cloned the murine antibody 225.28S, currently used in radioimmunoimaging of human melanoma lesions, in single-chain Fv configuration (scFv) for soluble expression in bacteria. The recombinant antibody fragment conserved the binding specificity of the parental antibody. In order to arm the scFv(225.28S) with biologically useful effector functions, we developed vectors for soluble expression of scFv(225.28S) in bacteria that allow both covalent and noncovalent chemical antibody modification at positions that do not interfere with antigen binding. An expression vector was developed that appends a cysteine residue at the C-terminal extremity of the recombinant antibody, thus allowing reaction with thiol-specific reagents, including 99mTc labeling, at a position that does not interfere with antigen binding. The scFv(225.28S) was also successfully expressed with a casein kinase II substrate tag that enables efficient and stable 32P labeling. For noncovalent antibody modification, we developed an expression vector that appends the human calmodulin gene at the C-terminal extremity of scFv(225.28S). The calmodulin domain is poorly immunogenic and can be targeted with chemically modified high-affinity calmodulin ligands. The recombinant anti-human melanoma antibodies described in this article should prove useful "building blocks" for the development of anti-melanoma diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- D Neri
- Cambridge Center for Protein Engineering, Medical Research Council Center, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liberatore M, Neri D, Neri G, Pini A, Iurilli AP, Ponzo F, Spampinato G, Padula F, Pala A, Colella AC. Efficient one-step direct labelling of recombinant antibodies with technetium-99m. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1995; 22:1326-9. [PMID: 8575486 DOI: 10.1007/bf00801622] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
High-affinity bacterially expressed antibody fragments can nowadays be cloned from established hybridomas or, more conveniently, isolated directly from antibody libraries displayed on filamentous phage. Such antibodies can be tagged with C-terminal peptide tags containing one cysteine residue, which represents a convenient functionalisation site for a number of applications, including technetium-99m labelling. Here we describe a simple one-step method for 99mTc labelling of cysteine-tagged recombinant antibodies with more than 50% radionuclide incorporation. The labelled antibodies displayed full retention of immuoreactivity and good stability.
Collapse
Affiliation(s)
- M Liberatore
- Dipartimento di Medicina Sperimentale, Sezione di Medicina Nucleare, Policlinico Umberto I, Universita' di Roma "La Sapienza", Via Regina Elena 324, I-00161, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|