1
|
Cao Q, Dong P, Han H. Therapeutic Effects of the major alkaloid constituents of Evodia rutaecarpa in Alzheimer's disease. Psychogeriatrics 2024; 24:443-457. [PMID: 38173117 DOI: 10.1111/psyg.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Since the report of Alzheimer's disease (AD) in 1907, it has garnered widespread attention due to its intricate pathogenic mechanisms, significant impact on patients' lives, and the substantial burden it places on society. Presently, effective treatments for AD remain elusive. Recent pharmacological studies on the traditional East Asian herb, Evodia rutaecarpa, have revealed that the bioactive alkaloid components within it can ameliorate AD-related cognitive impairments and neurological damage through various pathways, including anti-inflammatory, antioxidant, and anti-acetylcholinesterase activities. Consequently, this article provides an overview of the pharmacological effects and research status of the four main alkaloid components found in Evodia concerning AD. We hope this article will serve as a valuable reference for experimental and clinical research on the use of Evodia in AD prevention and treatment.
Collapse
Affiliation(s)
- Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Agrawal N, Bhardwaj A, Singh S, Goyal A, Gaurav A. Natural Products as Monoamine Oxidase Inhibitors: Potential Agents for Neurological Disorders. Comb Chem High Throughput Screen 2024; 27:701-714. [PMID: 37165491 DOI: 10.2174/1386207326666230510141008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
The role of medicinal plants has been advantageous due to their manifestation through various cellular and molecular mechanisms. Inhibition of the monoamine oxidase enzyme is suspected to be a highly effective treatment for various neurological illnesses like Alzheimer's disease, Parkinson's disease, depression, social phobia, and panic disorders. The study of phytochemicals and plant extracts used as a traditional source of medication revealed that they possess the vast potential for monoamine oxidase inhibition. Thus, the article focuses on the potential use of plant extracts and phytochemicals as sources of novel MAO inhibitors for treating neurological disorders. Exhaustive literature search revealed that a variety of phytochemicals from the categories such as flavonoids, alkaloids, glycosides, alkyl phenyl ketones, coumarin derivatives and essential oils have displayed potential MAO inhibition. This review highlights the progress made in the discovery and development of plant-based MAO inhibitors and aims to provide medicinal chemists with an overview of this information to aid in the development of clinically viable drugs.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Mollova-Sapundzhieva Y, Angelov P, Georgiev D, Yanev P. Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors. Beilstein J Org Chem 2023; 19:1804-1810. [PMID: 38033452 PMCID: PMC10682542 DOI: 10.3762/bjoc.19.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
β-Keto amides were used as convenient precursors to both 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides. The utility of this approach is demonstrated with the synthesis of fourteen novel and four known quinolone derivatives, including natural products of microbial origin such as HHQ and its C5-congener. Two compounds with high activity against S. aureus have been identified among the newly obtained quinolones, with MICs ≤ 3.12 and ≤ 6.25 µg/mL, respectively.
Collapse
Affiliation(s)
- Yordanka Mollova-Sapundzhieva
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Plamen Angelov
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Danail Georgiev
- Department of Biochemistry and Microbiology, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Pavel Yanev
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
5
|
Dube PS, Legoabe LJ, Beteck RM. Quinolone: a versatile therapeutic compound class. Mol Divers 2022:10.1007/s11030-022-10581-8. [PMID: 36527518 PMCID: PMC9758687 DOI: 10.1007/s11030-022-10581-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022]
Abstract
The discovery of nalidixic acid is one pinnacle in medicinal chemistry, which opened a new area of research that has led to the discovery of several life-saving antimicrobial agents (generally referred to as fluoroquinolones) for over decades. Although fluoroquinolones are frequently encountered in the literature, the utility of quinolone compounds extends far beyond the applications of fluoroquinolones. Quinolone-based compounds have been reported for activity against malaria, tuberculosis, fungal and helminth infections, etc. Hence, the quinolone scaffold is of great interest to several researchers in diverse disciplines. This article highlights the versatility of the quinolone pharmacophore as a therapeutic agent beyond the fluoroquinolone profile.
Collapse
Affiliation(s)
- Phelelisiwe S. Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| |
Collapse
|
6
|
Fu S, Liao L, Yang Y, Bai Y, Zeng Y, Wang H, Wen J. The pharmacokinetics profiles, pharmacological properties, and toxicological risks of dehydroevodiamine: A review. Front Pharmacol 2022; 13:1040154. [PMID: 36467053 PMCID: PMC9715618 DOI: 10.3389/fphar.2022.1040154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 01/10/2024] Open
Abstract
Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from Evodiae Fructus (EF, Wuzhuyu in Chinese, Rutaceae family), a well-known traditional Chinese medicine (TCM) which is clinically applied to treat headache, abdominal pain, menstrual pain, abdominal distension, vomiting, acid regurgitation, etc. Modern research demonstrates that DHE is one of the main components of EF. In recent years, DHE has received extensive attention due to its various pharmacological activities. This review is the first to comprehensively summarize the current studies on pharmacokinetics profiles, pharmacological properties, and toxicological risks of DHE in diverse diseases. Pharmacokinetic studies have shown that DHE has a relatively good oral absorption effect in the mean concentration curves in rat plasma and high absorption in the gastrointestinal tract. In addition, distribution re-absorption and enterohepatic circulation may lead to multiple blood concentration peaks of DHE in rat plasma. DHE possesses a wide spectrum of pharmacological properties in the central nervous system, cardiovascular system, and digestive system. Moreover, DHE has anti-inflammatory effects via downregulating pro-inflammatory cytokines and inflammatory mediators. Given the favorable pharmacological activity, DHE is expected to be a potential drug candidate for the treatment of Alzheimer's disease, chronic stress, amnesia, chronic atrophic gastritis, gastric ulcers, and rheumatoid arthritis. In addition, toxicity studies have suggested that DHE has proarrhythmic effects and can impair bile acid homeostasis without causing hepatotoxicity. However, further rigorous and well-designed studies are needed to elucidate the pharmacokinetics, pharmacological effects, potential biological mechanisms, and toxicity of DHE.
Collapse
Affiliation(s)
- Shubin Fu
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Liying Liao
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Yi Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
7
|
Wu G, Hao Q, Liu B, Zhou J, Fan C, Liu R. Network pharmacology-based screening of the active ingredients and mechanisms of evodiae fructus anti-glioblastoma multiforme. Medicine (Baltimore) 2022; 101:e30853. [PMID: 36181021 PMCID: PMC9524918 DOI: 10.1097/md.0000000000030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Evodiae fructus has been shown to have anti-glioblastoma multiforme (GBM) effects. However, its anti-GBM active components and mechanism remain unclear. In this study, the active components of evodiae fructus were screened by network pharmacology to explore the possible molecular mechanism of resistance to GBM. MATERIALS AND METHODS The main active ingredients of evodiae fructus were derived from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Batch-traditional Chinese medicine (TCM). TCMSP and Swiss absorption, distribution, metabolism and elimination (ADME) predict genetic targets for ingredients that meet pharmacological criteria. GBM-related targets were obtained from DisGeNet, GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and TCGA. A Venn diagram was used to obtain the common targets of evodiae fructus and GBM. Protein-protein interaction (PPI) networks and component-disease target networks were constructed using Cytoscape 3.8.1 software for visualization. GBM gene differential expression was visualized by VolcaNoseR, and potential targets were enriched by Gene Ontology (GO) function and annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway by SRplot. Molecular docking verification was conducted using AutoDock Vina software. RESULTS According to the screening conditions, 24 active components and 80 drug targets were obtained. The PPI network contains 80 proteins. The molecular docking verification showed the molecular docking affinity of the core active compounds in evodiae fructus with CASP3, JUN, EGFR, and AKT1. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of evodiae fructus against GBM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Bo Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Jingru Zhou
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Cungang Fan
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
- *Correspondence: Ruen Liu, Department of Neurosurgery, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
8
|
Gulcan HO. Selected natural and synthetic agents effective against Parkinson's disease with diverse mechanisms. Curr Top Med Chem 2021; 22:199-208. [PMID: 34844541 DOI: 10.2174/1568026621666211129141316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
Similar to other neurodegenerative diseases, Parkinson's disease (PD) has been extensively investigated with respect to its neuropathological background and possible treatment options. Since the symptomatic outcomes are generally related to dopamine deficiency, the current treatment strategies towards PD mainly employ dopaminergic agonists as well as the compounds acting on dopamine metabolism. These drugs do not provide disease modifying properties; therefore alternative drug discovery studies focus on targets involved in the progressive neurodegenerative character of PD. This study has aimed to present the pathophysiology of PD concomitant to the representation of drugs and promising molecules displaying activity against the validated and non-validated targets of PD.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, 99520, T.R. North Cyprus, via Mersin 10. Turkey
| |
Collapse
|
9
|
Mannan A, Singh TG, Singh V, Garg N, Kaur A, Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr Drug Targets 2021; 23:286-310. [PMID: 34238153 DOI: 10.2174/1389450122666210707120256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as potential treatment for neurological diseases.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Mesiti F, Maruca A, Silva V, Rocca R, Fernandes C, Remião F, Uriarte E, Alcaro S, Gaspar A, Borges F. 4-Oxoquinolines and monoamine oxidase: When tautomerism matters. Eur J Med Chem 2021; 213:113183. [PMID: 33493825 DOI: 10.1016/j.ejmech.2021.113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
4-Oxoquinoline derivatives have been often used in drug discovery programs due to their pharmacological properties. Inspired on chromone and 4-oxoquinoline chemical structure similarity, a small series of quinoline-based compounds was obtained and screened, for the first time, toward human monoamine oxidases isoforms. The data showed the N-(3,4-dichlorophenyl)-1-methyl-4-oxo-1,4-dihydroquinoline-3-carboxamide 10 was the most potent and selective MAO-B inhibitor (IC50 = 5.30 ± 0.74 nM and SI: ≥1887). The data analysis showed that prototropic tautomerism markedly influences the biological activity. The unequivocal characterisation of the quinoline tautomers was performed to understand the attained data. To our knowledge, there have been no prior reports on the characterisation of quinolone tautomers by 2D NMR techniques, namely by 1H-15N HSQC and 1H-15N HMBC, which are proposed as expedite tools for medicinal chemistry campaigns. Computational studies on enzyme-ligand complexes, obtained after MM-GBSA calculations and molecular dynamics simulations, supported the experimental data.
Collapse
Affiliation(s)
- Francesco Mesiti
- Dipartimento di Scienze Della Salute, Università"Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy; Net4Science Srl, Spin-off Accademico, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy; CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, 4169-007, Portugal
| | - Annalisa Maruca
- Dipartimento di Scienze Della Salute, Università"Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy; Net4Science Srl, Spin-off Accademico, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Vera Silva
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, 4169-007, Portugal; UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Roberta Rocca
- Net4Science Srl, Spin-off Accademico, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy; Dipartimento di Medicina Clinica e Sperimentale, Università"Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Carlos Fernandes
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, 4169-007, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Eugenio Uriarte
- Departamento Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, España, Spain; Instituto de Ciencias Químicas Aplicadas, Universidad Autonoma de Chile, Av. Libertador Bernardo O'Higgins, 7500912, Santiago de Chile, Chile
| | - Stefano Alcaro
- Dipartimento di Scienze Della Salute, Università"Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy; Net4Science Srl, Spin-off Accademico, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | - Alexandra Gaspar
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, 4169-007, Portugal.
| | - Fernanda Borges
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, 4169-007, Portugal.
| |
Collapse
|
11
|
Zhao Z, He X, Han W, Chen X, Liu P, Zhao X, Wang X, Zhang L, Wu S, Zheng X. Genus Tetradium L.: A comprehensive review on traditional uses, phytochemistry, and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:337-354. [PMID: 30472402 DOI: 10.1016/j.jep.2018.11.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruit of Tetradium ruticarpum is frequently utilized as a common traditional medicine in China, Japan and Korea. It has been widely used for the treatment of various diseases such as headache, menorrhalgia, dermatophytosis, celialgia, emesis and aphtha and so on. AIM OF THIS REVIEW Despite the wide biological activities of Tetradium plants, there is no current review summarizing medicinal properties of the genus of plants; thus, this review aims to systematically summarize studies on botanical characteristics, traditional uses, phytochemical ingredients, quality control, pharmacokinetics, pharmacological activities and toxicity of Tetradium species to demonstrate their therapeutic capacity. MATERIALS AND METHODS Information and materials related to Tetradium species were obtained from scientific databases such as Google Scholar, Wikipedia, Web of Science, PubMed, ScienceDirect, ACS Publications, SciFinder. Information was also gathered from International Plant Names Index, Global Biodiversity Information Facility, Chinese Pharmacopoeia and Traditional Chinese Medicine classics, etc. All studies of this genus were included in this review until July 2018. RESULTS Tetradium is widely assessed regarding its phytochemistry and biological activities. Approximately 131 chemical compounds, including alkaloids, saponins, phenols and other compounds, have been isolated from Tetradium plants. Among these components, alkaloid evodiamine is the most representative active ingredients of Tetradium plants. These compounds isolated from Tetradium plants exhibit a wide range of biological activities in vitro and in vivo including antitumor, antibacterial, anti-inflammatory, insecticide, cardioprotective and lipid-lowering, treating CNS disorders, digestive system regulation and endocrine system improving activities. Furthermore, alkaloids could be used as markers for quality identification and evaluation of medicinal materials and their preparations. Information on evaluating the safety and pharmacokinetics of Tetradium often focuses on the alkaloids, thus further study and clinical data are required to enable the drug safety of the utilization of Tetradium plants. CONCLUSIONS Phytochemical and pharmacological studies of Tetradium plants have proved Tetradium plants are important medicinal herb resource. However, well-designed randomized clinical trials are necessary to confirm the therapeutic benefits of this genus in clinical settings.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an 710054, China
| | - Wei Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China
| | - Xing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China
| | - Lixin Zhang
- Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an 710054, China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an 710069, China.
| |
Collapse
|
12
|
Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol Res 2019; 141:541-550. [DOI: 10.1016/j.phrs.2018.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
|
13
|
Li YH, He J, Li Y, Wu XD, Peng LY, Du RN, Cheng X, Zhao QS, Li RT. Evollionines A-C, Three New Alkaloids Isolated from the Fruits ofEvodia rutaecarpa. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Zhao Y, Zhao Y, Zhou X, Gong X. Development and validation of an UPLC-ESI-MS/MS method for determination of dehydroevodiamine, limonin, evodiamine, and rutaecarpine in Evodiae Fructus. Pharmacogn Mag 2014; 10:374-83. [PMID: 25210328 PMCID: PMC4159934 DOI: 10.4103/0973-1296.137381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 08/29/2013] [Accepted: 07/24/2014] [Indexed: 11/25/2022] Open
Abstract
Objective: Evodiae Fructus (EF), one of the most widely used traditional Chinese medicines, mainly consists of alkaloids, is widely used for the treatments of headache and gastrointestinal disorders. In this study, a sensitive and reliable UPLC-ESI-MS/MS method was developed for qualitative determination of dehydroevodiamine, limonin, evodiamine, and rutaecarpine. Materials and Methods: Chromatographic separations were accomplished on a Phenomenex Kinetex XB-C18 column (2.1 × 150 mm, 1.7 μm) by using a gradient elution profile with a mobile phase consisting of 0.5% formic acid in water (A) and acetonitrile (B). Detection was performed using multiple reactions monitoring mode under ESI in the positive ion mode. Results: The results showed good linearity over the investigated concentration ranges (R2>0.9900) for the analytes. The limit of quantitations (LOQs) were 6.88 ng/mL for dehydroevodiamine, 18.6 ng/mL for limonin, 6.24 ng/mL for evodiamine, and 2.56 ng/mL for rutaecarpine, respectively. Intraday and interday precisions (relative standard deviations, %) were <5% and accuracies ranged from 92% to 106%. Conclusion: The validated method was successfully applied to assay the contents of the four compounds in EF samples from different regions, with which just 10 min was needed to analyze each sample.
Collapse
Affiliation(s)
- Yang Zhao
- The Research Center for Quality Control of Nature Medicine, Guizhou Normal University, Guiyang 550001, Guizhou, China ; Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Yunling Zhao
- The Research Center for Quality Control of Nature Medicine, Guizhou Normal University, Guiyang 550001, Guizhou, China ; Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Xin Zhou
- The Research Center for Quality Control of Nature Medicine, Guizhou Normal University, Guiyang 550001, Guizhou, China ; Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Xiaojian Gong
- The Research Center for Quality Control of Nature Medicine, Guizhou Normal University, Guiyang 550001, Guizhou, China ; Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, Guizhou, China
| |
Collapse
|
15
|
Passos CDS, Simoes-Pires C, Henriques A, Cuendet M, Carrupt PA, Christen P. Alkaloids as Inhibitors of Monoamine Oxidases and Their Role in the Central Nervous System. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63430-6.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
16
|
Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2013; 18:219-43. [PMID: 24218136 DOI: 10.1007/s11030-013-9490-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 , Rome, Italy
| | | | | | | | | |
Collapse
|
17
|
Zhong S, Ye H, Peng A, Shi J, He S, Li S, Ye X, Tang M, Chen L. Separation and Purification of Quinolone Alkaloids from the Chinese Herbal MedicineEvodia rutaecarpa (Juss.)Benth by High Performance Counter-Current Chromatography. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2010.532529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Lee SW, Chang JS, Lim JH, Kim MS, Park SJ, Jeong HJ, Kim MS, Lee WS, Rho MC. Quinolone Alkaloids from Evodiae fructus Inhibit LFA-1/ICAM-1-mediated Cell Adhesion. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Jang DS, Yoo NH, Kim NH, Lee YM, Kim CS, Kim J, Kim JH, Kim JS. 3,5-Di- O-caffeoyl- epi-quinic Acid from the Leaves and Stems of Erigeron annuus Inhibits Protein Glycation, Aldose Reductase, and Cataractogenesis. Biol Pharm Bull 2010; 33:329-33. [DOI: 10.1248/bpb.33.329] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dae Sik Jang
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| | - Nam Hee Yoo
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| | - Nan Hee Kim
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| | - Yun Mi Lee
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| | - Chan-Sik Kim
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| | - Junghyun Kim
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| | | | - Jin Sook Kim
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine
| |
Collapse
|