1
|
Swe ZM, Chumphon T, Panya M, Pangjit K, Promsai S. Evaluation of Nano-Wall Material for Production of Novel Lyophilized-Probiotic Product. Foods 2022; 11:foods11193113. [PMID: 36230189 PMCID: PMC9564142 DOI: 10.3390/foods11193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
Lyophilization is one of the most used methods for bacterial preservation. In this process, the cryoprotectant not only largely decreases cellular damage but also plays an important part in the conservation of viability during freeze-drying. This study investigated using cryoprotectant and a mixture of the cryoprotectant to maintain probiotic activity. Seven probiotic strains were considered: (Limosilactobacillus reuteri KUKPS6103; Lacticaseibacillus rhamnosus KUKPS6007; Lacticaseibacillus paracasei KUKPS6201; Lactobacillus acidophilus KUKPS6107; Ligilactobacillus salivarius KUKPS6202; Bacillus coagulans KPSTF02; Saccharomyces cerevisiae subsp. boulardii KUKPS6005) for the production of a multi-strain probiotic and the complex medium for the lyophilized synbiotic production. Cholesterol removal, antioxidant activity, biofilm formation and gamma aminobutyric acid (GABA) production of the probiotic strains were analyzed. The most biofilm formation occurred in L. reuteri KUKPS6103 and the least in B. coagulans KPSTF02. The multi-strain probiotic had the highest cholesterol removal. All the probiotic strains had GABA production that matched the standard of γ-aminobutyric acid. The lyophilized synbiotic product containing complex medium as a cryoprotectant and wall material retained a high viability of 7.53 × 108 CFU/g (8.89 log CFU/g) after 8 weeks of storage. We found that the survival rate of the multi-strain probiotic after freeze-drying was 15.37% in the presence of complex medium that was used as high performing wall material. Our findings provided a new type of wall material that is safer and more effective and, can be extensively applied in relevant food applications.
Collapse
Affiliation(s)
- Zin Myo Swe
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Thapakorn Chumphon
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Saran Promsai
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Correspondence: ; Tel.: +66-3440-0481
| |
Collapse
|
2
|
Lim HJ, Jung DH, Cho ES, Seo MJ. Expression, purification, and characterization of glutamate decarboxylase from human gut-originated Lactococcus garvieae MJF010. World J Microbiol Biotechnol 2022; 38:69. [PMID: 35257236 DOI: 10.1007/s11274-022-03256-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Human gut-originated lactic acid bacteria were cultivated, and high γ-aminobutyric acid (GABA)-producing Lactococcus garvieae MJF010 was identified. To date, despite the importance of GABA, no studies have investigated GABA-producing Lactococcus species, except for Lc. lactis. A recombinant glutamate decarboxylase of the strain MJF010 (rLgGad) was successfully expressed in Escherichia coli BL21(DE3) with a size of 53.9 kDa. rLgGad could produce GABA, which was verified using the silylation-derivative fragment ions of GABA. The purified rLgGad showed the highest GABA-producing activity at 35 °C and pH 5. rLgGad showed a melting temperature of 43.84 °C. At 30 °C, more than 80% of the activity was maintained even after 7 h; however, it rapidly decreased at 50 °C. The kinetic parameters, Km, Vmax, and kcat, of rLgGad were 2.94 mM, 0.023 mM/min, and 12.3 min- 1, respectively. The metal reagents of CaCl2, MgCl2, and ZnCl2 significantly had positive effects on rLgGad activity. However, most coenzymes including pyridoxal 5'-phosphate showed no significant effects on enzyme activity. In conclusion, this is the first report of Gad from Lc. garvieae species and provides important enzymatic information related to GABA biosynthesis in the Lactococcus genus.
Collapse
Affiliation(s)
- Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, 22012, Incheon, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, 22689, Incheon, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, 22012, Incheon, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, 22012, Incheon, Republic of Korea. .,Division of Bioengineering, Incheon National University, 22012, Incheon, Republic of Korea. .,Research Center for Bio Materials & Process Development, Incheon National University, 22012, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Cell factory for γ-aminobutyric acid (GABA) production using Bifidobacterium adolescentis. Microb Cell Fact 2022; 21:33. [PMID: 35255900 PMCID: PMC8903651 DOI: 10.1186/s12934-021-01729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bifidobacteria are gram-positive, probiotic, and generally regarded as safe bacteria. Techniques such as transformation, gene knockout, and heterologous gene expression have been established for Bifidobacterium, indicating that this bacterium can be used as a cell factory platform. However, there are limited previous reports in this field, likely because of factors such as the highly anaerobic nature of this bacterium. Bifidobacterium adolescentis is among the most oxygen-sensitive Bifidobacterium species. It shows strain-specific gamma-aminobutyric acid (GABA) production. GABA is a potent bioactive compound with numerous physiological and psychological functions. In this study, we investigated whether B. adolesentis could be used for mass production of GABA.
Results
The B. adolescentis 4–2 strain isolated from a healthy adult human produced approximately 14 mM GABA. It carried gadB and gadC, which encode glutamate decarboxylase and glutamate GABA antiporter, respectively. We constructed pKKT427::Pori-gadBC and pKKT427::Pgap-gadBC plasmids carrying gadBC driven by the original gadB (ori) and gap promoters, respectively. Recombinants of Bifidobacterium were then constructed. Two recombinants with high production abilities, monitored by two different promoters, were investigated. GABA production was improved by adjusting the fermentation parameters, including the substrate concentration, initial culture pH, and co-factor supplementation, using response surface methodology. The optimum initial cultivation pH varied when the promoter region was changed. The ori promoter was induced under acidic conditions (pH 5.2:4.4), whereas the constitutive gap promoter showed enhanced GABA production at pH 6.0. Fed-batch fermentation was used to validate the optimum fermentation parameters, in which approximately 415 mM GABA was produced. The conversion ratio of glutamate to GABA was 92–100%.
Conclusion
We report high GABA production in recombinant B. adolescentis. This study provides a foundation for using Bifidobacterium as a cell factory platform for industrial production of GABA.
Collapse
|
4
|
Characterization of a novel glutamate decarboxylase (GAD) from Latilactobacillus curvatus K285 isolated from Gat -Kimchi. Food Sci Biotechnol 2021; 31:69-78. [DOI: 10.1007/s10068-021-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/18/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
|
5
|
Liu W, Li H, Liu L, Ko K, Kim I. Screening of gamma-aminobutyric acid-producing lactic acid bacteria and the characteristic of glutamate decarboxylase from Levilactobacillus brevis F109-MD3 isolated from kimchi. J Appl Microbiol 2021; 132:1967-1977. [PMID: 34570423 DOI: 10.1111/jam.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
AIMS This study aimed to screen the γ-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) from kimchi, and investigate the glutamate decarboxylase (GAD) activity of the highest GABA-producing strain. METHODS AND RESULTS Seven strains of LAB were screened from kimchi with GABA-producing activity. Strain Levilactobacillus brevis F109-MD3 showed the highest GABA-producing ability. It produced GABA at a concentration of 520 mmol l-1 with a 97.4% GABA conversion rate in MRS broth containing 10% monosodium glutamate for 72 h. The addition of pyridoxal 5'-phosphate had no significant effect on the GAD activity of L. brevis F109-MD3. The optimal pH range of GAD was 3.0-5.0 and the optimal temperature was 65°C. The D value of GAD at 50, 60 and 70°C was 7143, 971 and 124 min respectively and Z value was 11.36°C. CONCLUSIONS Seven strains isolated from kimchi, especially F109-MD3, showed high GABA-production ability even in the high concentrations of MSG at 7.5% and 10%. The GAD activity showed an effective broad pH range and higher optimal temperature. SIGNIFICANCE AND IMPACT OF THE STUDY These seven strains could be potentially useful for food-grade GABA production and the development of healthy foods.
Collapse
Affiliation(s)
- Wenli Liu
- China Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Food Engineering, Ludong University, Yantai, China.,Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| | - Huamin Li
- School of Food Engineering, Ludong University, Yantai, China.,Bionanotechnology Institute, Ludong University, Yantai, China
| | - Long Liu
- China Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Kanghee Ko
- Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| | - Incheol Kim
- Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
6
|
Sun L, Bai Y, Zhang X, Zhou C, Zhang J, Su X, Luo H, Yao B, Wang Y, Tu T. Characterization of three glutamate decarboxylases from Bacillus spp. for efficient γ-aminobutyric acid production. Microb Cell Fact 2021; 20:153. [PMID: 34348699 PMCID: PMC8336373 DOI: 10.1186/s12934-021-01646-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) is an important bio-product used in pharmaceuticals and functional foods and as a precursor of the biodegradable plastic polyamide 4. Glutamate decarboxylase (GAD) converts L-glutamate (L-Glu) into GABA via decarboxylation. Compared with other methods, develop a bioconversion platform to produce GABA is of considerable interest for industrial use. RESULTS Three GAD genes were identified from three Bacillus strains and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction temperature and pH values for three enzymes were 40 °C and 5.0, respectively. Of the GADs, GADZ11 had the highest catalytic efficiency towards L-Glu (2.19 mM- 1 s- 1). The engineered E. coli strain that expressed GADZ11 was used as a whole-cell biocatalyst for the production of GABA. After repeated use 14 times, the cells produced GABA with an average molar conversion rate of 98.6% within 14 h. CONCLUSIONS Three recombinant GADs from Bacillus strains have been conducted functional identification. The engineered E. coli strain heterologous expressing GADZ1, GADZ11, and GADZ20 could accomplish the biosynthesis of L-Glu to GABA in a buffer-free reaction at a high L-Glu concentration. The novel engineered E. coli strain has the potential to be a cost-effective biotransformation platform for the industrial production of GABA.
Collapse
Affiliation(s)
- Lei Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, China
| | - Cheng Zhou
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Bs S, Thankappan B, Mahendran R, Muthusamy G, Femil Selta DR, Angayarkanni J. Evaluation of GABA Production and Probiotic Activities of Enterococcus faecium BS5. Probiotics Antimicrob Proteins 2021; 13:993-1004. [PMID: 33689135 DOI: 10.1007/s12602-021-09759-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in the central nervous system and is produced by irreversible decarboxylation of glutamate. It possesses several physiological functions such as neurotransmission, diuretic, and tranquilizer effects and also regulates cardiovascular functions such as blood pressure and heart rate in addition to playing a role in the reduction of pain and anxiety. The objective of this study was to evaluate the GABA producing ability and probiotic capability of certain lactic acid bacteria strains isolated from dairy products. Around sixty-four bacterial isolates were collected and screened for their ability to produce GABA from monosodium glutamate, among which nine isolates were able to produce GABA. The most efficient GABA producer was Enterococcus faecium BS5. Further, assessment of several important and desirable probiotic properties showed that Ent. faecium BS5 was resistant to acid stress, bile salt, and antibiotics. Ent. faecium BS5 may potentially be used for large-scale industrial production of GABA and also for functional fermented product development.
Collapse
Affiliation(s)
- Sabna Bs
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | - Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | - Ramasamy Mahendran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | - Gayathri Muthusamy
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | | | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India.
| |
Collapse
|
8
|
Yogeswara IBA, Maneerat S, Haltrich D. Glutamate Decarboxylase from Lactic Acid Bacteria-A Key Enzyme in GABA Synthesis. Microorganisms 2020; 8:microorganisms8121923. [PMID: 33287375 PMCID: PMC7761890 DOI: 10.3390/microorganisms8121923] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Glutamate decarboxylase (l-glutamate-1-carboxylase, GAD; EC 4.1.1.15) is a pyridoxal-5’-phosphate-dependent enzyme that catalyzes the irreversible α-decarboxylation of l-glutamic acid to γ-aminobutyric acid (GABA) and CO2. The enzyme is widely distributed in eukaryotes as well as prokaryotes, where it—together with its reaction product GABA—fulfils very different physiological functions. The occurrence of gad genes encoding GAD has been shown for many microorganisms, and GABA-producing lactic acid bacteria (LAB) have been a focus of research during recent years. A wide range of traditional foods produced by fermentation based on LAB offer the potential of providing new functional food products enriched with GABA that may offer certain health-benefits. Different GAD enzymes and genes from several strains of LAB have been isolated and characterized recently. GABA-producing LAB, the biochemical properties of their GAD enzymes, and possible applications are reviewed here.
Collapse
Affiliation(s)
- Ida Bagus Agung Yogeswara
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences BOKU, Muthgasse 18, 1190 Vienna, Austria;
- Nutrition Department, Faculty of Health, Science and Technology, Universitas Dhyana Pura, Dalung Kuta utara 80361, Bali, Indonesia
- Correspondence:
| | - Suppasil Maneerat
- Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences BOKU, Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|
9
|
|
10
|
Park SH, Sohn YJ, Park SJ, Choi JI. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions. Microb Cell Fact 2020; 19:64. [PMID: 32156293 PMCID: PMC7063819 DOI: 10.1186/s12934-020-01322-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/01/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Gamma aminobutyric acid (GABA) is an important platform chemical, which has been used as a food additive and drug. Additionally, GABA is a precursor of 2-pyrrolidone, which is used in nylon synthesis. GABA is usually synthesized from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD). Currently, there are several reports on GABA production from monosodium glutamate (MSG) or glucose using engineered microbes. However, the optimal pH for GAD activity is 4, which is the limiting factor for the efficient microbial fermentative production of GABA as fermentations are performed at pH 7. Recently, DR1558, a response regulator in the two-component signal transduction system was identified in Deinococcus radiodurans. DR1558 is reported to confer cellular robustness to cells by binding the promoter regions of genes via DNA-binding domains or by binding to the effector molecules, which enable the microorganisms to survive in various environmental stress conditions, such as oxidative stress, high osmotic shock, and low pH. RESULTS In this study, the effect of DR1558 in enhancing GABA production was examined using two different strategies: whole-cell bioconversion of GABA from MSG and direct fermentative production of GABA from glucose under acidic culture conditions. In the whole-cell bioconversion, GABA produced by E. coli expressing GadBC and DR1558 (6.52 g/L GABA from 13 g/L MSG·H2O) in shake flask culture at pH 4.5 was 2.2-fold higher than that by E. coli expressing only GadBC (2.97 g/L of GABA from 13 g/L MSG·H2O). In direct fermentative production of GABA from glucose, E. coli ∆gabT expressing isocitrate dehydrogenase (IcdA), glutamate dehydrogenase (GdhA), GadBC, and DR1558 produced 1.7-fold higher GABA (2.8 g/L of GABA from 30 g/L glucose) than E. coli ∆gabT expressing IcdA, GdhA, and GadBC (1.6 g/L of GABA from 30 g/L glucose) in shake flask culture at an initial pH 7.0. The transcriptional analysis of E. coli revealed that DR1558 conferred acid resistance to E. coli during GABA production. The fed-batch fermentation of E. coli expressing IcdA, GdhA, GadBC, and DR1558 performed at pH 5.0 resulted in the final GABA titer of 6.16 g/L by consuming 116.82 g/L of glucose in 38 h. CONCLUSION This is the first report to demonstrate GABA production by acidic fermentation and to provide an engineering strategy for conferring acid resistance to the recombinant E. coli for GABA production.
Collapse
Affiliation(s)
- Sung-Ho Park
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Yu Jung Sohn
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr Microbiol 2019; 77:534-544. [PMID: 31844936 DOI: 10.1007/s00284-019-01839-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Gamma-Aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature. It is produced through irreversible α-decarboxylation of glutamate by enzyme glutamate decarboxylase (GAD). GABA and GAD have been found in plants, animals, and microorganisms. GABA is distributed throughout the human body and it is involved in the regulation of cardiovascular conditions such as blood pressure and heart rate, and plays a role in the reduction of anxiety and pain. Although researchers had produced GABA by chemical method earlier it became less acceptable as it pollutes the environment. Researchers now use a more promising microbial method for the production of GABA. In the drug and food industry, demand for GABA is immense. So, large scale conversion of GABA by microbes has got much attention. So this review focuses on the isolation source, production, and functions of GABA in the microbial system. We also summarize the mechanism of action of GABA and its shunt pathway.
Collapse
|
12
|
Park YJ, Oh TS, Jang MJ. Effect of adding amino acids on the production of Gamma-Aminobutyric Acid (GABA) by mycelium of Lentinula edodes. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis study was carried out to investigate the production of a health functional food component through the production of GABA by mycelium of Lentinula edodes (LE) cultured in a medium containing four different amino acids. To confirm the GABA content in the medium, the amount of GABA produced by adding 0.1 M of glutamic acid, alanine, glycine, or lysine to Potato Dextrose Agar (PDA) medium and Potato Dextrose Broth (PDB) medium was determined. The amount of mycelia in the PDB medium was 4.85 g/L in the amino acid-free medium, 5.12 g/L in the glutamic acid medium, 4.63 g/L in the alanine medium, 4.87 g/L in the glycine medium, and 4.18 g/L in the lysine medium. The amount of amino acid added to the medium did not interfere with the normal growth of LE because the amount of excess amino acid was not significantly different from that of the control. The GABA content was 10.35 mg/L in the control (amino acid-free), 30.29 mg/L in the glutamic acid supplemented medium, 11.70 mg/L in the alanine supplemented medium, 10.62 mg/L in the glycine supplemented medium and 3.96 mg/L in Lysine supplemented medium. These results show that the excess glutamic acid had the highest level of GABA in the mushroom culture medium. On the other hand, it was confirmed that the addition of excess alanine and glycine did not affect the GABA production compared to the control. These results suggest that continuous GABA production could not be achieved by using an ion exchange resin after the disruption of GABA production by biological methods, however, continuous GABA production using the mycelium of LE is possible in this study.
Collapse
Affiliation(s)
- Youn-Jin Park
- Green Manure and Legumes Resource Center, Plant resources, Kongju National UniversityYesan, Korea (Republic of)
- Plant Resources, Kongju National University, Gongju, Korea (the Republic of)
| | - Tae-Seok Oh
- Plant Resources, Kongju National University, Gongju, Korea (the Republic of)
| | - Myoung-Jun Jang
- Plant Resources, Kongju National University, Yesan, Korea (Republic of)
- Plant Resources, Kongju National University, Gongju, Korea (the Republic of)
| |
Collapse
|
13
|
Yuan H, Wang H, Fidan O, Qin Y, Xiao G, Zhan J. Identification of new glutamate decarboxylases from Streptomyces for efficient production of γ-aminobutyric acid in engineered Escherichia coli. J Biol Eng 2019; 13:24. [PMID: 30949236 PMCID: PMC6429771 DOI: 10.1186/s13036-019-0154-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes. Results By sequencing and analyzing the genomes of three Streptomyces strains, three putative GADs were discovered, including StGAD from Streptomyces toxytricini NRRL 15443, SsGAD from Streptomyces sp. MJ654-NF4 and ScGAD from Streptomyces chromofuscus ATCC 49982. The corresponding genes were cloned from these strains and heterologously expressed in E. coli BL21(DE3). The purified GAD proteins showed a similar molecular mass to GadB from E. coli BL21(DE3). The optimal reaction temperature is 37 °C for all three enzymes, while the optimum pH values for StGAD, SsGAD and ScGAD are 5.2, 3.8 and 4.2, respectively. The kinetic parameters including Vmax, Km, kcat and kcat/Km values were investigated and calculated through in vitro reactions. SsGAD and ScGAD showed high biocatalytic efficiency with kcat/Km values of 0.62 and 1.21 mM− 1·s− 1, respectively. In addition, engineered E. coli strains harboring StGAD, SsGAD and ScGAD were used as whole-cell biocatalysts for production of GABA from L-Glu. E. coli/SsGAD showed the highest capability of GABA production. The cells were repeatedly used for 10 times, with an accumulated yield of 2.771 kg/L and an average molar conversion rate of 67% within 20 h. Conclusions Three new GADs have been functionally characterized from Streptomyces, among which two showed higher catalytic efficiency than previously reported GADs. Engineered E. coli harboring SsGAD provides a promising cost-effective bioconversion system for industrial production of GABA. Electronic supplementary material The online version of this article (10.1186/s13036-019-0154-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haina Yuan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA.,2School of Biological and Chemical Engineering, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China
| | - Hongbo Wang
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Ozkan Fidan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Yong Qin
- Hangzhou Viablife Biotech Co., Ltd., 1 Jingyi Road, Yuhang District, Hangzhou, 311113 Zhejiang China
| | - Gongnian Xiao
- 2School of Biological and Chemical Engineering, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China
| | - Jixun Zhan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| |
Collapse
|
14
|
Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Yu P, Chen K, Huang X, Wang X, Ren Q. Production of γ-aminobutyric acid in Escherichia coli by engineering MSG pathway. Prep Biochem Biotechnol 2018; 48:906-913. [PMID: 30265207 DOI: 10.1080/10826068.2018.1514519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The compound γ-aminobutyric acid (GABA) has many important physiological functions. The effect of glutamate decarboxylases and the glutamate/GABA antiporter on GABA production was investigated in Escherichia coli. Three genes, gadA, gadB, and gadC were cloned and ligated alone or in combination into the plasmid pET32a. The constructed plasmids were transformed into Escherichia coli BL21(DE3). Three strains, E. coli BL21(DE3)/pET32a-gadA, E. coli BL21(DE3)/pET32a-gadAB and E. coli BL21(DE3)/pET32a-gadABC were selected and identified. The respective titers of GABA from the three strains grown in shake flasks were 1.25, 2.31, and 3.98 g/L. The optimal titer of the substrate and the optimal pH for GABA production were 40 g/L and 4.2, respectively. The highest titer of GABA was 23.6 g/L at 36 h in batch fermentation and was 31.3 g/L at 57 h in fed-batch fermentation. This study lays a foundation for the development and use of GABA.
Collapse
Affiliation(s)
- Ping Yu
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| | - Kaifei Chen
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| | - Xingxing Huang
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| | - Xinxin Wang
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| | - Qian Ren
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| |
Collapse
|
16
|
Huang J, Fang H, Gai ZC, Mei JQ, Li JN, Hu S, Lv CJ, Zhao WR, Mei LH. Lactobacillus brevis CGMCC 1306 glutamate decarboxylase: Crystal structure and functional analysis. Biochem Biophys Res Commun 2018; 503:1703-1709. [PMID: 30049439 DOI: 10.1016/j.bbrc.2018.07.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023]
Abstract
Glutamate decarboxylase (GAD), which is a unique pyridoxal 5-phosphate (PLP)-dependent enzyme, can catalyze α-decarboxylation of l-glutamate (L-Glu) to γ-aminobutyrate (GABA). The crystal structure of GAD in complex with PLP from Lactobacillus brevis CGMCC 1306 was successfully solved by molecular-replacement, and refined at 2.2 Å resolution to an Rwork factor of 18.76% (Rfree = 23.08%). The coenzyme pyridoxal 5-phosphate (PLP) forms a Schiff base with the active-site residue Lys279 by continuous electron density map, which is critical for catalysis by PLP-dependent decarboxylase. Gel filtration showed that the active (pH 4.8) and inactive (pH 7.0) forms of GAD are all dimer. The residues (Ser126, Ser127, Cys168, Ile211, Ser276, His278 and Ser321) play important roles in anchoring PLP cofactor inside the active site and supporting its catalytic reactivity. The mutant T215A around the putative substrate pocket displayed an 1.6-fold improvement in catalytic efficiency (kcat/Km) compared to the wild-type enzyme (1.227 mM-1 S-1 versus 0.777 mM-1 S-1), which was the highest activity among all variants tested. The flexible loop (Tyr308-Glu312), which is positioned near the substrate-binding site, is involved in the catalytic reaction, and the conserved residue Tyr308 plays a vital role in decarboxylation of L-Glu.
Collapse
Affiliation(s)
- Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China; Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Hui Fang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Zhong-Chao Gai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia-Qi Mei
- Department of Chemical Engineering, The University of Utah, Salt Lake City, 84102, Utah, United States
| | - Jia-Nan Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Sheng Hu
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Chang-Jiang Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Wei-Rui Zhao
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Le-He Mei
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China.
| |
Collapse
|
17
|
Lim HS, Seo DH, Cha IT, Lee H, Nam YD, Seo MJ. Expression and characterization of glutamate decarboxylase from Lactobacillus brevis HYE1 isolated from kimchi. World J Microbiol Biotechnol 2018; 34:44. [PMID: 29500614 DOI: 10.1007/s11274-018-2427-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni-NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.
Collapse
Affiliation(s)
- Hee Seon Lim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, Republic of Korea
| | - Dong-Ho Seo
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju, Republic of Korea
| | - In-Tae Cha
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyunjin Lee
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
18
|
Wu Q, Shah NP. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Crit Rev Food Sci Nutr 2018; 57:3661-3672. [PMID: 26980301 DOI: 10.1080/10408398.2016.1147418] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
γ-Aminobutyric acid (GABA) and GABA-rich foods have shown anti-hypertensive and anti-depressant activities as the major functions in humans and animals. Hence, high GABA-producing lactic acid bacteria (LAB) could be used as functional starters for manufacturing novel fermented dairy foods. Glutamic acid decarboxylases (GADs) from LAB are highly conserved at the species level based on the phylogenetic tree of GADs from LAB. Moreover, two functionally distinct GADs and one intact gad operon were observed in all the completely sequenced Lactobacillus brevis strains suggesting its common capability to synthesize GABA. Difficulties and strategies for the manufacture of GABA-rich fermented dairy foods have been discussed and proposed, respectively. In addition, a genetic survey on the sequenced LAB strains demonstrated the absence of cell envelope proteinases in the majority of LAB including Lb. brevis, which diminishes their cell viabilities in milk environments due to their non-proteolytic nature. Thus, several strategies have been proposed to overcome the non-proteolytic nature of Lb. brevis in order to produce GABA-rich dairy foods.
Collapse
Affiliation(s)
- Qinglong Wu
- a Food and Nutritional Science, School of Biological Sciences , The University of Hong Kong , Hong Kong , Hong Kong
| | - Nagendra P Shah
- a Food and Nutritional Science, School of Biological Sciences , The University of Hong Kong , Hong Kong , Hong Kong
| |
Collapse
|
19
|
Yu HH, Choi JH, Kang KM, Hwang HJ. Potential of a lactic acid bacterial starter culture with gamma-aminobutyric acid (GABA) activity for production of fermented sausage. Food Sci Biotechnol 2017; 26:1333-1341. [PMID: 30263667 DOI: 10.1007/s10068-017-0161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022] Open
Abstract
The ability of lactic acid bacterial starter cultures to produce gamma-aminobutyric acid (GABA) during sausage fermentation was studied. Among 305 strains of lactic acid bacteria isolated from kimchi samples, 11 strains were selected as starter candidates based on the following criteria: growth speed, pH lowering ability, and biogenic amine productivity including GABA-producing activity. During in vitro tests, the Y8 (Lactobacillus brevis), O52, and KA20 strains produced 39.00 ± 1.36, 49.73 ± 3.80, and 64.59 ± 0.61 mg/kg of GABA, respectively. Interestingly, although isolate Y8 showed low productivity in vitro, the GABA content it produced during in situ tests (61.30 ± 2.61 mg/kg) was similar to that produced by isolate PM3 (L. brevis) used as positive control (69.64 ± 2.20 mg/kg). Therefore, isolate Y8 was selected as the best functional starter culture for the production of fermented sausage because it exhibited rapid growth, safety, and abundant GABA productivity.
Collapse
Affiliation(s)
- Hyun-Hee Yu
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Ji Hun Choi
- Foods R&D Center, CJ Cheiljedang Corp, Suwon, Gyeonggi 16495 Korea
| | - Ki Moon Kang
- Foods R&D Center, CJ Cheiljedang Corp, Suwon, Gyeonggi 16495 Korea
| | - Han-Joon Hwang
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| |
Collapse
|
20
|
Lin Q, Li D, Qin H. Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, Matsunami RK, Lugo M, Major A, Mori‐Akiyama Y, Hollister EB, Dann SM, Shi XZ, Engler DA, Savidge T, Versalovic J. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 2017; 29:e12904. [PMID: 27458085 PMCID: PMC5195897 DOI: 10.1111/nmo.12904] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recurrent abdominal pain is a common and costly health-care problem attributed, in part, to visceral hypersensitivity. Increasing evidence suggests that gut bacteria contribute to abdominal pain perception by modulating the microbiome-gut-brain axis. However, specific microbial signals remain poorly defined. γ-aminobutyric acid (GABA) is a principal inhibitory neurotransmitter and a key regulator of abdominal and central pain perception from peripheral afferent neurons. Although gut bacteria are reported to produce GABA, it is not known whether the microbial-derived neurotransmitter modulates abdominal pain. METHODS To investigate the potential analgesic effects of microbial GABA, we performed daily oral administration of a specific Bifidobacterium strain (B. dentiumATCC 27678) in a rat fecal retention model of visceral hypersensitivity, and subsequently evaluated pain responses. KEY RESULTS We demonstrate that commensal Bifidobacterium dentium produces GABA via enzymatic decarboxylation of glutamate by GadB. Daily oral administration of this specific Bifidobacterium (but not a gadB deficient) strain modulated sensory neuron activity in a rat fecal retention model of visceral hypersensitivity. CONCLUSIONS & INFERENCES The functional significance of microbial-derived GABA was demonstrated by gadB-dependent desensitization of colonic afferents in a murine model of visceral hypersensitivity. Visceral pain modulation represents another potential health benefit attributed to bifidobacteria and other GABA-producing species of the intestinal microbiome. Targeting GABAergic signals along this microbiome-gut-brain axis represents a new approach for the treatment of abdominal pain.
Collapse
Affiliation(s)
- K. Pokusaeva
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - C. Johnson
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - B. Luk
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - G. Uribe
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Molecular Virology & MicrobiologyBaylor College of MedicineHoustonTXUSA
| | - Y. Fu
- Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - N. Oezguen
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - R. K. Matsunami
- Proteomics Programmatic Core LaboratoryHouston Methodist Hospital Research InstituteHoustonTXUSA
| | - M. Lugo
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
| | - A. Major
- Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - Y. Mori‐Akiyama
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - E. B. Hollister
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - S. M. Dann
- Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - X. Z. Shi
- Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - D. A. Engler
- Proteomics Programmatic Core LaboratoryHouston Methodist Hospital Research InstituteHoustonTXUSA
| | - T. Savidge
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA
| | - J. Versalovic
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA,Department of PathologyTexas Children's HospitalHoustonTXUSA,Molecular Virology & MicrobiologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
22
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
23
|
Tavakoli Y, Esmaeili A, Saber H. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study. Comput Biol Chem 2016; 64:74-81. [PMID: 27294557 DOI: 10.1016/j.compbiolchem.2016.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/12/2016] [Accepted: 05/19/2016] [Indexed: 11/15/2022]
Abstract
Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value.
Collapse
Affiliation(s)
- Yasaman Tavakoli
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Hossein Saber
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
24
|
Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH. Gamma-aminobutyric acid production through GABA shunt by synthetic scaffolds introduction in recombinant Escherichia coli. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0783-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Kanwal S, Incharoensakdi A. Characterization of glutamate decarboxylase from Synechocystis sp. PCC6803 and its role in nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:59-65. [PMID: 26730883 DOI: 10.1016/j.plaphy.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Glutamate decarboxylase (GAD) (EC 4.1.1.15), an enzyme responsible for the synthesis of γ-aminobutyric acid (GABA), from Synechocystis sp. PCC6803 was cloned and overexpressed in Escherichia coli BL21(DE3). The purified enzyme was expressed as a monomeric protein with a molecular mass of 53 and 55 kDa as determined by SDS-PAGE and gel filtration chromatography, respectively. The enzyme activity was pyridoxal-5'-phosphate dependent with an optimal activity at pH 6.0 and 30 °C. The catalytic properties of this enzyme were, Km = 19.6 mM; kcat = 100.7 s(-1); and kcat/Km = 5.1 mM(-1) s(-1). The transcription levels of genes involved in nitrogen metabolism were up-regulated in the Δgad strain. The mutant showed approximately 4- and 8-fold increases in the transcript levels of kgd and gabdh encoding a novel α-ketoglutarate decarboxylase and γ-aminobutanal dehydrogenase, respectively. Overall results suggested that in Synechocystis lacking a functional GAD, the γ-aminobutanal dehydrogenase might serve as an alternative catalytic pathway for GABA synthesis.
Collapse
Affiliation(s)
- Simab Kanwal
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
26
|
Su L, Huang Y, Wu J. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. BIORESOURCE TECHNOLOGY 2015; 198:63-69. [PMID: 26364229 DOI: 10.1016/j.biortech.2015.08.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
This report describes the optimization of recombinant Escherichia coli glutamate decarboxylase (GAD) production from engineered E. coli BL21(DE3) in a 3-L fermentor. Investigation of different induction strategies revealed that induction was optimal when the temperature was maintained at 30°C, the inducer (lactose) was fed at a rate of 0.2 g L(-1)h(-1), and protein expression was induced when the cell density (OD600) reached 50. Under these conditions, the GAD activity of 1273.8 U mL(-1) was achieved. Because GAD is a pyridoxal 5'-phosphate (PLP)-dependent enzyme, the effect of supplementing the medium with pyridoxine hydrochloride (PN), a cheap and stable PLP precursor, on GAD production was also investigated. When the culture medium was supplemented with PN to a concentration of 2mM at the initiation of protein expression, and then again 10h later, the GAD activity reached 3193.4 U mL(-1), which represented the highest GAD production ever reported.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
27
|
Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biotechnol 2015; 43:79-86. [PMID: 26620318 DOI: 10.1007/s10295-015-1712-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.
Collapse
|
28
|
Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Biotechnol Lett 2015; 38:321-7. [DOI: 10.1007/s10529-015-1982-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
29
|
Zhu YZ, Cheng JL, Ren M, Yin L, Piao XS. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1006-13. [PMID: 26104406 PMCID: PMC4478492 DOI: 10.5713/ajas.15.0119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 11/27/2022]
Abstract
Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05) by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05) than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens.
Collapse
Affiliation(s)
- Y. Z. Zhu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100,
China
- Jiangsu Unison Biotechnology Development Co., Ltd., Suqian 233100,
China
| | - J. L. Cheng
- Jiangsu Unison Biotechnology Development Co., Ltd., Suqian 233100,
China
| | - M. Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100,
China
| | - L. Yin
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100,
China
| | - X. S. Piao
- Ministry of Agriculture Feed Industry Centre, China Agricultural Univeristy, Beijing 100193,
China
| |
Collapse
|
30
|
Liu Y, Tang H, Lin Z, Xu P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 2015; 33:1484-92. [PMID: 26057689 DOI: 10.1016/j.biotechadv.2015.06.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 02/05/2023]
Abstract
Acidogenic and aciduric bacteria have developed several survival systems in various acidic environments to prevent cell damage due to acid stress such as that on the human gastric surface and in the fermentation medium used for industrial production of acidic products. Common mechanisms for acid resistance in bacteria are proton pumping by F1-F0-ATPase, the glutamate decarboxylase system, formation of a protective cloud of ammonia, high cytoplasmic urease activity, repair or protection of macromolecules, and biofilm formation. The field of synthetic biology has rapidly advanced and generated an ever-increasing assortment of genetic devices and biological modules for applications in biofuel and novel biomaterial productions. Better understanding of aspects such as overproduction of general shock proteins, molecular mechanisms, and responses to cell density adopted by microorganisms for survival in low pH conditions will prove useful in synthetic biology for potential industrial and environmental applications.
Collapse
Affiliation(s)
- Yuping Liu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing 100084, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
31
|
Pham VD, Lee SH, Park SJ, Hong SH. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli. J Biotechnol 2015; 207:52-7. [PMID: 25997833 DOI: 10.1016/j.jbiotec.2015.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Escherichia coli were engineered for the direct production of gamma-aminobutyric acid from glucose by introduction of synthetic protein scaffold. In this study, three enzymes consisting GABA pathway (isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase) were connected via synthetic protein scaffold. By introduction of scaffold, 0.92g/L of GABA was produced from 10g/L of glucose while no GABA was produced in wild type E. coli. The optimum pH and temperature for GABA production were 4.5 and 30°C, respectively. When competing metabolic network was inactivated by knockout mutation, maximum GABA concentration of 1.3g/L was obtained from 10g/L glucose. The recombinant E. coli strain which produces GABA directly from glucose was successfully constructed by introduction of protein scaffold.
Collapse
Affiliation(s)
- Van Dung Pham
- Department of Chemical Engineering, University of Ulsan, 93 Daehakro, Nam-gu, Ulsan 680-749, Republic of Korea
| | - Seung Hwan Lee
- Department of Biotechnology&Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, San 38-2, Nam-dong, Cheoin-gu, Gyeonggido, Yongin-si 449-728, Republic of Korea
| | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, 93 Daehakro, Nam-gu, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
32
|
Hudec J, Kobida Ľ, Čanigová M, Lacko-Bartošová M, Ložek O, Chlebo P, Mrázová J, Ducsay L, Bystrická J. Production of γ-aminobutyric acid by microorganisms from different food sources. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1190-1198. [PMID: 25043158 DOI: 10.1002/jsfa.6807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/17/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. RESULTS Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. CONCLUSIONS Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used.
Collapse
Affiliation(s)
- Jozef Hudec
- Department of Agrochemistry and Plant Nutrition, Slovak Agricultural University, Nitra, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tajabadi N, Baradaran A, Ebrahimpour A, Rahim RA, Bakar FA, Manap MYA, Mohammed AS, Saari N. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production. Microb Biotechnol 2015; 8:623-32. [PMID: 25757029 PMCID: PMC4476817 DOI: 10.1111/1751-7915.12254] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 11/27/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products.
Collapse
Affiliation(s)
- Naser Tajabadi
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia.,Department of Honey Bee, Animal Science Research Institute of Iran (ASRI), Karaj, Iran
| | - Ali Baradaran
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Afshin Ebrahimpour
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Raha A Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Fatimah A Bakar
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Mohd Yazid A Manap
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Abdulkarim S Mohammed
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
34
|
The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0266-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
35
|
Wu Q, Shah NP. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria. J Dairy Sci 2014; 98:790-7. [PMID: 25497828 DOI: 10.3168/jds.2014-8808] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/08/2014] [Indexed: 12/26/2022]
Abstract
High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.
Collapse
Affiliation(s)
- Qinglong Wu
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
36
|
Characterization and immobilization on nickel-chelated Sepharose of a glutamate decarboxylase A from Lactobacillus brevis BH2 and its application for production of GABA. Biosci Biotechnol Biochem 2014; 78:1656-61. [PMID: 25047135 DOI: 10.1080/09168451.2014.936347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A gene encoding glutamate decarboxylase A (GadA) from Lactobacillus brevis BH2 was expressed in a His-tagged form in Escherichia coli cells, and recombinant protein exists as a homodimer consisting of identical subunits of 53 kDa. GadA was absolutely dependent on the ammonium sulfate concentration for catalytic activity and secondary structure formation. GadA was immobilized on the metal affinity resin with an immobilization yield of 95.8%. The pH optima of the immobilized enzyme were identical with those of the free enzyme. However, the optimum temperature for immobilized enzyme was 5 °C higher than that for the free enzyme. The immobilized GadA retained its relative activity of 41% after 30 reuses of reaction within 30 days and exhibited a half-life of 19 cycles within 19 days. A packed-bed bioreactor with immobilized GadA showed a maximum yield of 97.8% GABA from 50 mM l-glutamate in a flow-through system under conditions of pH 4.0 and 55 °C.
Collapse
|
37
|
Vo TDL, Pham VD, Ko JS, Lee SH, Park SJ, Hong SH. Improvement of gamma-amino butyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0713-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Park JY, Jeong SJ, Kim JH. Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae. Biotechnol Lett 2014; 36:1791-9. [PMID: 24770872 DOI: 10.1007/s10529-014-1539-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria (LAB) were isolated from Kimchi, a Korean traditional fermented vegetable food. LAB accumulating GABA (γ-aminobutyric acid) in the culture media were screened by TLC analysis. One isolate, GU240, produced the highest amount of GABA among the 3,000 isolates and identified as a Lactobacillus zymae strain. Glutamate decarboxylase (GAD) gene was cloned and over-expressed in E. coli BL21(DE3) using pET26b(+). The recombinant GAD was purified by using a Ni-NTA column. Its size was 53 kDa by SDS-PAGE. Maximum GAD activity was at pH 4.5 and 41 °C and the activity was dependent on pyridoxal 5'-phosphate. Km and Vmax of LzGAD were 1.7 mM and 0.01 mM/min, respectively, when glutamate was used as a substrate.
Collapse
Affiliation(s)
- Ji Yeong Park
- Division of Applied Life Science (BK21 Plus), Graduate School, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | | | | |
Collapse
|
39
|
Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0282-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Li H, Li W, Liu X, Cao Y. gadA gene locus in Lactobacillus brevis NCL912 and its expression during fed-batch fermentation. FEMS Microbiol Lett 2013; 349:108-16. [PMID: 24164637 DOI: 10.1111/1574-6968.12301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022] Open
Abstract
Normally, Lactobacillus brevis has two glutamate decarboxylase (GAD) genes; gadA and gadB. Using PCR, we cloned the gadA gene from L. brevis strain NCL912, a high yield strain for the production of gamma-aminobutyric acid (GABA). However, despite using 61 different primer pairs, including degenerate primers from conserved regions, we were unable to use PCR to clone gadB from the NCL912 strain. Furthermore, we could not clone it by genomic walking over 3000 bp downstream of the aldo-keto reductase gene, a single-copy gene that is located 1003 bp upstream of gadB in L. brevis ATCC367. Altogether, the data suggest that L. brevis NCL912 does not contain a gadB gene. By genomic walking, we cloned regions upstream and downstream of the gadA gene to obtain a 4615 bp DNA fragment that included the complete gadA locus. The locus contained the GAD gene (gadA) and the glutamate:GABA antiporter gene (gadC), which appear to be transcribed in an operon (gadCA), and a transcriptional regulator (gadR) of gadCA. During whole fed-batch fermentation, the expression of gadR, gadC and gadA was synchronized and correlated well with GABA production. The gadA locus we cloned from NCL912 has reduced homology compared with gadA loci of other L. brevis strains, and these differences might explain the ability of NCL912 to produce higher levels of GABA in culture.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | | | | | | |
Collapse
|
41
|
PENG C, HUANG J, HU S, ZHAO W, YAO S, MEI L. A Two-stage pH and Temperature Control with Substrate Feeding Strategy for Production of Gamma-aminobutyric Acid by Lactobacillus brevis CGMCC 1306. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60568-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Le Vo TD, Ko JS, Park SJ, Lee SH, Hong SH. Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. ACTA ACUST UNITED AC 2013; 40:927-33. [DOI: 10.1007/s10295-013-1289-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
Abstract
Abstract
Gamma-aminobutyric acid (GABA) is a precursor of one of the most promising heat-resistant biopolymers, Nylon-4, and can be produced by the decarboxylation of monosodium glutamate (MSG). In this study, a synthetic protein complex was applied to improve the GABA conversion in engineered Escherichia coli. Complexes were constructed by assembling a single protein–protein interaction domain SH3 to the glutamate decarboxylase (GadA and GadB) and attaching a cognate peptide ligand to the glutamate/GABA antiporter (GadC) at the N-terminus, C-terminus, and the 233rd amino acid residue. When GadA and GadC were co-overexpressed via the C-terminus complex, a GABA concentration of 5.65 g/l was obtained from 10 g/l MSG, which corresponds to a GABA yield of 93 %. A significant increase of the GABA productivity was also observed where the GABA productivity increased 2.5-fold in the early culture period due to the introduction of the synthetic protein complex. The GABA pathway efficiency and GABA productivity were enhanced by the introduction of the complex between Gad and glutamate/GABA antiporter.
Collapse
Affiliation(s)
- Tam Dinh Le Vo
- grid.267370.7 0000000405334667 School of Chemical Engineering and Bioengineering University of Ulsan 93 Daehakro 680-749 Ulsan Nam-gu Republic of Korea
| | - Ji-seun Ko
- grid.267370.7 0000000405334667 School of Chemical Engineering and Bioengineering University of Ulsan 93 Daehakro 680-749 Ulsan Nam-gu Republic of Korea
| | - Si Jae Park
- grid.410898.c 0000000123390388 Department of Environmental Engineering and Energy Myongji University San 38-2, Nam-dong, Cheoin-gu 449-728 Yongin-si Gyeonggido Republic of Korea
| | - Seung Hwan Lee
- grid.29869.3c 0000000122968192 Division of Convergence Chemistry, Research Center for Biobased Chemistry, Industrial Biochemicals Research Group Korea Research Institute of Chemical Technology PO Box 107 141 Gajeong-ro 305-600 Daejeon Yuseong-gu Republic of Korea
| | - Soon Ho Hong
- grid.267370.7 0000000405334667 School of Chemical Engineering and Bioengineering University of Ulsan 93 Daehakro 680-749 Ulsan Nam-gu Republic of Korea
| |
Collapse
|
43
|
Chiu TH, Tsai SJ, Wu TY, Fu SC, Hwang YT. Improvement in antioxidant activity, angiotensin-converting enzyme inhibitory activity and in vitro cellular properties of fermented pepino milk by Lactobacillus strains containing the glutamate decarboxylase gene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:859-866. [PMID: 22821435 DOI: 10.1002/jsfa.5809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/22/2012] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the functional potential of fermented pepino extract (PE) milk by Lactobacillus strains containing the glutamate decarboxylase (GAD) gene. Three Lactobacillus strains were selected, including L. brevis BCRC 12310, L. casei BCRC 14082 and L. salivarius subsp. salivarius BCRC 14759. The contents of free amino acids, total phenolics content, total carotenoids and the associated functional and antioxidant abilities were analyzed, including angiotensin-converting enzyme (ACE) inhibition activity, 1,1-diphenyl-2-picylhydrazyl (DPPH) radical-scavenging ability and oxygen radical absorbance capacity (ORAC). Cell proliferation of fermented PE milk was also evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. RESULTS Compared to the unfermented PE, fermented PE milk from Lactobacillus strains with the GAD gene showed higher levels of total phenolics, γ-aminobutyric acid, ACE inhibitory activity, DPPH, and ORAC. The viability of human promyelocytic leukemia cells (HL-60) determined by the MTT method decreased significantly when the cells were incubated with the PE and the fermented PE milk extracts. CONCLUSION The consumption of fermented PE milk from Lactobacillus strains with the GAD gene is expected to benefit health. Further application as a health food is worthy of investigation. © 2012 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tsai-Hsin Chiu
- Department of Food Science, National PengHu University of Science and Technology, Penghu County, Taiwan.
| | | | | | | | | |
Collapse
|
44
|
Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 2012; 36:885-92. [PMID: 23010721 DOI: 10.1007/s00449-012-0821-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Abstract
In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD₆₀₀ of 2-10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD₆₀₀ of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al₂O₃ as catalyst in toluene with the yield of 96 %.
Collapse
Affiliation(s)
- Si Jae Park
- Department of Environmental Engineering and Energy-Undergraduate Program, Myongji University, San 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido 449-728, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jiang D, Cai Q, Gao A, Li J, Yang Y, Xu X, Ye Y, Hou J. Cloning and expression of a full-length glutamate decarboxylase gene from a high-yielding γ-aminobutyric acid yeast strain MJ2. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0493-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Yu K, Lin L, Hu S, Huang J, Mei L. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH. Enzyme Microb Technol 2012; 50:263-9. [PMID: 22418267 DOI: 10.1016/j.enzmictec.2012.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 11/28/2022]
Abstract
Glutamate decarboxylase (GAD) from Lactobacillus brevis is a very promising candidate for biosynthesis of GABA and various other bulk chemicals that can be derived from GABA. However, no structure of GAD of this origin has been reported to date, which limits enzyme engineering strategy to improve its properties for better use in production of GABA. Bacterial GAD exhibits an acidic pH optimum and there is often a sharp pH dependence. In the present work, site-directed mutagenesis was performed to delete the C-terminal residues of GAD to generate a mutant, designated as GADΔC, which exhibited extended activity toward near-neutral pH compared to the wild type. Comparison of the UV-visible, fluorescence and Circular Dichroism spectra of the mutant with those of the wild type revealed that the microenvironment of the active site had been changed. Based on the homology model, we speculated that the substrate entrance was probably enlarged in GADΔC. These results provide evidence for the important role of C-terminal region in the pH-dependent regulation of enzyme activity, and the resulting mutant would be useful in a bioreactor for continuous production of GABA.
Collapse
Affiliation(s)
- Kai Yu
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
47
|
Le Vo TD, Kim TW, Hong SH. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst Eng 2011; 35:645-50. [DOI: 10.1007/s00449-011-0634-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/22/2011] [Indexed: 11/27/2022]
|
48
|
Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 2011; 33:2469-74. [PMID: 21826397 DOI: 10.1007/s10529-011-0723-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE OF WORK Purpose of this work is to synthesize γ-aminobutyric acid by glutamate-producing species expressing Lactobacillus brevis-derived glutamate decarboxylase genes, i.e. recombinant Corynebacterium glutamicum strains, which directly convert endogenous L-glutamate precursor into γ-aminobutyric acid (GABA) through single-step fermentation. To express exogenous glutamate decarboxylase (GAD) in an L-glutamate-producing strain, Lactobacillus brevis Lb85, which can produce GABA, was used. Two Lb85 GAD genes, gadB1 and gadB2, and the ancillary genes, gadC-gadB2 and gadR-gadC-gadB2, were cloned separately into pDXW-8 and transformed into C. glutamicum. All four recombinant strains produced GABA whereas the wild-type strain did not. GABA produced by the recombinant strains continually increased after 36 h of fermentation. Although the mRNA levels of LbgadB2 and LbgadC were similar among the corresponding recombinants, GABA production of pDXW-8/gadRCB2 at 72 h (2.15 g/l) was higher than that of pDXW-8/gadCB2 (1.25 g/l) and pDXW-8/gadB2 (0.88 g/l). Thus, by introducing Lbgad genes, C. glutamicum was genetically engineered to synthesize GABA using endogenous L-glutamate.
Collapse
|
49
|
Fan E, Huang J, Hu S, Mei L, Yu K. Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0307-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Cho SY, Park MJ, Kim KM, Ryu JH, Park HJ. Production of high γ-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from mukeunjee kimchi. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0057-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|