1
|
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B, Tillement O. Iron as an emerging therapeutic target in critically ill patients. Crit Care 2023; 27:475. [PMID: 38049866 PMCID: PMC10694984 DOI: 10.1186/s13054-023-04759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | | | - Laurent David
- Institut National des Sciences Appliquées, CNRS UMR 5223, Ingénierie des Matériaux Polymères, Univ Claude Bernard Lyon 1, Université Jean Monnet, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Aymeric Couturier
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Nephrology, American Hospital of Paris, Paris, France
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bernard Allaouchiche
- University of Lyon, University Lyon I Claude Bernard, APCSe VetAgro Sup UP, 2021. A10, Marcy L'Étoile, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| |
Collapse
|
2
|
Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5124553. [PMID: 36120592 PMCID: PMC9473912 DOI: 10.1155/2022/5124553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress. As the center for oxygen and iron utilization, mitochondria are vulnerable to damage from iron-induced oxidative stress and participate in processes involved in iron-related damage in cardiovascular disease, although the mechanism remains unclear. In this review, the pathological roles of iron-related oxidative stress in cardiovascular diseases are summarized, and the potential effects and mechanisms of mitochondrial iron homeostasis and dysfunction in these diseases are especially highlighted.
Collapse
|
3
|
Li S, Zhang X. Iron in Cardiovascular Disease: Challenges and Potentials. Front Cardiovasc Med 2021; 8:707138. [PMID: 34917655 PMCID: PMC8669346 DOI: 10.3389/fcvm.2021.707138] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Iron is essential for many biological processes. Inadequate or excess amount of body iron can result in various pathological consequences. The pathological roles of iron in cardiovascular disease (CVD) have been intensively studied for decades. Convincing data demonstrated a detrimental effect of iron deficiency in patients with heart failure and pulmonary arterial hypertension, but it remains unclear for the pathological roles of iron in other cardiovascular diseases. Meanwhile, ferroptosis is an iron-dependent cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in several CVDs, namely, cardiomyopathy, atherosclerotic cardiovascular disease, and myocardial ischemia/reperfusion injury. Iron chelation therapy seems to be an available strategy to ameliorate iron overload-related disorders. It is still a challenge to accurately clarify the pathological roles of iron in CVD and search for effective medical intervention. In this review, we aim to summarize the pathological roles of iron in CVD, and especially highlight the potential mechanism of ferroptosis in these diseases.
Collapse
Affiliation(s)
- Shizhen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Abstract
The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer.
Collapse
Affiliation(s)
| | - Joseph J Cullen
- 1528 JCP, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SVN, Ardehali H. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 2016; 8:247-67. [PMID: 26896449 PMCID: PMC4772952 DOI: 10.15252/emmm.201505748] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023] Open
Abstract
Excess cellular iron increases reactive oxygen species (ROS) production and causes cellular damage. Mitochondria are the major site of iron metabolism and ROS production; however, few studies have investigated the role of mitochondrial iron in the development of cardiac disorders, such as ischemic heart disease or cardiomyopathy (CM). We observe increased mitochondrial iron in mice after ischemia/reperfusion (I/R) and in human hearts with ischemic CM, and hypothesize that decreasing mitochondrial iron protects against I/R damage and the development of CM. Reducing mitochondrial iron genetically through cardiac-specific overexpression of a mitochondrial iron export protein or pharmacologically using a mitochondria-permeable iron chelator protects mice against I/R injury. Furthermore, decreasing mitochondrial iron protects the murine hearts in a model of spontaneous CM with mitochondrial iron accumulation. Reduced mitochondrial ROS that is independent of alterations in the electron transport chain's ROS producing capacity contributes to the protective effects. Overall, our findings suggest that mitochondrial iron contributes to cardiac ischemic damage, and may be a novel therapeutic target against ischemic heart disease.
Collapse
Affiliation(s)
- Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunlei Chen
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anita Thakur
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Konrad T Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sathyamangla V N Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:443-57. [PMID: 22728050 PMCID: PMC3608474 DOI: 10.1016/j.bbcan.2012.06.003] [Citation(s) in RCA: 486] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022]
Abstract
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Joseph J. Cullen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
| |
Collapse
|
7
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
8
|
Mladěnka P, Hrdina R, Bobrovová Z, Semecký V, Vávrová J, Holečková M, Palicka V, Mazurová Y, Nachtigal P. Cardiac biomarkers in a model of acute catecholamine cardiotoxicity. Hum Exp Toxicol 2009; 28:631-40. [DOI: 10.1177/0960327109350665] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coronary heart disease and in particular its most serious form — acute myocardial infarction (AMI) — represents the most common cause of mortality in developed countries. Better prognosis may be achieved by understanding the etiopathogenetic mechanisms of AMI. Therefore, a catecholamine model of myocardial injury, which has appeared to be very similar to AMI in human in some aspect, was used. Male Wistar:Han rats were randomly divided into two groups: control group (saline) and isoprenaline group (ISO; synthetic catecholamine, 100 mg.kg— 1 subcutaneously [s.c.]). After 24 hours, functional parameters were measured, biochemical markers in the blood and metals content in the heart tissue were analysed and histological examination was performed. ISO caused marked myocardial injury that was associated with myocardial calcium overload. Close correlation between myocardial impairment (i.e. serum TnT, stroke volume index and wet ventricles weight) and the levels of myocardial calcium was observed. Direct reactive oxygen species (ROS) involvement was documented only by non-significant increase in malonyldialdehyde 24 hours after ISO injury. Moreover, myocardial element analysis revealed no significant changes as for the content of zinc and iron while selenium and copper increased in the ISO group although it reached statistical significance only for the latter.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic,
| | - Radomír Hrdina
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Zuzana Bobrovová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Semecký
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Magdaléna Holečková
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Yvona Mazurová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
9
|
Andreadou I, Iliodromitis EK, Farmakis D, Kremastinos DT. To prevent, protect and save the ischemic heart: antioxidants revisited. Expert Opin Ther Targets 2009; 13:945-56. [DOI: 10.1517/14728220903039698] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Mladenka P, Semecký V, Bobrovová Z, Nachtigal P, Vávrová J, Holecková M, Palicka V, Mazurová Y, Hrdina R. The effects of lactoferrin in a rat model of catecholamine cardiotoxicity. Biometals 2008; 22:353-61. [PMID: 18982411 DOI: 10.1007/s10534-008-9172-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 10/13/2008] [Indexed: 12/17/2022]
Abstract
Lactoferrin is recently under intense investigation because of its proposed several pharmacologically positive effects. Based on its iron-binding properties and its physiological presence in the human body, it may have a significant impact on pathological conditions associated with iron-catalysed reactive oxygen species (ROS). Its effect on a catecholamine model of myocardial injury, which shares several pathophysiological features with acute myocardial infarction (AMI) in humans, was examined. Male Wistar rats were randomly divided into four groups according to the received medication: control (saline), isoprenaline (ISO, 100 mg kg(-1) s.c.), bovine lactoferrin (La, 50 mg kg(-1) i.v.) or a combination of La + ISO in the above-mentioned doses. After 24 h, haemodynamic functional parameters were measured, a sample of blood was withdrawn and the heart was removed for analysis of various parameters. Lactoferrin premedication reduced some impairment caused by ISO (e.g. a stroke volume decrease, an increase in peripheral resistance and calcium overload). These positive effects were likely to have been mediated by the positive inotropic effect of lactoferrin and by inhibition of ROS formation due to chelation of free iron. The failure of lactoferrin to provide higher protection seems to be associated with the complexity of catecholamine cardiotoxicity and with its hydrophilic character.
Collapse
Affiliation(s)
- Premysl Mladenka
- Faculty of Pharmacy in Hradec Králové, Department of Pharmacology and Toxicology, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kramer JH, Murthi SB, Wise RM, Mak IT, Weglicki WB. Antioxidant and lysosomotropic properties of acute D-propranolol underlies its cardioprotection of postischemic hearts from moderate iron-overloaded rats. Exp Biol Med (Maywood) 2006; 231:473-84. [PMID: 16565443 DOI: 10.1177/153537020623100413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The benefits of acute D-propranolol (D-Pro, non-beta-adrenergic receptor blocker) pretreatment against enhanced ischemia/reperfusion (I/R) injury of hearts from moderate iron-overloaded rats were examined. Perfused hearts from iron-dextran-treated rats (450 mg/kg/week for 3 weeks, intraperitoneal administration) exhibited normal control function, despite iron treatment that elevated plasma iron and conjugated diene levels by 8.1-and 2.5-fold, respectively. However, these hearts were more susceptible to 25 mins of global I/R stress compared with non-loaded hearts; the coronary flow rate, aortic output, cardiac work, left ventricular systolic pressure, positive differential left ventricular pressure (dP/dt), and left ventricular developed pressure displayed 38%, 60%, 55%, 13%, 41%, and 15% lower recoveries, respectively, and a 6.5-fold increase in left ventricular end-diastolic pressure. Postischemic hearts from iron-loaded rats also exhibited 5.6-, 3.48-, 2.43-, and 3.45-fold increases in total effluent iron content, conjugated diene levels, lactate dehydrogenase (LDH) activity, and lysosomal N-acetyl-beta-glucosaminidase (NAGA) activity, respectively, compared with similarly stressed non-loaded hearts. A comparison of detection time profiles during reperfusion suggests that most of the oxidative injury (conjugated diene) in hearts from iron-loaded rats occurred at later times of reperfusion (8.5-15 mins), and this corresponded with heightened tissue iron and NAGA release. D-Pro (2 microM infused for 30 mins) pretreatment before ischemia protected all parameters compared with the untreated iron-loaded group; pressure indices improved 1.2- to 1.6-fold, flow parameters improved 1.70- to 2.96-fold, cardiac work improved 2.87-fold, and end-diastolic pressure was reduced 56%. D-Pro lowered total release of tissue iron, conjugated diene content, LDH activity, and NAGA activity 4.59-, 2.55-, 3.04-, and 4.14-fold, respectively, in the effluent of I/R hearts from the iron-loaded group. These findings suggest that the enhanced postischemic dysfunction and tissue injury of hearts from iron-loaded rats was caused by excessive iron-catalyzed free radical stress, and that the membrane antioxidant properties of D-Pro and its stabilization of sequestered lysosomal iron by D-Pro may contribute to the cardioprotective actions of D-Pro.
Collapse
Affiliation(s)
- Jay H Kramer
- Department of Biochemistry, Division of Experimental Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
12
|
Murthi SB, Wise RM, Weglicki WB, Komarov AM, Kramer JH. Mg-gluconate provides superior protection against postischemic dysfunction and oxidative injury compared to Mg-sulfate. Mol Cell Biochem 2003; 245:141-8. [PMID: 12708753 DOI: 10.1023/a:1022840704157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardioprotection by Mg Sulfate (MgSO4) during ischemia/reperfusion (I/R) is attributed largely to the Mg2+ cation. However, Mg-gluconate (MgGl2) may provide added benefit, possibly through its anion's antioxidant properties. Protective effects of both Mg-salts and their anions during 30 min global I and 50 min R were assessed in Langendorff-perfused (Krebs-Henseleit buffer) rat hearts. Recovery of function was compared between untreated hearts and those receiving supplement (2.4 mM MgGl2, MgSO4, or Na2SO4, or 4.8 mM NaGI) for 5 min prior to I and during the initial 30 min R. The final 20 min R was conducted without supplement. End diastolic pressure (EDP, mmHg) of the 50 min reperfused MgGl2 group (2.6) was lower than MgSO4 (16.2) and untreated (35.6) groups, and the NaGI group (25.2) was considerably lower than Na2SO4 (38.8). Recovery of developed pressure (% preischemic DP) at the onset of R for MgGl2 (74.9) was greater than MgSO4 (37.9) and untreated (33.2). After 50 min, MgGl2 (77.9) and MgSO4 (66.9) provided protection compared to untreated (51.8). In separate studies, ESR spin trapping with alpha-phenyl-N-tert-butylnitrone (3 mM PBN) showed that I/R alkoxyl radical production was reduced with MgGl2 (0.0 vs. 2.4 vs. 3.6 mM: 184 vs. 97 vs. 54.8 nM/g tissue x min) to a greater extent than seen with MgSO4 (3.6 mM: 108). Additional studies suggest that Gl(1-), unlike SO4(2-), may scavenge hydroxyl radicals, accounting for the added protection. MgGl2 treated hearts exhibited less postischemic dysfunction and oxidative injury compared to MgSO4, suggesting the contribution of Gl(1-) to cardioprotection.
Collapse
Affiliation(s)
- Sarah B Murthi
- Department of Surgery, Division of Cardiothoracic Surgery, The George Washington University Medical Center, Washington, D.C. 20037, USA
| | | | | | | | | |
Collapse
|
13
|
Coudray C, Boucher F, Pucheu S, De Leiris J, Favier A. Relationship between severity of ischemia and oxidant scavenger enzyme activities in the isolated rat heart. Int J Biochem Cell Biol 1995; 27:61-9. [PMID: 7757883 DOI: 10.1016/1357-2725(94)00055-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is currently believed that reperfusion injury of the ischemic or hypoxic myocardium can be attributed, at least in part, to an overproduction of reactive oxygen species (ROS). The aim of the present study was to determine whether ischemia (of different severity or duration) followed by reperfusion can affect the activity of endogenous scavenger enzymes in isolated perfused rat hearts. Isolated Langendorff perfused rat hearts were subjected to either total (10, 20 or 30 min; zero-flow) or partial (30, 60 or 90 min; low-flow of 0.10 or 0.35 ml/min) ischemia, followed by 10 min of reperfusion. Enzymatic activities of total superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were determined in cardiac tissues at the end of the perfusion protocol. Basal scavenger enzyme activities measured in control hearts (perfused under normoxic conditions) were 33.90 +/- 4.88, 31.20 +/- 5.32 and 1.61 +/- 0.29 IU/mg protein (mean +/- SD, n = 6 per group) for SOD, catalase and GPx respectively. Our results indicate that neither total SOD, GPx, nor catalase myocardial activities were changed whatever the perfusion protocol followed. The present study shows that the endogenous pool of catalytic ROS scavengers is not dramatically altered during ischemia or upon reperfusion. This suggests that ROS scavengers are not directly involved in the development of ischemia/reperfusion injuries. These results also support the premise that excessive radical generation does not occur in this model, where the isolated heart is subjected to ischemia.
Collapse
Affiliation(s)
- C Coudray
- Laboratoire de Biochimie C, Centre Hospitalier Régional de Grenoble, France
| | | | | | | | | |
Collapse
|